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ABSTRACT 

The search for systematic methods to deal with the integrated behavior of complex 

biochemical systems has over the past two decades led to the proposal of several theories of 

biochemical systems. Among the most promising is biochemical systems theory (BST). 

Recent comparisons of this theory with several others that have recently been proposed 

have demonstrated that all are variants of BST and share a common underlying formalism. 

Hence, the different variants can be precisely related and ranked according to their 

completeness and operational utility. The original and most fruitful variant within BST is 

based on a particular representation, called an S-system (for synergistic and saturable 

systems), that exhibits many advantages not found among alternative representations. Even 

within the preferred S-system representation there are options, depending on the method of 

aggregating fluxes, that become especially apparent when one considers reversible path- 

ways. In this paper we focus on the paradigm situation and clearly distinguish the two most 

common strategies for generating an S-system representation. The first is called the 

“reversible” strategy because it involves aggregating incoming fluxes separately from 

outgoing fluxes for each metabolite to define a net flux that can be positive, negative, or 

zero. The second is the “irreversible” strategy, which involves aggregating forward and 

reverse fluxes through each reaction to define a net flux that is always positive. This second 

strategy has been used almost exclusively in all variants of BST. The principal results of 

detailed analyses are the following: (1) All S-system representations predict the same 

changes in dependent concentrations for a given change in an independent concentration. 

(2) The reversible strategy is superior to the irreversible on the basis of several criteria, 

including accuracy in predicting steady-state flux, accuracy in predicting transient re- 

sponses, and robustness of representation. (3) Only the reversible strategy yields a represen- 

tation that is able to capture the characteristic feature of amphibolic pathways, namely, the 
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reversal of nets flux under physiological conditions. Finally, the results document the wide 

range of variation over which the S-system representation can accurately predict the 

behavior of intact biochemical systems and confirm similar results of earlier studies [Voit 

and Savageau, Biochemistry 26: 6869-6880 (1987)j. 

1. INTRODUCTION 

Biochemical pathways are complex dynamic systems that are character- 
ized by a large number of interactions and nonlinear processes. Analysis of 
these systems requires appropriate mathematical representations to provide a 
meaningful methodological framework for dealing with the complexity. 

The development of such representations has been a major objective of 
several groups for the past two decades. The result of this effort, until very 
recently, has been considerable confusion that can be traced to the lack of 
careful comparisons among the different theories that have been proposed 
and to the introduction of diverse notation that is often at variance with 
well-accepted notation in related areas.’ However, careful comparisons of 
these various theories show that they are all variants of a single theory, 
called biochemical systems theory (BST). This is true by virtue of their 
sharing a fundamental property-the use, explicitly or implicitly, of the 
power-law formalism for representing the different processes of the system 

[35, 36, 35, 39, 411. 
This formalism was developed in the late 1960s by combining well-known 

general principles of network theory with the specific characteristics of 
biochemical processes. The concepts, theory, and methodology that were 
produced [20-251 provide a very general framework for analysis that in- 
cludes a structured set of rules for building mathematical representations of 
complex biochemical systems. The preferred representation in BST is called 
an S-system (for synergistic and saturable system) and is obtained by first 
aggregating the several processes affecting a dependent metabolite into two 
processes, one accounting for its synthesis and another for its degradation. 
Following this procedure, the rate of each of the aggregate processes is 
described by a product of power-law functions, which produces the S-system 
representation. Once the mathematical representation has been derived, the 
various parameters of the S-system are evaluated at a nominal operating 
point to produce an exact characterization of the system at that point. 

The S-system is one of several possibilities for using the power-law 
formalism to represent biochemical systems. Its principal advantages lie in 

‘In particular, metabolic control theory [6-8, 12-15, 431 and flux-oriented theory [2-41 

have not been critically tested, nor have they been distinguished from previously existing 

theory, e.g., by comparison of their predictions with those of earlier approaches to the same 

problem. (See [32], [37], [40], [42] for references and brief discussion of these issues, and 

[34]-[36], [38], [39] for detailed analysis and comparisons.) 
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its ability to provide an explicit steady-state solution in symbolic form and 
to predict accurately the behavior of the system over a wide range of 
variation about the operating point at which the S-system representation is 
built [21, 28, 35, 36, 38, 39, 411. However, even within this form of 
representation there are alternative strategies for aggregation that produce 
alternative S-system representations for the same pathway. Although these 
alternatives are equivalent at the operating point and provide the same 
characterization of the system at this point, they differ in their ability to 
predict the behavior of the system in the vicinity of such a point. These 
differences become particularly apparent in dealing with reversible pro- 
cesses. 

Although all processes are in principle reversible, there are many reac- 
tions that for all practical purposes can be considered irreversible. Living 
systems typically operate far from thermodynamic equilibrium. If a cell has 
need to synthesize a given substance under one set of conditions and to 
utilize or degrade that substance under another set of conditions, it will 
generally do so via two entirely separate pathways that operate in an 
essentially unidirectional fashion. Pathways of the first type are known as 
biosynthetic or anabolic; those of the second type are known as catabolic. 
For example, in certain strains of Salmonella typhimurium there is a histidine 
catabolic pathway [16, 171 that is entirely separate from the histidine 
biosynthetic pathway [l]. This pattern is so widely observed in cellular 
physiology that it has been elevated to the status of an “organizational 
principle.” Nevertheless, there are important pathways in the cell that do 
function in a reversible fashion and thus are organized according to different 
principles; these pathways are called amphibolic. The most notable example 
is the glycolytic pathway in which significant portions are also used for 
gluconeogenesis by some types of cells [5, 191. 

In this paper we compare the two principal strategies for S-system 
representation of reversible pathways. The “reversible” strategy involves 
aggregation of incoming fluxes separately from outgoing fluxes for each 
metabolite to define a net flux that can be positive, negative, or zero; this 
amounts to choosing the set of j7uxes with the same sense toward a given 
metabolic as the building block for construction of the S-system representa- 
tion. The “irreversible” strategy involves aggregation of forward and reverse 
fluxes through each reaction to define a net flux that is always positive; this 
amounts to choosing the net flux through a given reaction as a building 
block. 

The criteria for these comparisons are four: (1) accuracy in predicting 
values of the concentration variables at steady states around the nominal 
operating point, (2) accuracy in predicting values of the flux variables at 
steady states around the nominal operating point, (3) accuracy in predicting 
transient responses between two such steady states, and (4) robustness of the 
representation. 
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The results of detailed and rigorous comparisons show that a.ll possible 
S-system representations of a biochemical pathway predict the same values 
for the concentration variables at steady states around the nominal operating 
point. On the other hand, the two principal strategies yield very different 
predictions for steady-state fluxes and transient responses. The reversible 
strategy is always more accurate and in particular is the only strategy 
capable of representing thermodynamic equilibrium. These results confirm 
and extend early results on the optimum procedure for aggregation [41]. 
Other limitations associated with alternative aggregation procedures are 
documented elsewhere [38, 391. Finally, our results show that the more 
accurate representation is also the more robust. Near equilibrium, parameter 
sensitivities using the reversible strategy are on average about an order of 
magnitude smaller than those using the irreversible strategy, which means 
that slight changes in the system produce only slight changes in its S-system 
representation when the reversible strategy is used. These results also make 
clear that the parameter sensitivities are not simply a property of the 
biochemical system but reflect the mathematical representation as well. 
Hence, high parameter sensitivities associated with a given process may not 
be indicative of a “control” point in the biochemical system, but only of an 
inappropriate mathematical representation for the system. 

2. METHODOLOGY 

Analysis of complex biochemical systems can be broken down into three 
distinct steps: mathematical representation of the system, steady-state analy- 
sis, and dynamic analysis. There is a well-developed methodology for each of 
these steps in biochemical systems theory. 

2.1. S-SYSTEM REPRESENTATION 

The S-system representation is built by first aggregating kinetic descrip- 
tions for the different processes affecting a metabolite 4.; those that account 
for the synthesis of _& yield a net rate law K, and those that account for its 
degradation yield a net rate law V_i. Each of these net rate laws is then 
represented by a product of power-law functions, which produces the 
S-system equations2 

dX. nim n+HI 
2 = K - v-i = ai n JyJ - pi n LyhlJ, 
dt 

i=l,...,n, (1) 
j=l j=l 

‘We shall omit for simplicity discussion of situations involtig constraints or aggregate 

concentration variables. In any case, these additional features can be handled in a 

straightforward manner that leaves the form of the resulting equations unchanged. For 

details, see Savageau [28,29], Savageau et al. [35, 361, and Sorribas and Savageau [38, 391. 
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where n is the number of dependent concentration variables in the system 
and m is the number of independent concentration variables. 

The parameters of the power-law formalism are defined as follows: 

ai = &) j-I x,p , 
j-l 

pi = v_i, n Jg’J. 
j=l 

They result from Taylor series expansions of v and Ki in a logarithmic 
coordinate system at an operating point signified by the subscript 0 [21, 25, 
281. The parameters are readily identified as the rate constant (oi and rS,> 
and the kinetic orders (gij and h,,) associated with each of the aggregate 
rate laws (synthesis and degradation) in the system. The numerical values of 
the parameters reflect the underlying mechanisms and the choice of operat- 
ing point at which the system is characterized exactly. 

The accuracy with which the S-system representation predicts the behav- 
ior of biochemical systems for variations about the nominal operating point 
depends upon the particular characteristics of the system. However, avail- 
able evidence suggests that S-systems provide an accurate representation 
over a wide range of variations, comparable to those seen for biochemical 
variables in situ [28, 38, 39, 411. 

2.2. STEADY-STATE SOLUTIONS 

A major advantage of the S-system representation resides in its ability to 
provide an explicit steady-state solution in symbolic form [21]. From Rq. (l), 
the steady-state description of the system can be written in logarithmic 
coordinates: 

MY1 =bl 

where y] is a vector of dimension n + m with elements given by y, = log Xi, 
[A] is a matrix of dimension n X(n + m) with elements a,, = g,, - hi, 
(i=l,... n; i=l,..., n + m), and b] is a vector of dimension n with ele- 
ments given by b, = log( &/a,). 

To obtain a unique nonzero steady state, it is necessary to separate 
dependent and independent concentration variables. Rearranging Eq. (3) 
yields 

where the subscripts d and i signify that the corresponding matrices (vec- 
tors) contain only kinetic orders (logarithms of concentrations) for depen- 
dent and independent concentrations, respectively. One can solve explicitly 



244 ALBERT SORRIBAS AND MICHAEL A. SAVAGEAU 

for the n dependent variables in terms of the parameters and the m 

independent variables, provided the matrix [AId is nonsingular. The result- 
ing steady-state solution for Eq. (1) then can be written [24] 

The matrices [M] and [L], whose elements consist of various combina- 
tions of all the kinetic orders and only the kinetic orders of the system, 
contain information regarding changes in dependent concentrations in re- 
sponse to changes in independent concentrations (logarithmic gains), rate 
constants (rate-constant sensitivities), and kinetic orders (kinetic-order sensi- 
tivities). These logarithmic gains and parameter sensitivities allow a complete 
characterization of the system’s steady-state behavior and are the basic 
components of the methodology for analyzing metabolic pathways by means 
of an S-system representation [25, 281. 

This approach has been used successfully in the analysis of many dif- 
ferent types of biochemical systems, including feedback and feedforward 
mechanisms of control in biosynthetic pathways [25-28, 331, circuits for 
inducible gene expression [28, 30, 311, network regulation of the immune 
response [9, lo], and enzyme-enzyme interactions [38, 391. 

2.3. DYNAMIC SOLUTIONS 

The dynamic behavior of a biochemical system is determined by a set of 
nonlinear differential equations that generally is difficult to solve. However, 
the systematic structure provided by the S-system representation is a major 
advantage when it comes to obttig dynamic solutions. In this representa- 
tion, a mathematical model for any biochemical system always has the same 
form, that of Eq. (1). For each specific case, only the numbers of indepen- 
dent and dependent variables and the numerical values of the parameters 
change. This consistency of form allows one to develop very efficient 
computer algorithms for obtaining the dynamic solutions as well as the 
steady-state solutions referred to earlier. 

Such algorithms have been implemented in a comprehensive program 
called ESSYNS (for Evaluation and Simulation of SYNergistic Systems), 
which runs on an IBM PC/AT machine [Voit et al., in preparation]. This 
program provides dynamic solutions one to two orders of magnitude faster 
than conventional algorithms under the same conditions of local tolerance 
and global accuracy [ll; Irvine and Savageau, in preparation]. We have used 
ESSYNS throughout the studies reported in this paper. 

3. THEORY 

We shall first deduce the number of possible S-system representations. 
Then we shall show that all of these yield the same steady-state solutions for 
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the dependent concentrations. Finally we shall focus more specifically on a 
pathway of reversible reactions and present the two principal strategies for 
S-system representation. 

3.1. NUMBER OF POSSIBLE S-SYSTEM REPRESENTATIONS 

Let us consider an arbitrary biochemical system with n dependent con- 
centrations, m independent concentrations, and at most p parallel reactions 
unidirectionally converting any one metabolite into any other. The mass 
balance equations for the dependent metabolites Xi can then be written as 
the difference between two summations, the first consisting of r, terms and 
the second of si terms: 

i=l ,...,n, 
j=1 k=l j=l k=l 

where vijk is the unidirectional rate of utilization of X, for the production of 
X, via the kth parallel reaction. (For simplicity, and without loss of 
generality, we consider the stoichiometric values to be unity. If one wishes to 
consider values different from unity, one simply multiplies the rates in the 
first summation by the appropriate stoichiometric factors [21].) 

As discussed in Section 2, one builds an S-system representation of a 
particular biochemical system by aggregating individual rate laws to form 
two net rate laws r/; and l/_; for each dependent concentration. This can be 
done in a number of ways. For example, one might aggregate three terms 
from the first sum with two terms from the second and then define this new 
sum as v. The only restrictions are that (1) each term of Eq. (5) must be 
assigned to either V; or V_i, but not both; (2) at least one term must be 
assigned to each y and Y_,; and (3) the resulting K and l/_; must 

be positive quantities at the operating point. 
The number of different combinations of terms that meet the above 

restrictions can be calculated as follows. If q were to contain all the terms 
in all combinations, there would be 25+7 combinations. (For any given 
combination of terms assigned to y, V_, will automatically contain the 
complement of the full set.) However, v cannot contain all the terms, nor 
can it contain none of the terms. The above number must therefore be 
reduced by 2. Furthermore, by symmetry, half of the combinations will 
result in K and V_, values that are negative at the operating point, so this 
number must be reduced further by a factor of 2 to 

Finally, since there are n equations for the dependent concentrations, the 
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total number of possible S-system representations is 

N= fj (2’,+Vl -1). 

i=l 

Although all of these will have the same S-system form, the parameter 
values will differ depending upon the particular type of aggregation used. 
These differences in parameter values will in general lead to different 
predictions for the behavior of the biochemical system and hence to the 
question of which representation is most accurate. However, before address- 
ing these questions for pathways of reversible reactions, we will first show 
that all possible S-system representations predict the same same-state behav- 
ior for the dependent concentrations of the system. 

3.2. IDENTICAL STEADY-STATE SOLUTIONS FOR 

DEPENDENT CONCENTRATIONS 

Although one might expect steady-state solutions for dependent concen- 
trations to differ with the choice of S-system representation, this is not the 
case, as can be seen most readily by considering one of the steady-state 
equations represented in Eq. (4). At the operating point all representations 
are equivalent and 

Y,o = 1 L,kYkO + c M,b,, i=l ,...,n. (7) 
k-n+1 j=l 

The values of y,, and y,, are fixed independent of the representation. 

Similarly, the elements L,k, which are the logarithmic gains expressing 
percentage change in dependent concentrations in response to a 1% change 
in an independent concentration, and which are given by 

have fixed values independent of the representation. Hence, the second term 
on the right-hand side of Eq. (7) also must have a fixed value independent of 
the representation, even though the values of the individual M,, elements 
and the individual b/ elements will differ with the aggregation procedure 

used. 
At steady states other than the operating point, 

n+l?l 

Yi= C L,kYk ’ I? Mt,b,, i=l ,‘.., n, 
k-n+1 j=l 

(8) 
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and inserting the fixed value for the second term, determined from Eq. (7) 
yields 

n+Wl 

Yi = YiO + c hk(Yk - YkO)7 i=l,...,n. 
k=n+l 

The value of the independent variable y, also is fixed independent of the 
representation. Hence, we have the following general result3: 

AN possible S-system representations of a given biochemical system exhibit 

the same steady-state behavior for the dependent concentrations. 

The accuracy in predicting values of the concentration variables at steady 
states around the nominal operating point will be identical for all possible 
S-system representations. However, because the net rate laws will differ, 
depending upon the aggregation procedure used and the specifics of the 
biochemical system under study, one can expect various S-system representa- 
tions to reflect these differences when compared on the basis of the other 
three criteria: accuracy in predicting values of the flux variables at steady 
states around the nominal operating point, accuracy in predicting transient 
responses between two such steady states, and robustness of representation. 
In order to examine these issues in detail, we shall now focus on a pathway 
of reversible reactions. 

3.3. ALTERNATIVE S-SYSTEM REPRESENTATIONS FOR 

REVERSIBLE PATHWAYS 

Amphibolic pathways, which exhibit a reversal of net flux through the 
system, consist of reactions that may be considered either as single bidirec- 
tional processes or as a combination of two unidirectional processes of 
opposite sense (see Figure 1). Displacement of the ratio of substrate and 
product concentrations, which are considered independent variables, from its 
value at thermodynamic equilibrium provides the driving force for generat- 
ing flux in one direction or the other. The corresponding mass balance 
equations are 

dX 
$ = v,-I., + “,+1.r - “,,,-1 - “,,,+1r i=l ,...,n, (9) 

where i - 1 = n + 2 if i = 1 and each of the unidirectional rate laws may be a 

‘It should be noted that some forms of aggregation will fail to produce a valid S-system 

representation at isolated operating points; namely, those that yield a C: or V_, equal to 

zero. If one changes the operating point slightly, then it becomes possible to generate a 

valid S-system representation. We shall see examples of this in Sections 3.3 and 4. 
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FIG. 1. Amphibolic pathway with metabolites X, (i = 1,. . , n -t 2). The concentrations 

of product, X.+r, and of substrate, Xn+2, are independent variables held constant by the 

environment. The numbering of concentration variables in this figure is done by conven- 

tion so that the n dependent variables range from 1 to n, and the M independent variables 

rangefromn+l ton+m. 

positive but complex nonlinear function of the concentration variables in the 
pathway. 

In this case, since < = si = 2, there are seven possibilities for aggregating 
the individual rate laws associated with a given metabolite 4. However, of 
these seven possibilities there are only two that are commonly used in 
representing reversible pathways. In one, the reversible strategy, the set of 
fluxes with the same sense toward an individual metabolite is considered a 
building block in the description, whereas in the other, the irreversible 
strategy, the net flux through an individual reaction is considered a building 
block. 

The Reversible Strategy. Aggregation according to the reversible strategy 
(R), i.e., aggregating the sets of fluxes with the same sense toward the 
metabolite Xi, which is the same as aggregating unidirectional rate laws of 

the same sign, yields 

from which it can be seen that 

Y = b-~-l,; + v,+t.i) and v-; = (v,.,-1 + v,,,+c,L i=l ,...,n. 

(10) 

Each of these aggregate rate laws then can be replaced by the appropriate 
product of power-law functions to yield an S-system representation of Eq. 

(9). 

The solution of these equations [Eq. (4)] gives the solution for the flux 
variables by a straightforward secondary calculation. The net flux through 
the pathway in steady state can be determined at any step; we shall simply 
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indicate the determination at the end of the pathway. 
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In this strategy, the net flux is represented by the difference between two 
products of power-law functions and, although each of these is always 
positive, the difference allows for a reversal in the direction of net flux. 

The Irreversible Strategy. Aggregation of the individual rate laws in Fq. 
(9) according to the irreversible strategy (I), i.e., aggregating the forward and 
reverse fluxes through each reaction to produce a net flux, yields 

: = bJ-Lr - Ld-(v,,,+r qtl.,), i=l ,...,?I. 

The corresponding aggregate rate laws then can be identified as 

Y = b-1.; - vi.,-I) and v-1 = (v,,,+1- v,+I.I)~ i=l ,...,n. 

(13) 

Each of these aggregate rate laws is replaced by the appropriate product of 
power-law functions to produce an S-system representation of Eq. (9). 

Again, the net flux through the pathway in steady state can be determined at 
any step, but we shall indicate only the determination at the end of the 
pathway. 

(15) 

When one takes into account that all concentration variables are positive, it 
becomes clear that the net flux in Eq. (15) can have only positive values. This 
represents an important limitation of the irreversible strategy because the 
resulting description of the system is unable to account for the reversal in 
direction of net flux that occurs in amphibolic pathways. This limitation is 
not found with the alternative reversible strategy. 

Although the description according to the reversible strategy [Eqs. (11) 
and (12)] appears to involve more parameters than that according to the 
irreversible strategy [Eqs. (14) and (15)], not all parameters in the reversible 
strategy are independent. In fact, one can show that the number of indepen- 
dent parameters is the same in each case. This has been seen previously in 



250 ALBERT SORRIBAS AND MICHAEL A. SAVAGEAU 

other comparisons of alternative strategies for representation within the 
power-law formalism [41]. 

With thermodynamic equilibrium as an operating point there is no 
S-system representation according to the irreversible strategy. The aggregate 
rate laws Ft and VLi must have value zero at equilibrium, which makes it 
impossible to represent them as power laws since computation of the 
parameter values involves division by zero [see Eq. (2)]. The reversible 
strategy avoids these problems and provides an appropriate S-system repre- 
sentation at all operating points, including thermodynamic equilibrium. 

If one can avoid thermodynamic equilibrium, then following these two 
strategies leads to two alternative S-system representations of the same 
metabolic pathway. These representations are equivalent at the operating 
point. Moreover, as we have shown in Section 3.2, predictions of dependent 
concentrations at steady states other than the operating point will be the 
same regardless of the strategy used. 

However, the accuracy with which the alternative representations are able 
to predict the response of the system to changes in its environment (variation 
in values of the independent variables), and the robustness with which the 
alternative representations respond to changes in their structure (variation in 
values of the parameters), will depend on how well the alternative aggrega- 
tion procedures capture the main characteristics of the individual processes. 
In particular, accuracy depends on the sensitivity of the steady-state solution 
with respect to changes in the parameters of the S-system representation, 
which in turn is a function of both the operating point and the kinetic 
properties of the underlying mechanisms [18, 38, 391. 

In order to compare the alternative strategies rigorously, and in detail, we 
turn to the analysis of a particular system in which specific mechanisms are 
assumed for each of the individual reactions. 

4. RESULTS 

4.1. DEFINITION OF A SPECIFIC A MPHIBOLIC PA TH WA Y 

The mass balance equations for the specific system shown in Figure 2 are 

dx,_ 
- 041 - 014 - 012 + u21, 

si- 
dt dt - VI2 - u21 - v23 + v32. (16) 

x-x-x-x 
4- 1- 2- 3 

FIG. 2. Amphibolic pathway with n = 2. The independent concentrations X3 and X4 

are held constant by the environment. 
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TABLE 1 

Kinetic Parameters for the Rate Laws of the Amphibolic Pathway in Figure 2a 

Reaction _ 

(0 y 

Kinetic parameterh 

K# V-, K-, 

1 60.0 1.00 480 8.00 

2 50.0 1.00 300 6.00 

3 70.0 0.500 700 5.00 

“See Eq. (17). 

bUnits are PM s-l for the maximal velocities and PM for the Michaelis 

constants. 

For purposes of illustration, the functional form of the individual nonlinear 
rate laws is assumed to be 

Ui-1.r = 
Y&-,/K; 

l+ x,-,/K, + x,/K_, 

i=1,2,3; i-1=4if i=l. (17) 

V_,J$/K_, 
V 

r,r-1 = 1+ x,-,/K, + K//K-, 

These equations describe idealized reversible Michaeli-Menten reactions. 
The values for the parameters in this representation of the pathway, which 
constitutes our reference system for comparing the alternative S-system 
representations, are summarized in Table 1. For convenience, these values 
have been chosen consistent with a value of Keq = 1 for the overall pathway. 
This choice is not critical; other values lead to the same qualitative results, 
although they may differ in quantitative detail. 

Displacement of this system from thermodynamic equilibrium is mea- 
sured by the independent variable 

where Kc4 is the equilibrium constant between the substrate X, and the 
product X3. The value of I? is unity at equilibrium. A value greater than 
unity corresponds to flux in the forward (rightward) direction, while a value 
less than unity corresponds to flux in the reverse (leftward) direction. 

The behavior of this Michaeli-Menten system for different values of I 
is shown in Figure 3. In each case, the value of the substrate concentration 
X, has been fixed while the product concentration X, has been varied to 
change the mass action ratio. The steady-state values have been determined 
by computer solution of the system equations using ESSYNS. 
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FIG. 3. Steady-state behavior of the amphibolic pathway in Figure 2 as a function of 

the displacement from equilibrium r. The concentration of substrate, X,, is fixed at 10 

PM, the concentration of product, X,, varies from 0.1 to 100 PM, and Kes =l. (a) 

Dependent concentrations X, and X,. (b) Net flux from X, to X,. 
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4.2. ALTERNATIVE S-SYSTEM REPRESENTATIONS OF THE 

A MPHIBOLIC PATH WA Y 
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The S-system representations generated by the reversible and irreversible 
strategies are derived according to the general procedure discussed in Section 
3.3. The mathematical representation in the case of the reversible strategy is 

and in the case of the irreversible strategy it is 

(19) 

From the meaning of the parameters in the S-system representation [see 
Eq. (2)], it is clear that their values will change according to the operating 
point chosen for analysis of the system. In turn, the accuracy of each 
S-system representation will change depending on how well the numerical 
specification of the S-system at a particular operating point captures the 
essential characteristics of the individual processes of the system. Accord- 
ingly, one must analyze the alternative S-system representations at different 
operating points. The values for the variables at each of the operating points 
considered are shown in Table 2. In each case, the values of the parameters 
can be computed analytically [see Eq. (2)] from the rate laws expressed by 

TABLE 2 

Concentrations and Net Flux for the Amphibolic Pathway in Figure 2 

at Different Operating Points 

Displacement from 

equilibrium 

(r) 

Independent 

variables 

x3 x, x, 

Dependent 

variables” 

X2 Net flux 

1.00 10.0 10.0 10.0 10.0 

1.11 9.00 10.0 9.66 9.25 

2.00 5.00 10.0 8.00 6.00 

5.00 2.00 10.0 6.10 3.07 

10.0 1.00 10.0 5.13 1.89 

“Units are PM for the concentrations and pM SK’ for the net flux. 

0.00 

1.67 

10.0 

19.9 

25.1 
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TABLE 3 

Parameter Values for the S-System Generated by the Reversible Strategy 

at Different Operating Points 

Parameter 

value 

Value of I at the operating point 

1 1.11 2 5 10 

g11 - 0.409 

a2 0.388 

a4 0.102 

h 11 0.591 

h 12 - 0.0587 

h 14 - 0.452 

g21 0.0828 

g22 - 0.579 

g23 0.554 

h 21 -0.311 

h,, 0.421 

h 23 - 0.0527 

a1 73.5 

Pi 73.9 

a2 87.9 

82 87.9 

- 0.401 - 0.352 - 0.274 

0.380 0.337 0.264 

0.102 0.104 0.107 

0.586 0.558 0.521 

- 0.0574 - 0.0500 - 0.0378 

- 0.447 - 0.417 - 0.372 

0.0835 0.0888 0.103 

- 0.571 - 0.521 - 0.427 

0.548 0.516 0.455 

-0.304 - 0.267 - 0.209 

0.416 0.395 0.381 

- 0.0520 - 0.0476 - 0.0392 

73.2 71.5 67.8 

73.2 71.5 68.2 

87.2 82.9 75.4 

87.3 83.3 75.5 

- 0.219 

0.211 

0.110 

0.500 

- 0.0294 

-0.343 

0.120 

- 0.343 

0.397 

- 0.172 

0.394 

- 0.0314 

64.3 

65.6 

69.5 

69.9 

TABLE 4 

Parameter Values for the S-System Generated by the Irreversible Strategy 

at Different Oneratine Points 

Parameter 

value 

Value of P at the operating point 

1 1.11 2 5 10 

g11 

g14 
h 11 

h 12 

g21 

g22 

h 22 

h 23 

aI 

8, 

--a 
a 

a 

a 

a 

_= 

_a 
_a 

a 

a 

--a 
_a 

- 28.6 - 4.08 - 1.63 -1.11 
28.7 4.17 1.71 1.19 
22.9 3.20 1.21 0.789 

- 22.9 - 3.10 - 1.08 - 0.634 
22.9 3.20 1.21 0.789 

- 22.9 - 3.10 - 1.08 - 0.634 
35.6 5.14 2.05 1.36 

- 35.6 - 5.07 - 1.92 -1.16 
0.515 3.32 7.31 9.83 
0.518 3.33 7.47 10.4 
0.518 3.33 7.47 10.4 
0.559 3.49 7.52 10.5 

a No S-system representation based on the irreversible strategy is possible with 

equilibrium as the operating point. 
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Eq. (17). The values of the various parameters for each representation are 
summarized in Tables 3 and 4. 

According to the general result presented in Section 3.2, the representa- 
tions generated by both the reversible and irreversible strategies yield the 
same steady-state solutions for the dependent concentrations. As can be seen 
in Figures 4c and 4d, changes in concentrations are accurately predicted for 
a wide range of variation in the independent variables. However, when 
thermodynamic equilibrium is chosen as the operating point, the irreversible 
strategy fails to produce a valid S-system representation of the pathway, 
while the reversible strategy yields a very accurate representation for the 
steady-state behavior of the pathway (see Figures 4a, 4b). 

100 100 
W CC) 

.I 1 I J 11 .‘......I “‘- “...J 
.I 1 10 1 1 10 100 

F 
74 
x R 

1 T 1: 

Ril 

1 . .1 
1 1 10 1 I 10 100 

Displacement (r) Displacement (I ) 

FIG. 4. Accuracy of alternative S-system representations in predicting steady-state 

concentrations for the amphibolic pathway in Figure 2. Behavior is determined empirically 

for the amphibolic pathway (A); the same behavior is predicted by S-system representa- 

tions based on the reversible strategy (R) and on the irreversible strategy (I). Comparisons 

are made with the operating point at equilibrium (IO =l): (a) Xi and (b) X,. (Note that 

under these conditions there is no S-system based on the irreversible strategy.) Compar- 

isons are also made with the operating point far from equilibrium (I, = 10): (c) X, and (d) 

X,. In all cases, displacement is changed as described in the caption of Figure 3. 
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FIG. 5. Accuracy of alternative S-system representations in predicting steady-state flux 

for the amphibolic pathway in Figure 2. Behavior is determined empirically for the 

amphibolic pathway (A); the same behavior is predicted by S-system representations based 

on the reversible strategy (R) and on the irreversible strategy (I). Comparisons are made 

with a series of different operating points: (a) IO =l, (b) r. =l.ll, (c) r. = 2, (d) r. = 5, 

and (e) r, = 10. (See Tables 3 and 4 for the corresponding parameter values.) In all cases, 

displacement is changed as described in the caption of Figure 3. 
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4.3. ACCURACYIN PREDICTING NET FLUX 

Accuracy in predicting steady-state fluxes is the second criterion for 
comparison given in Section 1. For the net flux through the pathway in 
Figure 2 this accuracy has been investigated for each of the operating points 
indicated in Table 2. In each case, the flux has been predicted over a wide 
range of values for I’, involving at least a tenfold change with respect to the 
value at the operating point. The results are shown in Figures 5 and 6. 

In the first case (Figure 5a), the system is represented at the equilibrium 
point. According to the previous discussion, the zero value of the net flux at 
this point makes it impossible to derive a representation according to the 
irreversible strategy. The reversible strategy, in contrast, yields an S-system 

120 

100 

z 80 

Q 
60 

6 

20 

1 

12 3 4 5 6 7 8 910 

Displacement (r) 

FIG. 6. Range of displacements over which the alternative S-system representations 

accurately predict the steady-state flux of the amphibolic pathway in Figure 2: (R) 

S-system representation based on the reversible strategy, (I) S-system representation based 

on the irreversible strategy. The range is measured by the ratio of the largest to the smallest 

values of I about a nominal operating value of I,, that leaves the predicted flux values 

within 10% of their empirically determined values. 
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representation that predicts the behavior of the system with high accuracy on 
both sides of the equilibrium point. 

When the operating point differs from equilibrium, valid S-system repre- 
sentations become possible with both strategies. As the operating point 
moves progressively further away from equilibrium, the accuracy of the 
representation generated by the reversible strategy diminishes (Figures Sb-e). 
However, in all cases, this representation is able to predict a change in 
direction of net flux provided there is an appropriate displacement IY. The 
range over which this representation accurately predicts net flux is very wide 
when the operating point is near equilibrium but diminishes as the operating 
point is further and further removed from equilibrium (Figure 6). 

In contrast, the representation generated by the irreversible strategy is 
unable to predict a change in the direction of net flux. This representation 
always gives a positive value for the net flux regardless of the displacement 
I’; the positive value approaches a minimum of zero as I? tends to zero. For 
operating points close to equilibrium (e.g., see Figures 5b, 5c), accurate 
prediction by the representation based on the irreversible strategy is limited 
to a very narrow range of I7 values around the operating point. Although the 
range of accurate prediction by this representation increases somewhat at 
operating points further removed from equilibrium (Figures 5d, se), it only 
approaches and never achieves the superior range of the representation 
based on the reversible strategy (Figure 6). 

These results indicate the superiority of the reversible strategy. S-system 
representations based on this strategy are better able to predict both steady- 
state values for the net flux of the pathway and the change in direction of 
net flux associated with equilibrium. These properties are captured even if 
the operating point is far from equilibrium, although in these cases the 
accuracy near equilibrium is diminished. However, if the purpose is to 
represent the change in direction of net flux around equilibrium, then the 
appropriate operating point for representing such changes will be a point 
close to the thermodynamic equilibrium of the pathway. Under these condi- 
tions the irreversible strategy leads to an inappropriate representation for 
reversible pathways. 

4.4. ACCURACY IN PREDICTING TRANSIENT RESPONSES BETWEEN 

STEADY STATES 

The accuracy with which S-system representations of a metabolic path- 
way predict the transient response between steady states is dependent on the 
aggregation strategy. Although the different representations yield the same 
predictions for the steady-state values of the concentrations, each representa- 
tion captures in a different way the dynamic properties of the individual 
reactions, and this results in different transient responses between steady 
states. The transient responses for the system in Figure 2 have been investi- 
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FIG. 7. Accuracy of alternative S-system representations in predicting transient re- 

sponses for the amphibolic pathway in Figure 2. Behavior is determined empirically for the 

amphibolic pathway (A); the same behavior is predicted by S-system representations based 

on the reversible strategy (R) and on the irreversible strategy (I). Before t = 0 the pathway 

is at the steady state corresponding to the operating point. At r = 0 the displacement is 

perturbed by increasing the concentration of product, X3, while the concentration of 

substrate, X4, is held constant at 10 PM. Comparisons are made with the operating point 

near equilibrium (F. =I.11 and displacement perturbed to T = 0.91): (a) Xi, (b) X,, and 

(c) net flux into product X3. Comparisons also are made with the operating point far from 

equilibrium (To =lO and displacement perturbed to T = 5): (d) X,, (e) X,, and (Q net flux 

into product X,. 
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gated at two different operating points (Figure 7). In each case, the original 
steady state is perturbed by increasing the concentration of product, the 
independent variable X, . 

The transient response when the operating point is near equilibrium 
(r = 1.11) leads to a reversal of net flux (Figures 7a-c). In this case, the 
S-system representation generated by the reversible strategy predicts a 
transient response nearly identical to that of the amphibolic pathway (errors 
of 2.3%, 1.98, and 2.5% in the response times for Xi, X,, and V,,,), while the 
irreversible strategy yields a very poor prediction (errors of 447%, 850%, and 
171% in the response times for Xi, X,, and V,,,). Inspection of values for the 
different parameters in Table 4 shows that this strategy yields a representa- 
tion with very large values for the kinetic orders when the operating point is 
close to equilibrium. These anomalous values for the kinetic orders also 
correlate with high sensitivities, particularly for the flux variables, which 
have a great influence on the dynamic response of the system. We know 
from previous results [38] that high parameter sensitivities correlate with low 
accuracy of representation. Hence, it is not surprising that the irreversible 
strategy leads to a representation that is unable to accurately predict 
transient responses in the proximity of equilibrium. 

The transient response when the operating point is far from equilibrium 
(r = 10) is shown in Figures 7d-f. In this case, the large displacement from 
equilibrium at the operating point ensures that the forward component of 
each reversible reaction will dominate the corresponding reverse component. 
For higher values of I the system will be almost equivalent to an irreversible 
pathway, and therefore both representations will tend to produce the same 
result. Nevertheless, the S-system representation generated by the reversible 
strategy (errors of 1.7X, 108, and 6.3% in the response times for Xi, X,, and 
V,,_) is always more accurate than that generated by the irreversible strategy 
(errors of 378, 74%, and 26% in the response times for Xi, X,, and Vnet), as 
can be seen from the results presented in Figures 7d-f. 

These results indicate that the S-system representation generated by the 
reversible strategy captures the properties of the individual reactions more 
effectively than that generated by the irreversible strategy, which means 
more accurate prediction of transient responses between steady states. 

4.5. ROBUSTNESS OF ALTERNATIVE REPRESENTATIONS 

The S-system representation within BST provides a systematic framework 
for analysis and yields the complete characterization of a system for local 
variations about an operating point. This means that one can account for the 
systemic response of all dependent variables to local changes in any of the 
parameters or any of the independent variables of the system (e.g., see 
Sorribas and Savageau [38, 391 for a detailed treatment of the elements of 
such an exhaustive characterization). Moreover, within this systematic 
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TABLE 5 

Complete Characterization of the Amphibolic Pathway in Figure 2 

at Equilibrium (p = 1) Using the S-System Representation Generated 

by the Reversible Strategy 

Dependent variables 

x, x2 “1 “2 

Independent 

variable 

x3 0.328 

X4 0.671 

Parameter 

a1 

812 

g14 

h I? 

4, 
h 14 

g21 

g22 

g23 

h2, 

h22 

h 23 

a1 

PI 

a2 

82 

- 1.14 - 0.449 - 0.649 0.165 

1.08 0.425 0.614 - 0.156 

0.284 0.112 0.162 - 0.0411 

- 1.65 - 0.647 0.424 0.238 

0.164 0.0643 - 0.0421 - 0.0237 

1.26 0.495 - 0.325 -0.182 

0.103 0.231 0.0474 0.0653 

- 0.721 - 1.61 -0.331 - 0.456 

0.690 1.55 0.317 0.437 

0.386 0.865 0.177 - 0.469 

- 0.524 - 1.17 - 0.241 0.637 
0.0657 0.147 0.0302 - 0.0798 

1.21 0.476 0.688 -0.175 

- 1.21 - 0.476 0.312 0.175 

0.541 1.21 0.249 0.343 
- 0.541 - 1.21 - 0.249 0.657 

Logarithmic gains” 

0.735 0.151 

0.264 - 0.0709 

Parameter sensitivitiesb 

0.155 

- 0.0972 

“The logarithmic gains of V_, are equal to those of v] 

bThe sensitivities of V_, are equal to those of V,. 

framework, can one examine the necessary conditions for existence and 
stability of the steady state in relation to the values of the underlying 
parameters (e.g., see Savageau et al. [35]). 

The complete characterization of the amphibolic pathway in Figure 2 at 
equilibrium (r = 1) is shown in Table 5 for the S-system representation 
generated by the reversible strategy. (As we already have shown, there is no 
such characterization when the irreversible strategy is employed.) The vari- 
ous logarithmic gains and parameter sensitivities are obtained according to 
the standard procedures described elsewhere (for a review, see Sorribas and 
Savageau [38]). These results agree with the empirically determined behavior 
of the amphibolic pathway and illustrate general properties of the S-system 

representation based on the reversible strategy. 
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The relative values of the parameter sensitivities allow one to identify 
those parameters that must be scrutinized most carefully in experimental 
studies. As can be seen in Table 5, the relatively high sensitivity of the 
concentrations to the parameters g,,, g,,, g,,, g,,, hi,, hi,, and h,, 
indicates that error in the experimental determination of these parameters 
will influence the accuracy of the representation to a greater extent than 
comparable error in the determination of other parameters in the system. 

In situ, changes in one parameter will propagate through the system (with 
gain or attenuation determined by the kinetic orders [24]) and in principle 
will influence all the dependent variables. Such changes will in turn have an 
influence on the values of the other parameters in the system. Hence, one 
can conclude that a representation in which the parameter sensitivities are 

TABLE 6 

Complete Characterization of the Amphibolic Pathway in Figure 2 

Near Equilibrium (P = 1.11) Using the S-System Representation Generated 

by the Reversible Strategy 

Dependent variables 

x, 
Independent 

variable 

x, 0.321 

& 0.674 

Parameter 

a1 - 1.11 - 0.437 - 0.628 

g12 1.04 0.407 0.585 

a4 0.288 0.113 0.163 

h 11 - 1.63 - 0.640 0.410 

h 12 0.157 0.0615 - 0.0394 

h 14 1.26 0.495 -0.317 

IT21 0.103 0.232 0.0470 

g22 - 0.691 -1.56 -0.316 

g23 0.656 1.48 0.299 

h 21 0.375 0.845 0.171 

h 22 - 0.504 - 1.13 - 0.230 

h 23 0.0622 0.140 0.0284 

ai 1.23 0.481 0.692 

8, - 1.23 - 0.481 0.308 

a2 0.544 1.23 0.248 

82 -0.544 - 1.23 - 0.248 

x, “1 

Logarithmic gains” 

0.736 0.149 

0.264 - 0.0672 

Parameter sensitivitiesh 

“2 

0.155 

~ 0.0947 

0.157 

- 0.146 

- 0.0405 

0.229 

- 0.0220 

-0.177 

0.0654 

- 0.438 

0.416 

- 0.451 

0.606 

- 0.0749 

- 0.172 

0.172 

0.345 

0.655 

“The logarithmic gains of Vm, are equal to those of L;. 

bThe sensitivities of V_, are equal to those of y. 
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TABLE 7 

Complete Characterization of the Amphibolic Pathway in Figure 2 

Near Equilibrium (F = 1.11) Using the S-System Representation Generated 

by the Irreversible Strategy 

Dependent variables 

Independent 

variable Logarithmic gains” 

% 0.327 0.740 - 9.33 

x4 0.673 0.260 9.41 

Parameter Parameter sensitivitiesb 

a1 -1.52 - 0.589 -21.3 

834 1.55 0.600 21.7 

h 11 - 1.22 - 0.470 34.6 

h 12 1.19 0.460 - 33.9 

g21 0.469 1.06 - 13.4 

g22 - 0.458 - 1.04 13.1 

h 22 - 0.729 -1.65 20.8 

h 23 0.720 1.63 - 20.5 

01 0.0235 0.00911 0.329 

Pi - 0.0235 - 0.00911 0.671 

a2 0.00907 0.0205 - 0.259 

P2 - 0.00907 - 0.0205 0.259 

“The logarithmic gains of V_, are equal to those of y. 

bThe sensitivities of V_, are equal to those of y. 

- 9.33 

9.41 

-21.3 

21.7 

- 17.0 

16.6 

38.3 

- 37.4 

20.8 

- 20.5 

0.329 

- 0.329 

0.741 

0.259 

relatively low will be more robust. It will provide an accurate representation 
over larger variations than would be possible with high parameter sensitivi- 
ties. This is confirmed by an examination of the results in Table 3. Because 
the parameter sensitivities are relatively low (see Table 5), the pathway can 
be subjected to rather large changes in operating conditions and yet the 
parameters of the representation remain relatively constant. Accordingly, the 
S-system representation generated by the reversible strategy is able to predict 
accurately the behavior of the amphibolic pathway over a wide range of 
conditions (Figure 5). 

Complete characterization of the amphibolic pathway at an operating 
point near equilibrium (I =l.ll) according to the alternative strategies is 

shown in Tables 6 and 7. Although both strategies predict the same logarith- 
mic gains in concentration, which is a direct consequence of the definition 
[Eq. (S)], they appear to yield different predictions for the logarithmic gains 
in fluxes and for parameter sensitivities. The reason is that different v and 
V_ , functions, and hence different parameters, are defined by each strategy. 
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Nevertheless, as we have shown, one can relate the functions and parameters 
in one representation to those in the other and demonstrate that the 
alternative representations are equivalent at u given operating point. The 

differences in their predictions show up as the system moves away from the 
nominal operating point or from one operating point to another. In the case 
of the S-system representation based on the reversible strategy, the results 
hardly change (Table 6 versus Table 5). This is another manifestation of its 
robust character, which was discussed above and requires no further com- 
ment. 

In the case of the S-system representation based on the irreversible 
strategy (Table 7), the results show that the parameter sensitivities tend to be 
higher than those of the alternative representation (Table 6), on average 8.16 

TABLE 8 

Complete Characterization of the Amphibolic Pathway in Figure 2 Far 

from Equilibrium (r = 10) Using the S-System Representation Generated 

by the Reversible Strategy 

Dependent variables 

Independent 

variable 

x, 

X, 

Parameter 

x, 

0.224 

0.725 

X2 “I 

Logarithmic gains” 

0.670 0.0922 

0.287 0.0112 

Parameter sensitivitiesb 

&I - 0.574 - 0.227 - 0.280 0.00921 

g1z 0.215 0.0850 0.105 - 0.00345 

g14 0.405 0.160 0.198 - 0.00650 

h 11 - 1.31 0.518 0.178 0.0210 

h 12 0.0299 0.0118 - 0.00407 - O.ooO481 
h 14 1.26 0.501 -0.172 - 0.0203 

h-21 0.102 0.306 0.0420 0.103 

g22 -0.114 - 0.341 - 0.0469 -0.115 

g23 0.00 0.00 0.00 0.00 

h2, 0.147 0.439 0.0604 -0.133 

4, -0.131 - 0.392 - 0.0539 0.119 

hz3 0.00 0.00 0.00 0.00 

a1 1.60 0.634 0.782 - 0.0257 

81 - 1.60 - 0.634 0.217 0.0257 

(112 0.522 1.56 0.215 0.526 

82 - 0.522 - 1.56 - 0.215 0.474 

vz 

0.194 

- 0.0116 

Yhe logarithmic gains of V_, are equal to those of y. 

bThe sensitivities of V_, are equal to those of 5. 
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TABLE 9 

Complete Characterization of the Amphibohc Pathway in Figure 2 Far 

from Equilibrium (F = 10) Using the S-System Representation Generated 

by the Irreversible Strategy 

Dependent variables 

Independent 

variable 

x3 

& 

Parameter 

Xl 

0.224 

0.725 

x2 v, 

Logarithmic gains” 

0.671 - 0.248 

0.286 0.390 

Parameter sensitivitiesb 

v2 

- 0.248 

0.390 

a1 

a4 

4, 
h, 
g21 

g22 

h22 

h23 

a1 

81 

a2 

P2 

- 1.10 

1.67 

- 0.782 

0.244 

0.248 

- 0.0774 

- 0.167 

0.00 

0.607 

- 0.607 

0.192 

- 0.192 

- 0.434 - 0.592 - 0.592 

0.659 0.899 0.899 

- 0.308 0.867 - 0.421 

0.0964 - 0.271 0.132 

0.742 - 0.274 1 .Ol 

- 0.232 0.0858 -0.317 

- 0.0501 0.185 0.185 

0.00 O.C4l 0.00 

0.239 0.327 0.327 

- 0.239 0.673 - 0.327 

0.577 - 0.213 0.787 

- 0.577 0.213 0.213 

aThe logarithmic gains of V_, are equal to those of VI. 

bThe sensitivities of V_, are equal to those of 1/;. 

versus 0.489. Hence, we expect the representation based on the irreversible 
strategy to be less robust. This is confirmed by an examination of the results 
in Table 4. Because the parameter sensitivities are relatively high (see Table 7 
versus Table 6), the parameters of the representation in this case experience 
considerable change as the operating conditions of the pathway are altered 
(contrast the results in Table 4 with those in Table 3). Accordingly, the 
S-system representation based on the irreversible strategy is unable to 
accurately predict the behavior of the amphibolic pathway over as wide a 
range of conditions as the alternative representation (Figure 5). 

Complete characterization of the amphibolic pathway at operating points 
further removed from equilibrium (Tables 8 and 9) shows that the differ- 
ences tend to diminish (average parameter sensitivities 0.316 vs. 0.414) 
although the representation based on the reversible strategy always remains 
superior (see also Figure 5e). The reason for this convergence, as noted 
earlier, is that the system becomes essentially an irreversible pathway when 
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the displacement from equilibrium is large, and the representation of an 
irreversible pathway is the same by either strategy. 

5. DISCUSSION 

Previous results [35, 36, 38, 39, 411 have shown that the S-system variant 
within BST is superior to others such as the generalized mass action variant 
upon which other theories of biochemical systems are based (e.g., [4, 151). 
Even within the preferred S-system representation there are alternatives that 
become most apparent in the analysis of amphibolic pathways. For this 
reason we have focused attention on this class of pathways in order to 
distinguish clearly the two most common strategies of representation. The 
“reversible” strategy involves aggregation of incoming fluxes separately from 
outgoing fluxes for each metabolite to define a net flux that can be positive, 
negative, or zero; this amounts to choosing the set of fluxes with the same 
sense toward a given metabolite as the building block for construction of the 
S-system representation. The “irreversible” strategy involves aggregation of 
forward and reverse fluxes through each reaction to define a net flux that is 
always positive; this amounts to choosing the net flux through a given 
reaction as a building block. There are three principal results presented in 
this paper. 

First, we have demonstrated that all S-system representations predict the 
same changes in dependent concentrations for a given change in an indepen- 
dent concentration. Second, we have shown that the S-system representation 
based on the reversible strategy is superior to that based on the irreversible 
strategy according to several criteria, including (1) accuracy in predicting 
steady-state flux, (2) accuracy in predicting transient responses, and (3) 
robustness of the representation. Third, we have seen that only the reversible 
strategy yields a representation that is able to capture the principal charac- 
teristic of amphibolic pathways; namely, the reversal of net flux under 
physiological conditions. 

Generalized mass action representations based on the irreversible strategy 
of aggregation (e.g., see Kacser and Porteous [15] and Crabtree and 
Newsholme [4], and their comparison in Sorribas and Savageau [39]) are 
unable to capture this essential qualitative feature of amphibolic pathways. 
The reasons are the same as for the S-system representation based on the 
irreversible strategy, although this variant is otherwise superior to the 
generalized mass action variant [38, 391. Thus, not only is the S-system 
variant the preferred variant within BST, but for the class of mechanisms 
consisting of amphibolic pathways the particular S-system representation 
based on the reversible strategy of aggregation is clearly superior. 

Finally, the results presented in this paper document the wide range of 
variation over which the S-system representation can accurately predict the 
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behavior of intact biochemical systems, which is in agreement with other 
studies [28, 38, 411 and contrary to claims that theories based on the 
power-law formalism are only valid for small variations ( ~10%) about a 
steady state [2, 15, 441. 
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