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Physiological genetics attempts to relate the molecular genetic properties of an 
organism--the genotype--to its integrated or physiological behavior--the 
phenotype. There has been relatively little progress in this field when compared to 
the neighboring fields of molecular and population genetics. This is due in part to 
the large number of highly non-linear interactions that characterize such systems. 
Biochemical Systems Theory is one approach that shows promise in dealing with 
the large number of non-linear interactions in a systematically structured manner. 
A variant of this approach has stressed the use of specific mathematical constraints, 
called summation and connectivity relationships, among molecular and systemic 
properties. In particular, the summation relationship has been used to argue that 
the predominance of recessive mutations is the inevitable consequence of the kinetic 
structure of enzyme networks and need not be attributed to natural selection. In 
order to put in broader perspective the implications of such constraints for physio- 
logical genetics, we have presented in this paper the outlines of the larger theory 
and the set of generalized steady state constraints that follow from first principles 
within this theory. The results show that the summation relationship suffers from a 
number of fundamental limitations that make it invalid for analyzing realistic 
biological systems. It also is shown that the more general constraint relationships, 
while valid, provide nothing new that cannot be obtained directly from the explicit 
solutions that are available within the larger theory. Thus, one can conclude that 
approaches based directly on the underlying equations of the system are superior 
to those based upon constraint relationships as a foundation for the development 
of physiological genetics. 

I. Introduction 

The rapid advances in molecular genetics during the past several decades have 
yielded an abundance of  information about the molecular determinants of  biological 
systems. Molecular advances also have provided new techniques that have stimulated 
the field of  population genetics. At the interface between these major disciplines 
stands physiological genetics (Crow, 1987). Its principal task is to relate knowledge 
of  molecular determinants to the phenotype of  the intact organism and hence to 
fitness at the population level. Physiological genetics has yet to undergo the kinds 
of  major advances that have been well documented for both molecular and popula- 
tion genetics. 
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It has been clear for some time that new methods are needed to integrate the 
molecular data into a manageable understanding of the intact system. We have 
developed a broad theoretic framework, based upon an underlying Power-Law 
Formalism, in order to address this issue (e.g. Savageau, 1969b, 1971a, 1972, 1976) 
and, more specifically, to predict cellular and organismal responses to change in 
environmental conditions and underlying molecular determinants (Savageau, 1971a, 
1976, 1979a, b, 1980, 1985; Okamoto & Savageau, 1984; Irvine & Savageau, 1985a, b; 
Sorribas & Savageau, 1989a, b,c) and to elucidate the design principles of biological 
systems (Savageau, 1972, 1976, 1979a, b, 1980, 1985; Savageau & Jacknow, 1979; 
Irvine & Saveageau, 1985a, b). One of the fundamental features of this non-linear 
theory is its mathematical structure, which leads to linear algebraic equations in 
steady state. The relationship between systematic behavior and the underlying 
molecular parameters is then determined completely by inverting the matrix of 
coeMcients that characterize the system. The orthogonality relationships that charac- 
terize the matrix and its inverse also can be interpreted as constraint relationships 
among the molecular and systemic properties of the system (Savageau, 1971a). 

Although it has not been generally recognized, others have described an alternative 
approach to the same theoretical domain that focuses on a set of constraint relation- 
ships (e.g. Kacser & Burns, 1973; Heinrich & Rapoport, 1974; Kacser & Burns, 
1979; Westerhoff &Chen,  1984; Fell & Sauro, 1985, 1986; Hofmeyr et aL, 1986; 
Kacser & Porteous, 1987) that are equivalent to the orthogonality relationships 
under special conditions. This approach utilizes two types of measurements that 
have been given a well-defined meaning and relationship within the context of 
Biochemical Systems Theory (see Sorribas & Savageau, 1989a, b). One they call the 
"elasticity"; it involves the relative change in the rate of a process resulting from a 
1% change in a metabolite concentration that affects that process, while all other 
metabolite concentrations are held constaint--this is the conventional kinetic order 
of chemical and biochemical kinetics. The second they call the "control coefficient"; 
it involves the relative change in a flux resulting from a 1% change in an enzyme 
level or activity, while all other enzyme levels and activities are held constant--this 
is a special case of the conventional parameter sensitivity of systems analysis when 
enzyme levels and activities are considered parameters of the system. 

In this approach, the two types of coemcientsletasticity and control coefficients-- 
are related by various mathematical constraints called summation and connectivity 
relationships or theorems. The connectivity relationships involve products of elas- 
ticities and control coefficients summed over all enzymes in the system; they are 
critical for expressing control coefficients in terms of elasticities. However, it is the 
summation relationships, which involve only sums of control coefficients with respect 
to each of the enzymes in the system, that have received the most attention. This is 
because the summation is considered to represent a sort of "conservation law" for 
the influences exerted by the enzymes. Although the distribution of these influences 
on a given flux can change as conditions vary, the sum of all the influences is 
conserved and must remain a total of one according to this approach. This is 
commonly interpreted to mean that if the influence exerted by one enzyme increases 
then the influence exerted by some other enzyme must correspondingly decrease 
(e.g. Hartl et al., 1986). 
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The flux summation relationship has been used to argue that in a system with 
many enzymes the influence that any given enzyme has on any given flux, as measured 
by the appropriate control coefficient, must be small (on the average 1/n  where n 
is the number of enzymes in the system). Mutations effectively change the amount 
of an enzyme, and since such changes have only a small effect on any given flux, 
the consequences of the mutation go unnoticed. Mutant phenotypes will be recessive; 
the wild type will be dominant. Hence, the sumation relationship alone is sufficient 
to account for the phenomenon of dominance in genetics (Kacser & Burns, 1981). 
Others have explored the possibility that this approach might offer means of 
addressing questions in quantitative genetics (Watt, 1985; Hartl et al., 1985, 1986). 
Although some have criticized specific uses of this approach (e.g. Stoner, 1984; 
Burton & Place, 1986; Cornish-Bowden, 1987), and others have made more general 
criticisms (e.g. Crabtree & Newsholme, 1985, 1987; Hess & Markas, 1987; Savageau, 
1987; Sorribas, 1987; Voit, 1987; Welch & Keleti, 1987), until recently this contraint 
approach has been neither compared with other approaches to the theory nor 
critically tested. 

In order to put in perspective the role of steady state constraints in characterizing 
and understanding biochemical systems we shall first outline the general theory 
upon which they are based, and then present the complete set of constraint relation- 
ships that follow from first principles within this theory. The results permit a critical 
comparison of approaches based on constraint relationships with those based directly 
on the explicit solution of the equations that characterize the system in the Power- 
Law Formalism. From these comparisons it is seen that: (1) the summation theorem 
suffers from a number of fundamental limitations that make it invalid for analyzing 
many if not most realistic biological systems, (2) the more general constraint 
relationships, while valid, are unable to capture essential information needed to 
characterize the steady state behavior of such systems, and (3) the explicit solution 
of the underlying equations allows characterization of dynamic as well as steady 
state behavior. Thus, approaches based on the underlying equations of the system 
are superior to those based upon constraint relationships as a foundation for the 
development of physiological genetics. 

2. Biochemical Systems Theory: Mathematical Representation 
and Explicit Steady State Solution 

The Power-Law Formalism refers to a formal mathematical structure that has 
been systematically elaborated over the past 20 years. It makes frequent use of the 
common power-law function, which has been used in biology since the time of 
Galileo, but contains much more. Like other formal languages, e.g. the Linear 
Formalism, it involves precise definitions, systematic notation, strategies for rep- 
resentation, determination of accuracy, estimation of parameter values, existence 
theorems, methods of analytical solution and computer analysis, etc. It also provides 
a canonical non-linear form into which rather arbitrary non-linear functions can be 
recast exactly. For a recent review, see Savageau & Voit (1987). 

The use of the Power-Law Formalism to develop a systematic approach for 
understanding integrated biochemical systems has led to a general theoretical 
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framework called Biochemical Systems Theory or BST. This theory can be represen- 
ted in a number of forms, including the explicit S-system version, which is the case 
emphasized by Savageau and colleagues, the explicit Generalized Mass Action 
(GMA) variant, which includes as a special case the Crabtree-Newsholme approach,  
and the implicit GMA variant, which includes as a special case the approach of  
Kacser- Burns and Heinrich- Rapoport.  (For a detailed treatment of  the relatedness 
of all these variants see Sorribas & Savageau, 1989a, b,c.) Only those elements of 
BST essential for the purposes of  this paper are outlined here; however, sufficient 
references will be given so that the critical reader can find additional information. 

(2.I} S-SYSTEM REPRESENTATION 

The fundamental equations in BST are the conservation equations written for 
each dependent  variable in the system, Xi, i = 1 . . . .  , n t .  In the S-system representa- 
tion, the most useful and accurate of  the various representations (Volt & Savageau, 
1987; Sorribas & Savageau, 1989a, b), individual rate laws are first aggregated. Those 
that characterize reactions forming an Xi are aggregated to give a single rate law 
for net synthesis, Vi. Similarly, individual rate laws that characterize reactions 
removing an Xi are aggregated to give a single rate law for net degradation, V +  
Each of these net rate laws for synthesis and degradation is then represented by a 
product  of  power-law functions, one for each variable that has an influence upon 
the net rate law in question. (Step-by-step procedures for constructing the equations 
can be found in Savageau, 1969b, 1976: chapter 9; Voit & Savageau, 1982.) The 
fundamental equations governing the behavior of  the intact biochemical system are 
then written in BST as 

F3 + m tl  + t ~  

d X j d t  oq ]~ XS,, jSi H h = , - Xj ' , ,  i =  1 , . . . ,  n (1) 
j= l  j= l  

where n is the number of  dependent  concentration variables, rn is the number of 
independent  concentration variables, a~ and fl~ are the rate constants, and gij and 
h 0 are the kinetic orders of  biochemical kinetics. The parameters a~ and g0 are 
associated with the rate law for net synthesis of  X~, while/3i and h# are associated 
with the rate law for net degradation of  X~. 

Algebraic dependencies among the X~ also can be expressed readily in the 
Power-Law Formalism (Savageau, 1969b, 1976, 1979b; Savageau et aL, 1987a). 
When the redundant  equations in (1) are eliminated, and the algebraic dependencies 
substituted into the remaining equations, the resulting set has exactly the same form 
as the original set in eqn (1), but with fewer variables. Once the algebraic dependen- 
cies have been taken into account in this manner,  the representation and subsequent 
analysis are identical to that given below. (For examples, see Savageau, 1979b; 
Sorribas & Savageau, 1989a, b.) 

1 Although the X, may represent any variable in the system, for simplicity in the presentation we 
shall henceforth refer to them as biochemical concentration variables. The representation of other types 
of variables is treated in detail elsewhere (e.g. see Savageau, 1979b; Volt & Savageau, 1982; lrvine & 
Savageau, 1985a; Savageau & Voit, 1987; Sorribas & Savageau, 1989a). 
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There are efficient computer  methods to examine the dynamic behavior of  bio- 
chemical systems (Irvine & Savageau, in press; Voit et al. 1989), and these have 
been used in a variety of  BST applications (briefly reviewed in Sorribas & Savageau, 
1989a). However,  for the purposes of this paper we need only be concerned with 
steady state behavior. Thus, we shall say nothing further about dynamic behavior; 
the interested reader can consult the references given above. 

(2.2) S T E A D Y  S T A T E  E Q U A T I O N S  

In a steady state, the time derivatives are set equal to zero, the resulting non-linear 
algebraic equations are transformed into a set of linear algebraic equations by taking 
logarithms, and these are written in conventional matrix notation (Savageau, 1969b) 

[A]y] = b] (2) 

where the elements of  the (n + m) x n matrix of kinetic orders are given by a o = 

g u -  hu, Yi = log Xi ,  and b; = log ( f l ; /a~) .  Separation of  independent  and dependent  
variables allows the steady state equations to be written as 

[A]dY]d = -- [A]iy]; + b] (3) 

where the subscript " d "  signifies that the matrix [A]d contains only kinetic orders 
with respect to dependent  concentrations and the vector Y]d contains only logarithms 
of dependent  variables. The subscript " i "  has the same interpretation but for the 
independent  variables. 

(2.3) T H E  I N V E R S E  O P E R A T O R  

The steady state equations for the S-system o feqn  (1) are governed by conventional 
linear algebra in the logarithms of the dependent  variables eqn (3). The matrix of 
kinetic orders, [Aid , is always a square matrix of  dimension n x n. A fundamental 
axiom of  linear algebra states that for all matrices [Aid with non-zero determinant 
there exists an inverse operator,  [A]d ~, defined as 

[A]d~[A]a = Ill  (4) 

where [I] is the n x n identity matrix (e.g. Bellman, 1960). In order to simplify the 
notation, we let the inverse operator  [A]d ~ = [ M ]  (Savageau, 1971a). As a con- 
sequence of  the definition of  this operator,  it follows that [Aid also will be the 
inverse operator  of  [M]. That is 

[M][A]u = [I3 = [A3d[M]. (5) 

Hence, the inverse operator  [M] is a matrix whose row and column vectors are 
or thogona l  to the column and row vectors of [A]d, respectively. This can be inter- 
preted as 

n 

Mua~g = 8ik, i, k = 1 , . . . ,  n (6) 
j = l  
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or, since the multiplication of  these elements commutes,  

a i j M j k  = gig, i, k = 1 . . . .  , n (7) 
j = l  

w h e r e  t~ik is the Kronecker delta equal to 1 when i = k and 0 when i # k. 
This orthogonality among the elements of  lAId and its inverse operator  [M] is 

the fundamental basis for the constraint relationships between the different molecular 
and systemic properties of  the system (Savageau e t  a l . ,  1987b). More important, the 
inverse operator  allows one to solve eqn (3) and obtain the dependent  variables 
e x p l i c i t l y  in terms of  the independent variables and parameters of  the system 
(Savageau, 1969b). 

(2.4) EXPLICIT STEADY STATE SOLUTION 

If the conditions for the existence of  the inverse operator of  the system matrix 
[Aid are fulfilled, the explicit steady state solution can be obtained by premultiplying 
eqn (3) by [M]. The explicit steady state solution for the S-system in eqn (1) then 
can be written (Savageau, 1971a, 1976) 

Y]d = -- [M][A],y]; + [M]b] = [L]y]; + [M]b] (8) 

where [L] is a matrix of  logarithmic gains (see next section). In this equation the 
solution for the logarithms of  the dependent  concentrations Y]d ( y ~ , j  = 1 , . . . ,  n )  is 
divided into two parts. The first exhibits the linear dependence on the logarithms 
of the independent  concentrations Y]i ( Y j , j  = n + 1 . . . .  , n + m); the second exhibits 
the linear dependence on the logarithms of  the rate constants b] [bi = log (/3~/a;), i = 
1 , . . . , n ] .  

The flux through any pool X; in steady state is obtained by a simple secondary 
calculation involving the known concentrations in steady state. 

( l o g V + ) ] = ( l o g o t ) ] + [ G ] y ]  or ( l o g V _ ) ] = ( l o g l ~ ) ] + [ H ] y ]  (9) 

where (log V+)], (log V_)], (log or)], and (log I~)] are n vectors representing the 
logarithms of influxes (log V~, i =  1 , . . . ,  n) effluxes (log V_i, i =  1 , . . . ,  n), c~ rate 
constants (log ~;, i =  1 . . . .  , n), and /3 rate constants (log/3~, i =  1 , . . . ,  n). The ele- 
ments of  the (n + m ) x  n matrices [G] and [H] are given by the kinetic orders go 
and h0, respectively. Thus, the explicit solution in eqns (8) and (9) gives the complete 
relationship in BST between the steady state values of  the dependent  variables on 
the one hand and the values of  the independent  variables and parameters of  the 
system on the other. 

3. Factors Relating Systemic Behavior to the Underlying Kinetic-Order Parameters 

The behavior of a complex biochemical system is characterized by the responses 
of  the dependent  variables to changes in the independent  variables and parameters 
of  the system. The explicit solution obtained with the S-system representation 
provides a complete characterization of the local steady state behavior about any 
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operating point of a biochemical system (Savageau, 1969b, 1972; Savageau et al., 
1987a, b; Sorribas & Savageau, 1989a, b,c). However, it also is useful to characterize 
the system in terms of standard factors that relate its global properties to its 
underlying molecular determinants; namely logarithmic gains and parameter 
sensitivities (Savageau, 1971a; Sorribas & Savageau, 1989a, b,c). 

(3.1) C O N C E N T R A T I O N  B E H A V I O R  

The systemic behavior of the dependent concentrations is given explicitly by eqn 
(8). The factors that characterize the systemic response to change in specific indepen- 
dent concentrations or parameters can be readily determined by appropriate 
differentiation of the explicit solution. 

Logarithmic gains 

The percentage change in a dependent concentration Xi resulting from a 1% 
increase in an independent concentration Xk, while all other independent concentra- 
tions and parameters are held constant, can be determined by differentiation of eqn 
(8). 

OyJ Oyk = ( OXJ OXk )( Xk/  X~) = L,k 
(lO) 

= L ( X i ,  Xk),  i = l , . . . , n ; k = n + l , . . . , n + m .  

Hence, the elements Lik of the m x n matrix [L] = -[M][A]~ are analogous to gain 
or amplification factors in conventional network theories (e.g. Bode, 1945) and 
within BST they are referred to as logarithmic gain factors (Savageau, 1971a, 1972, 
1976; Savageau et al., 1987b; Sorribas & Savageau, 1989a). The matrix [L] is also 
represented by the symbol [L(X, X)]. 

Rate-constant sensitivities 

The percentage change in a dependent concentration X~ resulting from a 1% 
increase in a rate constant fl~ or a 1% decrease in a rate constant a i can be determined 
by differentiation of the explicit solution with respect to the parameter bj. 

Oy,/Ob i = ( O X i / O b j ) ( b j / X i )  = Mij (11) 

= S(Xi ,  flj) = - S ( X i ,  aj), i , j  = 1 , . . . ,  n. 

Hence, the elements M~j of the n x n matrix [M], which is the inverse of the n x n 
system matrix [ A ] d  , a r e  identical to conventional parameter sensitivities (Bode, 
1945; Cruz, 1973; Savageau, 1971a, b, 1976; Savageau et al., 1987b). In BST they 
are referred to as rate-constant sensitivites. The matrix [M] is also represented by 
the symbols [S(X, fl)] = - [S(X, a)]. 

Kinetic-order sensitivities 

In a similar fashion, one can differentiate the explicit solution in eqn (8) with 
respect to one of the kinetic orders in the system and thereby determine the percentage 
change in a dependent concentration X~ resulting from a one-percent change in a 
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kinetic order gk, or h,,. These factors are defined as kinetic-order sensitivities, and 
they are related in several different ways (Savageau, 1971a; Savageau et al., 1987b; 
Sorribas & Savageau, 1989a). 

By analogy to the identification of the elements Mv,  with the rate-constant 
sensitivities, one can identify the elements 

of the three-dimensional tensor {N) with the kinetic-order sensitivities. The tensor 
{N) is also represented by the symbols {S(X, h)/  h} = - {S(X, g)/g}. 

(3 .2)  FLUX BEHAVIOR 

The systemic behavior of the dependent fluxes is given by a simple secondary 
calculation involving the known concentrations in steady state [eqn (9)]. The factors 
that characterize the systemic response to change in spccific independent concentra- 
tions or parameters can be determined readily by appropriate differentiation and 
use of the results given above. 

Logarithmic gains 

The effect of change in an independent variable on a dependent flux can be 
determined by differentiation of eqn (9). Hence, the logarithmic gains for the fluxes 
are 

where the subscripts "i" and "d" signify that the matrix contains only kinetic orders 
with respect to the independent or dependent variables, respectively. 

Rate-constant sensitivities 

By a similar procedure, one obtains the following rate-constant sensitivities 
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and 

or 

s(v,,/~k)= E guS(Xj,#k), 
j=l 

i , k = l , . . . , n  

[S( V÷, /3)] = [G]d[g(x, /3)]. 

Kinetic-order sensitivities 

Similarly, the kinetic-order sensitivities are 

( go, Z- , '  gkp / j = I 

or 

and 

or 

i , k = l , . . . , n ; p = l , . . . , n + m  

{S( V+, g/g}  = [ l ] ® y ]  + [G]d ®{S(X,  g ) /g}  

L /S(Xj, hkp)~ 
= j = l  guk, "-~k; ] '  

i , k = l  . . . .  , n ; p = l , . . . , n + m  

{S(V+, h)/h} = [G]d®{S(X, h)/h} 

(15) 

(16) 

(17) 

where the symbol  ® indicates (matrix) multiplication of  the left-hand matrix with 
the pth matrix of  the f ight-hand tensor, or (scalar) multiplication of  the left-hand 
matrix with the pth element  of  the right-hand vector, to generate the pth matrix of  
the resulting three-dimensional  tensor. 

By means of  the factors described in this section one can characterize the systemic 
response to change in each independent  concentrat ion and each parameter  of  the 
system, and,  because these factors can be expressed explicitly in terms of  the kinetic 
orders of  the system, they also are important  for relating systemic behavior  to the 
underlying determinants  of  the system (Savageau,  1971a; Sorribas & Savegeau, 
1989a, b). These relationships are summarized in Table 1. 

TABLE 1 

Complete Characterization of  the Nominal Steady State within BST 

Flux Variables 

Systemic Properties Component Properties 

Concentration Variables 

Systemic Properties Component Properties 

[K( V, X ) ]  = [G] ,  - [ G ] a [ A ] ~ t [ A ] ,  
[S( V, f l ) ]  = [G]a  [A ]~ '  
IS( V, a ) ]  = [ I ]  -[G]a[A]~' 

{S( V, h)/h} = [G]d[A] ~' ®y] 
{S( V, g)/g} = [!] ®y] - [G]a[A]~l®y] 

[L(X, X)] = -[A]~'[A]~ 
IS(X, fl)] = [A]~ t 
[S(X, a)] = -]A] ~ I 

{S(X, h)/h} = [A]~t®y]  
{S(X, g ) /g }  = - [ A ] ~ t ® y ]  
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4. Orthogonality Properties 

The existence of an inverse operator defined by the relationship [A]d[M] = [I], 
which is an axiomatic property of linear systems, can be interpreted alternatively 
as a set of orthogonality properties involving kinetic orders (molecular determinants) 
and parameter sensitivities (systemic properties). This orthogonality is inherent to 
the linear structure of the steady state equations in the S-system representation of 
BST, and the specific biochemical interpretation is the result of identifying the 
elements of the inverse operator with the rate-constant sensitivities of the system 
[eqn (10)]. One might ask, does the linear structure of the steady state equations 
imply a similar orthogonality for the other systemic properties? The answer is yes, 
as can be seen by appropriate differentiation of the steady state equations. These 
additional manifestations of the orthogonality properties are presented below. 

(4.1) M A N I F E S T A T I O N S  I N V O L V I N G  L O G A R I T H M I C  G A I N S  

Logarithmic differentiation of eqn (3) with respect to an independent variable X k  
yields the set of equations 

~. aqLjk : --aik ~ 
j = l  

i-- 1 , . . . ,  n; k =  n + l , . . . ,  n + m  

o r  

[AId[L] = -[A],. (18) 

This set of equations, involving logarithmic gains and kinetic orders, is formally 
equivalent to the fundamental orthogonality properties expressed by eqn (5). Accord- 
ing to the definition of the matrix [L], eqn (18) can be rewritten -[A]d[M][A]i = 
-[Ai],  which is equivalent to [A]d[M] = [I]. 

(4.2) M A N I F E S T A T I O N S  I N V O L V I N G  R A T E - C O N S T A N T  S E N S I T I V I T I E S  

Logarithmic differentiation of eqn (3) with respect to rate-constant parameters 
ak or ~k yields 

~ aijMjk = ¢~ik, i, k = 1 . . . .  , n 
j = l  

o r  

[AId[M] = [I] (19) 

and, since this matrix multiplication commutes, 

[M][A]a = [I]. (20) 

These equations are the fundamental orthogonality properties previously identified 
with the axiomatic definition of the inverse operator in linear algebra [eqn (5)]. 
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(4.3) MANIFESTATIONS INVOLVING KINETIC-ORDER SENSITIVITIES 

Similarly, logarithmic differentiation with respect to kinetic-order parameters gkp 

or hkp yields 

¢li jNjk p : t~ikYp, i, k = 1 , . . . ,  n; p = 1 . . . .  , n + m 

o r  

[A]d ®{N} = [I]®y] (21) 

and, since the matrix multiplications commute, 

{N}®[A]d = [l]®y]. (22) 

By comparing eqns (19) and (21), one can see that 

{N} = [M]®y]. (23) 

From this last result it follows that eqns (21) and (22) are equivalent to eqns (5). 
As in the case of logarithmic gains and rate-constant sensitivities, the equations 
relating kinetic-order sensitivities and kinetic orders are but an alternative expression 
of the orthogonality properties associated with the existence of the inverse operator 
of the system matrix [A]a. 

The orthogonality properties in this section are automatically incorporated into 
the explicit steady state solution. Hence, they can not be used to obtain any additional 
information beyond that available from the steady state solution. 

5. Complete Set of Constraint Relationships 

The complete steady state characterization of a biochemical system in BST consists 
of determining explicitly all the dependent concentration variables and fluxes in 
steady state, and how these are influenced by all the parameters and independent 
variables of the system (Savageau, 1969b, 1971a, 1972). The explicit steady state 
solution in BST is both necessary and sufficient for this characterization. 

In contrast, the specific constraint relationships of Kacser et al.--the summation 
and connectivity theorems--are neither necessary nor sufficient for characterizing 
intact biochemical systems (Savageau et al., 1987a, b; Sorribas & Savageau, 
1989a, b,c). Nonetheless, it has been argued that the summation theorem can be 
used to place constraints upon the values of these systemic coefficients (Kacser & 
Burns, 1979). 

Since BST allows a complete characterization of the system, it is possible to put 
in proper perspective the role of such constraint relationships. In fact, a number of 
more general constraint relationships in the Power-Law Formalism already have 
been demonstrated to include the specific summation and connectivity relationships 
proposed by Kacser and his colleagues (Savageau et al., 1987b). These more general 
constraint relationships are mathematically equivalent to the well-known orthogonal- 
ity properties of linear systems (see the previous section). They are true by definition 
and so cannot be "proved" because they are part of the axiomatic structure of linear 
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algebra. Although these constraint relationships yield no information not already 
provided by the explicit solution in BST, they might offer another view on the 
relationship among the various elements of  the system characterization. 

There are potentially 24 constraint relationships in the full set, which is generated 
by combination of  the following options in BST: 3 (rate-constant parameters, 
kinetic-order parameters, independent variables) x 2  (dependent  concentrations, 
dependent  fluxes) x 2 (summation, connectivity) x 2 (direct orthogonality properties, 
commuted orthogonality properties). Of  these, 15 correspond to readily interpretable 
constraints, while the remaining nine cannot be realized or have no obvious meaning. 
The two different forms of  the orthogonality properties may be interpreted as follows. 
In one case, a simultaneous 1% change is made in each of the parameters in a set. 
The orthogonality property then gives the "part i t ioning" of  the single net effect on 
a given dependent  variable of  the system into component  effects that can be attributed 
to each of  the parameters. In the other, a 1% change is made in a single parameter 
pair or independent  variable. The orthogonality property then gives the "distribu- 
t ion" of  the multiple effects that are spread over the dependent  variables of the 
system. It is important to note that no conservation of  total influence is implied in 
either case. 

(5.1) P A R T I T I O N I N G  O F  E F F E C T S  A M O N G  P A R A M E T E R S  

For this set of constraint relationships one considers responses in a single depen- 
dent concentration variable Xi, or a single dependent  flux variable V~, that result 
from changes in an entire class of parameters. The parameter sensitivities measure 
the response to change in the individual parameters while all other parameters are 
held constant. Alternatively, one might consider a simultaneous 1% change in all 
the parameters of the class, and then the parameter sensitivities measure the contribu- 
tion to the net change that can be attributed to each parameter. 

Summat ion  o f  rate-constant effects on concentrations 

Consider a given dependent  concentration variable X;, determine the parameter 
sensitivity with respect to each of  the rate constants in the system, sum these, and 
note the relationships in eqn (11). The result is 

[ S ( X i ,  o f j ) -~ -S (X i , [3 i ) ]=O , i = l , . . . , n .  (24) 
j=l 

That is, for each dependent  concentration, the sum of the sensitivities with respect 
to change in the rate-constant parameters is zero. 

Connectivity o f  rate-constant effects on concentrations 

If one notes ajk = g j k -  hjk [see eqn (2)] and the relationships in eqn (11), then it 
is clear that the orthogonality properties in eqn (6) can be rewritten as 

n 

~.. [ S ( X i ,  crj)gjk + S ( X ,  f l j )h jk ]  = --~5,k, i, k = 1 , . . . ,  n. (25) 
j = l  
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For each dependent  concentration, the sum of  the sensitivities with respect to change 
in the rate-constant parameters multiplied by the associated kinetic order with 
respect to a second dependent  concentration Xk is --1 if the first and the second 
concentration are the same or 0 if they are different. 

Summation of rate-constant effects on fluxes 

Consider a given dependent  flux variable V~, determine the sensitivities from eqns 
(14) and (15), sum these, and note the relationships in eqn (11). The result is 

[S(V,.,o~i)+S(V~,fl~)]=I , i = l , . . . , n .  (26) 
j = l  

For the flux through each dependent  pool, the sum of  the sensitivities with respect 
to change in the rate-constant parameters is unity. Equations (14), (15) and (11) 
also imply 

IS( V÷, ~)] = [H], ,[S(X, ~)] 

[S( V÷,/3)] = [G]~[S(X, /3 ) ]  

from which it follows that eqn (26) can be rewritten as 

[H]d [S(X, a) ]  + [G]d[S(X, fl)] = [A]d[M] = [I]. 

Connectivity of  rate-constant effects on fluxes 

If one determines the sensitivities from eqns (14) and (15), and notes the relation- 
ships in eqn (11) and the fact that ajk = gik -- hik [see eqn (2)], then the orthogonality 
properties in eqn (6) can be rewritten as 

n 

E [S(V~,aj)gjk+S(V,[3i)hjk]=O, i , k = l  . . . .  ,n. (27) 
j = l  

For the flux through each dependent  pool Xi, the sum of the sensitivl,es with 
respect to change in the rate-constant parameters multiplied by the associated kinetic 
order with respect to a second dependent  concentration Xk is zero. 

Summation of kinetic-order effects on concentrations 

Consider a given dependent  concentration variable Xi, determine its parameter 
sensitivities with respect to each of the kinetic orders in the system that involves a 
second concentration variable Xp, sum these, and note the relationships in eqn (12). 
The result is 

j=-t\, / +  hip =0,  i = l , . . . , n ; p = l , . . . , n + m .  (28) 

For each dependent  concentration, the sum of  the sensitivities with respect to change 
in each of  the kinetic-order parameters that involves a second concentration variable, 
when divided by the corresponding kinetic order, is zero. 
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Connectivity o f  kinetic-order effects on concentrations 
If one notes ajk =gjk--hjk [see eqn (2)] and the relationships in eqn (12), then it 

is clear that the orthogonality properties in eqn (22) can be rewritten as 

i, k =  1 , . . . ,  n ; p =  1 , . . . ,  n + m .  (29) 

For each dependent concentration Xi, the sum of the sensitivities with respect to 
change in each of the kinetic orders that involves a second concentration variable 
Xp, when divided by the corresponding kinetic order and multiplied by the associated 
kinetic order with respect to another dependent concentration Xk, is --log Xp if the 
first and the last dependent concentrations are the same or 0 if they are different. 

Summation o f  kinetic-order effects on fluxes 
Consider a given dependent flux variable V~, determine the sensitivities from eqns 

(16) and (17), sum these, and note the relationships in eqn (12). The result is 

2 S( V~, gjp) S( J:, ~p / +  ~ ;  =yp, i = l , . . . , n ; p = l , . . . , n + m .  (30) 

For the flux through each dependent pool Xi, the sum of the sensitivities with 
respect to change in each of the kinetic-order parameters that involves a second 
concentration Xp divided by the corresponding kinetic orders is equal to log Xp. 

Connectivity o f  kinetic-order effects on fluxes 
If one determines the sensitivities from eqns (16) and (17), and notes the relation- 

ships in eqn (12) and the fact that ajk = gjk -- h~k [see eqn (2)], then the orthogonality 
properties in eqn (22) can be rewritten as 

y. S ( g j p )  g ig+\  hJL- /h ja  .. , .. , 
j = l  

(31) 

For the flux through each dependent pool X ,  the sum of the sensitivities with 
respect to change in each of the kinetic-order parameters that involves a second 
concentration Xp, when divided by the corresponding kinetic order and multiplied 
by the associated kinetic order with respect to another dependent concentration Xk, 
is zero. 

Summary 
The first four constraint relationships, involving rate-constant parameters, have 

been given elsewhere (Savageau et al., 1987b). The second four, involving kinetic- 
order parameters, are new. There are four more constraint relationships that might 
be considered in this class. The logarithmic gains in dependent concentrations 
summed over all the independent concentrations, and the logarithmic gains in 
dependent fluxes summed over all the independent concentrations, 

n + r n  n + m  

Y~ L ( X , , X j )  and Y~ L(V~,Xj),  i= 1 , . . . ,  n 
j=~'l+ I j = n + i  
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yield no readily interpreted result. The corresponding connectivity relationships 
n - ~ m  t,1 -~- rtl 

L(X,,X~)ajk and ~ L(V~,Xj)ajR, i = l , . . . , n ; k = l , . . . . , n + m  
j = n + l  j = n + l  

do not exist because there are no kinetic orders with first subscripts in the rangej  > n. 

(5 .2)  D I S T R I B U T I O N  O F  E F F E C T S  O V E R  D E P E N D E N T  V A R I A B L E S  

The following set of  constraint relationships is obtained by simply commuting 
the orthogonali ty properties of  the system. The responses are determined in each 
case for a given change in a single parameter  pair or independent  concentration, 
and these are summed over all the dependent  concentrations or fluxes in the system. 
The results are to be contrasted with those in the previous section, where the 
responses involve a single dependent  concentrat ion or flux and the sum is over all 
parameters of  a given class. 

Summation of  rate-constant effects on concentrations 
Consider the rate constants for net synthesis and net degradation of  a given 

dependent  concentration Xk, determine the sensitivities to change in these para- 
meters for all dependent  concentrations in the system, sum these, and note the 
relationships in eqn (11). The result is 

tl 

E [S(Xj, ak)+S(X~,flk)]=O, k = l , . . . , n .  (32) 
j=l 

For each such rate-constant pair, the sum of  the parameter  sensitivities over all 
dependent  concentrations in the system is zero. 

Connectivity of  rate-constant effects on concentrations 

If  one notes ajk = gjk-  h~k [see eqn (2)] and the relationships in eqn (11), then it 
is clear that the orthogonali ty properties in eqn (7) can be rewritten as 

[gqS(Xj, ak)+ huS(X j,/3k)] = --Sik, i, k = 1 , . . . ,  n. (33) 
j =  I 

For each rate-constant pair corresponding to the dependent  concentrat ion Xk, the 
sum of  the sensitivities multiplied by the kinetic orders for synthesis and degradation 
of  a second dependent  concentrat ion Xi is - 1 if the first and the second concentrat ion 
are the same or 0 if they are different. 

Summation of  rate-constant effects on fluxes 
Consider a given rate-constant pair corresponding to the dependent  concentration 

Xk, determine the sensitivities from eqns (14) and (15), sum these, and note the 
relationships in eqn (11). The result is 

[S (V j ,  ak ) - l -S (Vj ,  f l k ) ] = l  , k = l , . . . , n .  (34) 
j=l 

For each rate-constant pair, the sum of  the sensitivities over all dependent  fluxes 
is unity. This relationship is equivalent to the orthogonality properties in eqn (5) 
as can be shown by the procedure following eqn (26). 
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Summation of  kinetic-order effects on concentrations 

Consider the pair of kinetic orders gkp and hkp , determine the sensitivities of  all 
dependent  concentrations in the system with respect to each, sum these, and note 
the relationships in eqn (12). The result is 

n ((S(Xj'gkP) I (S(Xj, hkp))} 
I . \  g-~k; / +  =0,  k = l , . . . , n ; p = l , . . . , n + m .  (35) 

j = I hkp 
For each kinetic-order pair, the sum of the sensitivities for all dependent  concentra- 
tions divided by the corresponding kinetic order, is zero. 

Connectivity of  kinetic-order effects on concentrations 

If one notes ajk = g j k -  hjk [see eqn (2)] and the relationships in eqn (12), then it 
is clear that the orthogonality properties in eqn (21) can be rewritten as 

i, k =  1 . . . .  , n; p = 1 , . . . ,  n + m .  (36) 

For each pair of kinetic orders associated with the dependent  concentration Xk, the 
sum of the sensitivities, when divided by the corresponding kinetic orders and 
multiplied by the kinetic orders for synthesis and degradation of a second dependent  
concentration Xi, is - l o g  Xp if the first and the second concentration are the same 
or 0 if they are different. 

Summation of  kinetic-order effects on fluxes 

Consider the pair of kinetic orders gkp and hkp , determine the sensitivities from 
eqns (16) and (17), sum these, and note the relationships in eqn (12). The result is 

S( Vj, ggp) + k = l ,  n; p . . . ,  
j=t t \  gkp / \ h--~kp- / J  =yp, . . . ,  = 1, n + m .  (37) 

For each kinetic-order pair, the sum of the sensitivities for all dependent  fluxes 
divided by the corresponding kinetic order, is log Xp. 

Connectivity of  independent-variable effects on concentrations 

These constraints are simply an alternative manifestation of  the orthogonality 
properties, as already noted for eqn (18). 

n 

aqL(Xj, X k ) = - a , k ,  i = l , . . . , n ; k = n + l , . . . , n + m .  (38) j=l 
For each independent  concentration Xk, the sum of  the logarithmic gains for all 
dependent  concentrations, multiplied by the corresponding kinetic orders for syn- 
thesis and degradation of  a given dependent  concentrations X~, is equal to the 
negative of the kinetic orders with respect to the independent  concentration Xk. 

Summary 

All the constraint relationships in this section are new. There are five more 
constraint relationships that might be considered in this class, but none of them 
yields a readily interpreted result. 
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6. Implications for Physiological Genetics 

Having generated the complete set of  constraint relationships within the general 
framework provided by BST, we are now in a position to discuss their role in 
understanding the integrated behavior of  biochemical systems and, hence, their 
implications for physiological genetics. We shall begin by considering a specific 
example of  how constraint relationships have been used. 

(6.1) D O M I N A N C E  

Kacser & Burns (1981) argue that most mutations are recessive (wild type 
dominant)  as a necessary consequence of  a summation relationship or theorem that 
shows how the influences on a given systemic flux are distributed over all the 
enzymes in the system. In their approach the enzyme levels are considered parameters 
of  the system, and the influence of  each enzyme is determined by its sensitivity 
coefficient. Hence, if one characterizes the system according to this approach,  
"[ t ]here  are as many sensitivity coefficients for a given flux as there are enzymes in 
the system. It can be shown that the sum of  all such coefficients equals unity." It 
is claimed that this summation property has been proved for systems of  any structural 
complexity. As a consequence,  "[s]ince n, the number of  enzymes, is large, this 
summation property results in the individual coefficients being small." From these 
considerations Kacser & Burns (1981) suggest that "[ t ]he widespread occurrence 
of  recessive mutants is thus seen to be the inevitable consequence of  the kinetic 
structure of  enzyme networks." This argument, it is claimed, eliminates the necessity 
to invoke evolution as the origin of the phenomenon.  Clearly, this argument stands 
or falls on the general validity of the summation theorem, which until recently has 
not been subjected to critical analysis. The results of  such analysis show that the 
summation theorem suffers from at least four major limitations. 

(6.2) C R I T I Q U E  OF THE S U M M A T I O N  T H E O R E M  

The summation theorem is not valid for systems that involve enzyme-enzyme 
complexes (Sorribas & Savageau, 1989a, b). There is now abundant  experimental 
evidence and sound theoretical reasons for the existence of  enzyme-enzyme inter- 
actions in biochemical systems. The rates in such systems need not be linearly 
independent  functions of  enzyme levels, as is assumed in the derivation of  the 
summation theorem (Kacser & Burns, 1973, 1979). Even in cases where the total 
enzyme concentrat ion is truly an independent  variable, e.g. in vitro experiments 
with purified enzymes, its influence on the rate of  an individual reaction need not 
be linearly dependent  upon the enzyme level when it interacts with other enzymes. 
It has been shown clearly for such systems that the sum of  the sensitivity coefficients 
is not equal to unity and that individual empirically determined sensitivities can 
have values much greater than unity (Sorribas & Savageau, 1989b). As this work 
also shows, the method of  direct solution in BST (Savageau, 1971a) allows systems 
involving enzyme-enzyme complexes to be analyzed without difficulty. 
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The summation theorem is not valid for systems that involve reactions at or very 
near thermodynamic equilibrium or that pass through equilibrium (Stoner, 1984; 
Sorribas & Savageau, 1989c). Although it is well known that biological organisms 
operate far from thermodynamic equilibrium, there are subsystems that under certain 
conditions do function at or very near equilibrium and do pass through equilibrium. 
Among the most extensively studied are glycolytic reactions that under appropriate 
conditions reverse their direction of operation to participate in gluconeogenesis. 
The sensitivity coefficients in the Kacser-Burns approach can not be determined 
for a flux when that flux is at or very near zero. (Although one can conceive of  
determining kinetic orders and sensitivities even very near equilibrium, careful 
analysis shows that such determinations become highly unreliable.) BST provides 
strategies for dealing with systems that pass through equilibrium (Sorribas & 
Savageau, 1989c). 

The summation theorem is not valid for determining the distribution of  influence 
when there are negative sensitivities (Savageau et aL, 1987b), which is the case for 
most if not all biological systems. For example, this becomes an important issue 
for systems that include branched pathways, feedback activation mechanisms, feed- 
forward inhibition mechanisms, or cascade mechanisms such as enzyme-proenzyme 
cascades and the transcription-translation cascades of  gene expression. These are 
clearly documented features of  most biological systems. If the sensitivities do indeed 
sum to unity, then there must be other coefficients with positive values that can be 
greater than unity. There is no longer a "unit  amount  of  influence" that is conserved; 
the influence of  one enzyme can increase and that of  the others need not decrease. 
Clearly, sensitivity coefficients need not be positive fractional quantities, their 
average magnitude need not be l /n ,  and individual values need not be small. The 
situation is even clearer in the case of  influences on metabolic concentrations, where 
under corresponding conditions the sum of  sensitivity coefficients for all enzymes 
equals zero. In this case, the positive influences must be balanced by an equivalent 
amount  of  negative influence, and in general individual sensitivity coefficients need 
not be small. 

The summation theorem is restricted by its implicit representation of  the underly- 
ing kinetics and its assumption of  a stable steady state. Such constraint relationships 
do not allow one to characterize fully an actual steady state because they lack one 
fundamental class of  parameters in the underlying formalism, the rate constants; 
and they are unable to verify the existence or stability of  a steady state because the 
dynamic structure of  the systems is missing (Savageau et al., 1987a; Sorribas & 
Savageau, 1989b). It is well known that small changes in parameter  values or 
independent  variables may not lead to similarly small changes in steady state 
properties, but may in fact produce large qualitative shifts to another  steady state 
or to another  mode of  dynamic behavior such as stable oscillation or chaotic 
fluctuation (e.g. see Hess & Markas, 1987). In order to determine that a steady state 
analysis is indeed appropriate when there is the possibility of  such behaviors requires 
a theory capable of representing the dynamic structure of  the system. 

The one severely restricted case where clearly the summation theorem applies 
and the average sensitivity coefficient is given by 1In is the case of  an unbranched 
pathway of  soluble enzymes operating far from equilibrium in a first-order regime 
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with no enzyme-enzyme interactions and no allosteric regulation. This is the case 
actually analyzed by Kacser & Burns (1981). Although the essential insights were 
provided by the earlier analysis of this same case by Waley (1964), what is new in 
the analysis by Kacser & Burns (1981) is the claim that these conclusions are 
inevitably true for all systems and that they automatically account for the 
phenomenon  of  dominance.  The generality of  this claim rests upon their assumption 
that the summation theorem is valid for systems "o f  any structural complexity",  
which as noted above is not valid, and upon their arguments that the influence of  
negative sensitivities can be discounted, which is questionable. 

In conclusion, the assumptions that underlie the summation theorem in the 
Kacser-Burns approach are not generally valid. Even in cases where the assumptions 
are valid and the sensitivities do indeed sum to unity, the use of  this relationship 
to express a conservation of  influence among the enzymes is still invalid for most 
if not all biological systems. Hence, dominance cannot be explained on the basis 
of  such a conservation principle. 

(6.3) C R I T I Q U E  O F  T H E  G E N E R A L  C O N S T R A I N T  R E L A T I O N S H I P S  

One response to the above limitations is to search for an appropriate generalization 
of the summation and connectivity relationships that constitute the fundamental  
principles of  the Kacser-Burns approach. Since it is known that their approach is 
a special case of  Biochemical Systems Theory (e.g. see Savageau et al., 1987a, b; 
Sorribas & Savageau, 1989a, b), an appropriate generalization of  the summation 
relationships is readily available. In fact, as we have seen in this paper, one can 
exhaust the possibilities for such constraint relationships within BST. The constraint 
relationships in BST are more general because the full set of  fundamental  parameters 
is identified, because the sensitivities are defined with respect to all of  the funda- 
mental parameters and not restricted to just enzyme activities, and because linearity 
and independence of  enzyme forms is not assumed. Even though the constraint 
relationships are mathematically valid they are not always biologically meaningful. 
Thus, one must ask: what additional information do these generalized constraint 
relationships provide, can they be used to provide a sound explanation of  dominance,  
and more generally, can they provide a foundat ion for addressing the larger spectrum 
of  questions that are important  in physiological genetics? 

The summation relationship of  Kacser & Burns is not among the more general 
constraints. When its restrictions are taken into account, it becomes clear that it is 
a special case of  eqn (26) (see Savageau et al., 1987b). It also is clear from an 
examination of  this equation and the other general constraint relationships given 
in the previous section that individual sensitivities and logarithmic gains need not 
be small positive quantities. As we have shown elsewhere, the individual sensitivities 
in specific systems can indeed be quite large (Sorribas & Savageau, 1989a, b,c). Thus, 
even generalized summation relationships that validly sum to unity, fail as "conserva- 
tion laws" for the influence upon systemic properties. We can conclude that domin- 
ance is not a necessary consequence of  the more general constraint relationships. 

The broader  issue is whether or not an approach based on constraint relationships 
might provide something new in the way of  methodology for addressing problems 
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of  physiological genetics. We have shown elsewhere (Sorribas & Savageau, 1989b) 
that the use of  general constraint relationships provides nothing that cannot be 
obtained from the solution of  the fundamental equations describing the system. On 
the contrary, the use of  constraint relationships actually limits the information that 

can be obtained. 

7. Discussion 

It is unfortunate that the relatedness of  the various approaches to understanding 
integrated biochemical systems has not been more widely recognized. The mistaken 
notion that these approaches are totally unrelated has given rise to considerable 
misunderstanding. However,  most of  the confusion can be avoided simply by 
analyzing the same system with each of the alternatives and making specific com- 
parisons based on objective criteria. 

There are several lines of  evidence involving such comparisons which demonstrate 
that BST includes the Kacser-Burns approach as a special case (Savageau et al., 
1987a, b; Voit & Savageau, 1987; Sorribas & Savageau, 1989a, b). BST remains valid 
under conditions where the summation theorem fails, and for applications that fall 
within the domain of the Kacser-Burns approach,  the two approaches give identical 
results. We know of  no evidence to the contrary. Nevertheless, Kacser & Burns 
(1979) considered their approach to have superseded BST. No reasons were given, 
but apparently they thought the summation and connectivity relationship provided 
fundamentally new information and failed to see that the same information was 
already available within BST as part of the explicit steady state solution (Savageau, 
197 la ) .  From the perspective of BST, the summation and connectivity relationships 
are seen to be a manifestation of the orthogonality properties of  the underlying 
formalism. From the Kacser-Burns perspective, this has been difficult to see, perhaps 
because the underlying formalism is not made explicit. In any case, a number of  
recent papers (e.g. Giersch, 1988; Reder, 1988; Sorribas & Savageau, 1989b: Cascante 
et al., 1989a, b) now make this manifestation clear when the underlying formalism 
is implicit rather than explicit. 

Thus, the two approaches have much in common throughout  their overlapping 
domain. There are of  course differences. Some of  these are relatively trivial, but 
nonetheless, they may obscure the more fundamental  similarities if they are not 
understood. For instance, there are differences in notation and in the convention 
for numbering reactions of  the system. While one might claim certain advantages 
for one or the other alternative, it also could be argued that these are largely a 
matter of  taste. The differences cannot be considered fundamental ,  because the 
same results are obtained in each case and because one can readily translate from 
one representation to the other. In contrast, other differences have more significant 
consequences that must be examined objectively and not simply dismissed because 
the approaches are assumed to be unrelated. For instance, there are differences 
between implicit and explicit representation of  the underlying formalism, differences 
in strategy for aggregating flux, and differences regarding the independence of  
individual reactions. With respect to these more important differences, BST is found 
to have the advantages (Sorribas & Savageau, 1989a, b,c). 
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From our examination of these alternative approaches we conclude that explana- 
tions of dominance, and many other phenomena in physiological genetics, cannot 
be based on the original summation theorem, nor can they be based upon the more 
general constraint relationships presented in this paper. The general constraint 
relationships are seen to yield only a subset of  the information available directly 
from the explicit solution. Hence, we do not advocate using the complete set of  
constraint relationships published in this paper as the foundation for development 
of  physiological genetics. Instead, we recommend that questions of  physiological 
genetics be explored with a stronger theory such as BST, which has predictive power 
and proven success in other areas of biochemistry and genetics. 
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