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ABSTRACT 

Mathematical tools that involve the determination of systemic responses to small 
changes in metabolites or enzymes have demonstrated their utility for analyzing 
metabolic pathways. The different methodologies based on these ideas allow for 
modeling and analyzing biochemical pathways focusing on the coordinate behavior 
of the whole system. However, one must become familiar with the difference in 
nomenclature and methodology to relate the models and results obtained by apply- 
ing these techniques and to appreciate their potential for answering fundamental 
questions about biochemical systems. In the following three papers we show how this 
can be facilitated by comparing the nomenclature, methodology, and results of the 
two leading techniques in this area, metabolic control analysis and biochemical 
systems theory, using a model of the fermentation pathway in Saccharomyces 
cerevisiae as a reference system. In the present paper we review the nomenclature, 
technical concepts, and related experimental measurements while creating a practi- 
cal dictionary for the reference system that makes the relatedness of the two 
approaches more apparent. In the second paper, subtitled Steady-State Analysis, we 
show that both approaches give the same picture for many systemic responses of the 
reference system. In the third paper of this series, subtitled Model Validation and 
Dynamic Behavior, we show that the quality of the model can be assessed by 
studying the sensitivity to changes in the system parameters. We hope to illustrate 
the usefulness of these tools in providing an interpretation of the experimental 
measurements in a specific metabolic pathway. 
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INTRODUCTION 

The complexity of biochemical pathways makes it necessary to use 
tools that are able to deal with a great number of components and 
interactions. Because of these requirements, mathematical models and 
computer simulations based on these models are the elective tools for 
analyzing a great amount of data and for drawing conclusions on the 
structure and properties of the reference system. In building such 
models, the first step is to consider a scheme showing the flow of 
material and the regulatory signals within the system. Then appropriate 
mathematical expressions for each of the processes involved in the 
system are selected and the model is defined. The third step involves 
selecting an appropriate set of parameters so that the model can 
reproduce a given set of experimental data. 

It is common to consider the available in vitro information, K m, rate 
laws, etc., as a basis for building a model, especially in selecting the 
mathematical representation and in defining its parameters. However, 
there is increasing evidence that following this strategy in complex 
models may lead to ill-conditioned models, even if accurate in vitro data 
for the individual reactions are used [1-5]. As a consequence, simula- 
tions and results based on these models will produce wrong conclusions 
about the system's properties. This suggests that more general modeling 
strategies should be examined and that parameter values determined 
under conditions in vivo rather than in vitro should be used if the goal is 
to study the intact system. 

Of the several possibilities for systemic modeling, methods that 
involve the determination of systemic responses to small changes in 
metabolites or enzymes are most attractive because of their experimen- 
tal feasibility (for reviews see [6-14] and references therein). Within this 
context, two major strategies have been defined to relate systemic and 
molecular properties: (1) Derivation of a theoretical framework using 
explicit kinetic representations and (2) derivation of specific theorems 
using implicit kinetic representations. The first strategy has resulted in a 
specific framework known as biochemical systems theory (BST) [10, 11, 
14-20]. The second strategy led to metabolic control analysis (MCA) 
[also known as metabolic control theory (MCT)] [6, 8, 9, 21-24]. The 
relatedness of these approaches has been addressed in a number of 
studies [10, 11, 17, 18, 25-27], and discussion of the mathematical basis 
of each approach and analysis of theoretical examples indicates to what 
extent BST and MCA are related and what kinds of results can be 
obtained by applying either of these approaches [10, 12, 13, 17-19, 
25-28]. However, there is no example in which, using experimental data, 
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the same metabolic pathway has been completely characterized by both 
approaches. 

The potential of these kinds of mathematical tools for analyzing and 
characterizing biochemical pathways justifies the effort of providing 
examples of their capabilities. In addition to the theoretical compar- 
isons indicated above, the analysis of common examples can help in this 
direction. In this series of papers we address, among others, several 
basic matters: (a) the interpretation of different nomenclatures, (b) the 
characterization of a system's steady state, (c) the requirements for 
building the mathematical description, and (d) how to validate the 
resulting model. 

We have chosen as an experimental reference system the anaerobic 
fermentation pathway of the yeast Saccharomyces cerevisiae. This path- 
way was chosen because detailed knowledge of the rates of glucose 
uptake and of glycerol and ethanol formation in vivo are available. 
Further, the intracellular concentrations of substrate and effectors for 
most key enzymes at different steady-state conditions have been mea- 
sured, and a detailed model of the pathway kinetics has been published 
[29, 30]. In addition, this system has been characterized by the corre- 
sponding flux control coefficients calculated from a steady-state model 
based on kinetic expressions obtained experimentally. The complexity of 
this metabolic pathway, according to the description given by Galazzo 
and Bailey [29, 30] (Figure 1), will help us show how to deal with many 
of the difficulties that an investigator may encounter in applying a 
systems theory such as BST or MCA. With that, we hope that the 
analyses of the specific pathway in these papers illustrate the practical 
utility of these approaches. 

Because of the extent of the material to be included, we have 
organized it in three parts. First, in this paper, we discuss the model 
definition and the nomenclature used by MCA and BST. We build the 
corresponding models of the reference system and give the complete set 
of equivalences in both nomenclatures (BST or MCA). The conversion 
tables we include in this paper constitute a practical dictionary that will 
help readers pass easily from one theory to the other. The principal 
points to be addressed are those concerning the treatment of the 
enzymes and the interpretation of the basic concepts underlying the 
different nomenclatures used by the two approaches. We pay particular 
attention to the meaning of the aggregation in the S-system variant 
within BST so that those familiar only with MCA can understand how 
to use this variant of BST. 

In the second paper [31] we turn to the characterization of the 
pathway properties. This goal involves steady-state characterization 
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through the computation of logarithmic gains (control coefficients). In 
the third paper [32] we use sensitivity analysis to establish the validity of 
the steady-state characterization. We also consider the dynamics of the 
system and the prediction of changes after a large perturbation of the 
steady state. 

ABBREVIATIONS 

The following abbreviations appear frequently throughout this series 
of papers. 

Enzymes 

In 
HK 

PFK 

GAPD 

PK 

POL 
GOL 

Metabolites 

Gin 
G6P 
F6P 
FDP 
3PG 
G3P 
PEP 

Glucose uptake 
Hexokinase (E.C. 2.7.1.1) ATP:D-hexose 6-phospho- 
transferase 
Phosphofructokinase (E.C. 2.7.1.11) ATP:D-fructose-6- 
phosphate 1-phosphotransferase 
Glyceraldehyde 3-phosphate dehydrogenase (E.C. 1.2.1.12) 
o-Glyceraldehyde-3-phosphate:NAD ÷ oxidoreductase 
Pyruvate kinase (E.C. 2.7.1.40) ATP:pyruvate O2-phos- 
photransferase 
Polysaccharide production (glycogen + trehalose) 
Glycerol production 
Maximal velocity of the enzyme at step j. 

Glucose inside 
Glucose-6-phosphate 
Fructose-6-phosphate 
Fructose-l,6-diphosphate 
3-Phosphoglycerate 
Glyceraldehyde-3-phosphate 
Phosphoenolpyruvate 

Theoretical Approaches 

MCA Metabolic control analysis 
BST Biochemical systems theory 
GMA Generalized mass action representation 

METHODS 

THE REFERENCE E X P E R I ME N TA L  S Y S T E M  

The anaerobic fermentation pathway from glucose to ethanol, glyc- 
erol, and polysaccharide in the yeast Saccharomyces cerevisiae, as char- 
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acterized by Galazzo and Bailey [29, 30], will be used in the present 
study as a reference system. The structure and components of this 
pathway are shown in Figure 1. According to these authors, the enzymes 
of the intermediate steps not shown in this scheme catalyze very fast 
reactions, so that equilibrium conditions can be assumed. Incomplete 
information is available concerning some of the reactions of the model. 
Both the MCA and BST models will follow the same assumptions for 
these reactions that were defined in the original model of Galazzo and 
Bailey [29, 30]. These reactions are indicated in the Results section. 

Steady-state intracellular concentrations of substrates and effectors 
and the rates of glucose uptake and of glycerol and ethanol formation, 
as determined by Galazzo and Bailey, are shown in Tables 1 and 2 [29, 
30; Galazzo and Bailey, personal communication]. They correspond to 
two basic cell environments: suspended and alginate-entrapped ceils. In 
each situation, two different pH values are tested: 4.5 and 5.5. This 
produces four different experimental conditions. The values obtained 
experimentally are shown in Tables 1 and 2. In these data, the experi- 
mental values corresponding to the internal metabolites were read- 
justed for each set of conditions by numerical computation from the 
kinetic model in order to make the fluxes calculated from the rate laws 
agree with the experimental flux values (Bailey, personal communica- 
tion). The final values are close to the experimental values estimated 
from 31p nuclear magnetic resonance measurements in vivo [29, 30]. 

KINETIC DATA 

The rate equations for each step in the pathway and the parameter 
values of each rate expression used in the present study are the same as 
those used in the model of Galazzo and Bailey [29, 30] and are not 
reproduced here. These equations are used, when needed, to compute 
the corresponding parameters for both the MCA and BST approaches. 
It should be stressed that we are using this model as a reference system 
and that no attempt has been made to improve the data used by the 
original authors. 

RESULTS 

IDENTIFICATION AND NOMENCLATURE OF THE COMPONENTS 
OF THE SYSTEM 

The first step in the description of the system is to identify and label 
each individual component. In a metabolic pathway, this involves sev- 
eral factors, such as metabolites and enzymes, velocities, and mass 
balances. Hence, we began by examining how MCA and BST represent 
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FIG. 1. Anaerobic fermentation pathway of yeast Saccharomyces cerevisiae from 
glucose to ethanol, glycerol, and polysaccharides. (a) Biochemical description; (b) 
BST nomenclature; (c) MCA nomenclature. 

the system. To relate these approaches, we consider both the general 
mass action (GMA) and S-system representations within BST (see [17, 
18] for definitions; see also Equations (5) and (6) below). 

Dependent Variables 

In both the MCA and BST methods (in either the GMA or S-system 
variants within BST), the metabolites, which are synthesized and de- 
graded in the pathway, are considered dependent variables and desig- 
nated as X i (these variables are also called S i in some applications 
within MCA). The subscript i is a correlative number from 1 to n, 
where n is the total number of dependent variables. 

In the metabolic pathway of Figure 1, we recognize the following set 
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FIG. 1. Continued. 
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TABLE 1 

Steady-State Concentrations and Maximum Velocities for the Metabolites 
and Fluxes of the Fermentation Pathway Considered a 

Suspended Suspended Immobilized Immobilized 
System cells, cells, cells, cells, 

Variables pH = 4.5 pH = 5.5 pH = 4.5 pH = 5.5 

Gin 0.0345 0.0276 0.1304 0.1169 
G6P 1.011 1.6647 2.7178 3.047 
FDP 9.144 5.8152 4.7862 5.3797 
PEP 0.0095 0.0079 0.0597 0.4989 
ATP 1.1278 1.722 1.2504 1.9214 
V~n M 19.7 19.7 45.6 45.6 
V~K 68.5 68.5 68.5 68.5 
V~K 31.7 31.7 31.7 31.7 
vGMApD 49.9 49.9 49.9 49.9 
V~ 3440 3440 3440 3440 
Vv~ L 14.31 14.31 14.31 14.31 
VGMO L 203 231.9 237.7 259.7 
V~vas e 25.1 12.1 25 14.3 
NADH/NAD + 0.042 0.042 0.007 0.011 

aConditions and technical commentaries to these values can be found in 
[29, 30]. Concentrations are millimolar (raM), and for ~ are millimolar 
per minute (mM/min). 

TABLE 2 

Steady-State Fluxes Measured in Different Conditions for the 
Fermentation Pathway Considered a 

Suspended Suspended Immobilized Immobilized 
Fluxes in cells, cells, cells, cells, 

steady state pH = 4.5 pH = 5.5 pH = 4.5 pH = 5.5 

V~n 15.96 13.54 35.54 34.33 
VHK 15.96 13.54 35.54 34.33 
VpF K 15.94 12.79 27.35 25.85 
VGAPD 15.06 11.98 25.59 24.03 
VpK 30.11 23.96 51.17 48.06 
Vpo L 0.014 0.754 8.19 8.479 
V~OL 1.777 1.615 3.54 3.629 
VATvase 28.31 20.84 31.26 27.48 

aConditions and technical commentaries to these values can be found in Galazzo 
and Bailey [29, 30]. Units are millimolar per minute (mM/min). 
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of dependent variables: 

Gin X1 

G6P X 2 

FDP X 3 

PEP X 4 

ATP X 5 

Independent Variables 

The independent variables are those variables that are unaffected by 
the dynamics of the system, and they can be considered constant under 
the studied conditions. In some cases, this includes variables that 
change due to processes that can be considered constant with respect to 
the time scale of the target system, as could be the case of enzyme 
levels. Further, it is convenient to include in this set of independent 
variables those that are affected by the dynamics of the system but 
participate in other pathways that contribute to maintain them constant. 
In our example, this is the case also of the NADH/NAD + ratio. For 
simplicity, this ratio will be considered constant in each experimental 
condition since fluorescence measurements performed by Galazzo and 
Bailey [29] indicate small variations of this ratio. Independent variables 
include effectors, source and sink metabolites, enzyme concentrations 
(provided they can be varied independently of the system dynamics), K m 
and V m, temperature, and others. The nomenclature for the indepen- 
dent variables is different in MCA and BST, partly because MCA 
considers different categories of independent variables whereas BST 
includes any kind of independent variable in the same class. 

In MCA, in general, the interest is focused on control by the enzyme 
concentrations or on their maximum velocity. Accordingly, this is the 
basic set of independent variables in this approach. MCA designates 
each enzyme concentration (or each Vj for each individual step reaction) 
as Ej, where the subscript j takes values from 1 to the total number of 
enzymes. Metabolite concentrations that are independent variables, that 
is, source and sink metabolites and inhibitors, are named external 
effectors in the MCA terminology. They are considered a separate set of 
independent variables and are designed as Q j, where the subscript j 
extends from 1 to the number of external effectors considered. 

In BST all independent variables of interest in the system are 
formally included under the same set, be they enzyme concentrations 
(or Vj), source metabolites, inhibitors, or any other kind of variable. 
Independent variables are designated Xj, with the subscript j ranging 
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TABLE 3 

Independent variable MCA nomenclature BST nomenclature 

Vin E1 X6 
VHK E2 X 7 

VpFK E3 X8 
VGAPD E4 X 9 
VpK E5 Xl0 
Vpo t E6 Xl 1 
VGOL E7 X12 
VATPase E8 X13 
NADH/NAD + ratio Q~ X14 
Polysaccharide pool Q2 X15 
Glycerol pool Q3 XI 6 
UDPG Q4 X17 
Ethanol Q5 X18 
GlucoseocT 06 XI9 

from n + 1 to n + m, where n is the number of dependent variables and 
m is the number of independent variables considered. 

In the illustrative pathway shown in Figure la-c,  we recognize the 
set of independent variables listed in Table 3, which are named differ- 
ently in MCA and BST according to the above described rules. 

Constrained Variables 

Some variables related to mass conservation constraints such as 
[ADP] and [AMP] have not been included. Their concentrations are a 
function of [ATP] (Xs), the Keq of the adenylate kinase reaction, and 
the sum of the adenine nucleotides, [AMP]+ [ADP] + [ATP] = 3 raM, 
measured by Galazzo and Bailey [29]. Then, [ADP] and [AMP] can be 
calculated from the [ATP] values and from these relationships and need 
not to be considered in the set of dependent variables. We use these 
constraints to express both [AMP] and [ADP] as a function of [ATP], 
the Keq of the adenylate kinase equation, and the adenylate pool, with 
[ATP] the only variable to be considered. Following these results, 
[AMP] and [ADP] are substituted in each rate law. This way of includ- 
ing the constrained variables in a model yields exactly the same results 
as the general method proposed by Savageau [33] within BST (see also 
[25]) or the method proposed by Fell and Sauro [34] within MCA. 
However, the former method of solving for the constrained variables 
and then substituting the solution directly into the rate laws cannot 
always be used because in more complex constraints there is no analyti- 
cal solution. Nevertheless, such complex constraints can be handled by 
the more general methods mentioned above. 
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[F6P], [G3P], and [3PG] are also related to the set of dependent 
variables by the following equilibrium ratios: 

[F6P]/[G6P] = 0.3, [G3P]/[FDP] = 0.01, [PEP]/[3PG] = 0.1. 

These constraints have been measured by Galazzo and Bailey [30]. 
Hence, we can drop [F6P], [G3P], and [3PG] from the set of dependent 
variables. 

Usually, MCA assigns correlative numbers following the last depen- 
dent variable for these constrained variables. BST uses correlative 
numbers following the last independent variable. Hence, [AMP], [ADP], 
[F6P], [G3P], and [3PG] are designated in the following manner: 

Nonexplicit 
dependent variables MCA nomenclature BST nomenclature 

ADP X 6 X2o 
AMP X 7 X21 
F6P X 8 X22 
G3P X 9 X23 
3PG Xlo X24 

IDENTIFICATION AND NOMENCLATURE OF THE 
DYNAMIC PROCESSES 

Velocities o f  Individual Steps 

In MCA, first we assign an ordinal number j to each step. Each 
velocity of each step is then named vj. The subscript j extends from 1 to 
the total number of steps considered in the pathway. In general, these 
numbers follow the scheme used for the enzymes. 

In BST several numbering schemes are used depending upon the 
focus. For individual reactions we define vii to indicate the rate of 
transformation of X i into Xj [17, 18, 25]. This is a correlative notation 
in which the subscripts i , j  identify the reaction with its substrate and 
product. In the GMA representation, within BST we define Vir + as the 
rate of synthesis of X i via the rth parallel reaction. Similarly, we define 
V/r as the rate of degradation of Xi via the rth parallel reaction. The 
subscript r is dropped when there are no parallel reactions. A third 
numbering scheme is defined for the S-system representation, as will be 
discussed below. 

According to these rules, the velocities of the individual steps consid- 
ered in the metabolic pathway of Figure 1 are designated in the 
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following manner: 

R A U L  C U R T O  ET AL. 

BST 

Step velocity M C A  Correlative G M A  

Uin /21 U19,1 V~ 
UHK U 2 UI, 2 V~- 
UpF K U 3 U22,3 Vf 
VaApO (FDP degradation) v 4 u3, 4 V4+/2 
U PK U5 U4,18 174 

UpOL U6 U2,15 V2,2 
UO0 L (glycerol production) v 7 v3,16 2V3.2 
UATPase U8 U5,20 V574 

Aggregated Velocities 

As a foundation for deriving the S-system representation within BST 
[17, 28], we define a net rate of synthesis (V/+ ) and a net rate of 
degradation ( V / )  for each dependent metabolite (X~ with i = 1 to n). 
The net rate of synethesis is obtained after aggregating the rates of the 
different individual steps that account for the synthesis of the consid- 
ered metabolite. The net rate of degradation is obtained after aggregat- 
ing the different processes. Hence, in the S-system representation, the 
mass balance of a given internal metabolite is always the difference 
between V/+ and V/ . 

According to these rules, we can write the following net rates of 
synthesis and degradation for the metabolic pathway of Figure 1: 

V ?  = u19,1, V I  = Ul,2~ 

V~- = u1,2,  V 2 = u22,3-+- u2,15 , 

V; = u22,3 , V3- = u3,16/2+ U3,4, 

1/4+ = 2U3,4, V 4- = u4,18 , 

V5 + = 2u3, 4 -t- u4,18 , V 5- = u1, 2 + u22,3 q- u2,15 + u5,20. 

BASIC E L E M E N T S  OF MCA 

In MCA, rate laws are not explicitly described. MCA uses the 
normalized partial derivatives of velocities with regard to an indepen- 
dent or dependent variable as a basic element for describing the system. 
These derivatives are designated as elasticities, and they are named in 
different ways depending on the variable considered. Basically, 
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Elasticity. X i is a dependent variable, 

Special Elasticity. Qi is an external effector, 

T-OTQ~ o % ] o, = Ei 

7r-Elasticity. E i is an enzyme, 

oE~ ]o yj,, j 

The values of these parameters for each of the processes of the 
reference system are shown in Table 4. 

BASIC ELEMENTS OF BST 

In BST, rate laws are explicitly described. The form of the rate law 
depends upon the representation of the mass balance equations being 
used. 

Mass Balance Equations 

The mass balances for the pathway of Figure 1 are 

Node equations GMA S-System 

- ' Y 1  ~ U 1 9 , 1  - -  UI,2 

X 2  ~ u I , 2  - U22,3 - / '2 ,15 
u3 ,16  

"eY3 ~ U22,3 - /23,4 2 

.'~"4 = 2 0 3 ,  4 - U4,18 

X 5  = 2/23,  4 + u4,18 - u1,  2 - 1;22,3 

- u2,15 - / 2 5 , 2 0  

v? - v? v ;  - v ;  

V f  - V2,,l -172. 2 V f  - V 2 

- v , , ,  - ~ , =  v ;  - v ;  

v ;  - v ;  v ;  - v ,  

v ( ,  + v ; , 2  - v~, ,  - v ; , 2  v ;  - v ;  

- v ; ,3  - v ; ,4  

Representation of  Rate Laws in the GMA Variant Within B ST  

As the first step, we consider the mathematical representation of the 
experimental system by following the GMA variant within BST. This 
provides a clear side-by-side translation of the results to those obtained 
in MCA. To build up this representation, each rate law is written as an 
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T A B L E  4 

Elasticit ies and  G M A  Kinetic  Orders  C o m p u t e d  for  the  
F e r m e n t a t i o n  Pathway of Saccharomyces cerecisiae a 

Suspended  Suspended  Immobi l ized  Immobi l ized  
cells, cells, cells, cells, 

p H  = 4.5 p H  = 5.5 pH = 4.5 p H  = 5.5 

g12 = ev~ - 0.2344 - 0.4549 - 0.2829 - 0.3284 

g16 = 7;"V~ 1 1 1 1 

h u = e;~ 0.7464 0.7908 0.4396 0.4728 

h15 = ~;~ 0.0243 0.014 0.0435 0.0275 

h i7  = 77"~ 1 ] 1 1 

g32 = e ~  0.7318 1.019 0.1524 0.263 

g35 = e~ 3 - 0.3941 - 1.777 - 0.0255 - 0.4303 

g38 = 7rff 3 1 1 1 1 

h22,2 = eV~ 8.6107 7.0542 0.7349 0.3661 

h211,2 = 'n'v66 1 1 1 1 

g43 = eff~ 0.6159 0.7004 0.3546 0.4061 

g45 = e)~ 0.1308 0.2038 0.0954 0.1473 

g49 = 77"~ 4 1 1 1 1 

g414 = ~ --  0.6088 - 0.69 - 0.3219 - 0.03798 

h33,2 = ~xv~ b 0 .05  0.179 0.007 0.0001 

h34,2 = eXV47b 0.533 0.603 0.188 0.023 

h35,2 = E VTb - 0 . 0 8 2 2  - 0 . 6 9 0 7  - 0 . 1 8 2 3  - 1.1451 

h312, 2 = "B'EV77 1 1 1 1 

h43 = E ~  0 .05  0.179 0.007 0.0001 

h44 = EXV~ 0.533 0.603 0.188 0.023 

h45 = ExV~ - 0 . 0 8 2 2  - 0 . 6 9 0 7  - 0 . 1 8 2 3  - 1.1451 

h410 = ,'rrv~ 1 1 1 1 

h55,4 = ev~ 1 1 1 1 

h513, 4 = 7rEV88 1 1 1 1 

~Exper imenta l  data  of  Gal lazzo and  Bailey [29, 30]. In each case, these  pa rame-  
ters are compu ted  f rom the  original  rate laws derived exper imental ly  and  pub-  
l ished by these au thors  [see Equa t ion  (2) and  the  cor responding  defini t ion for the  
elasticity parameters] .  

bi t  should  be no t ed  that  the  th ree  kinetic orders  cor responding  to the  effect of  
FDP,  PEP,  and  A T P  on VGO L have the same values as the  kinetic orders  with 
respect  to VVK. This  is because  UGO L was cons idered  to be propor t iona l  to vrK 
[29, 30]. 
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appropriate product of power law functions. For a system consisting of 
n dependent and m independent variables, these rate laws are written 

n+m n+rn 
Vi+r = Olir H gY  u'r, Vir = [~ir H xhil'r" (1) 

j = l  j= l  

The power law representation can be derived from first principles for 
arbitrary rate laws [33,35-37] and is obtained by specifying a rate 
constant (the multiplicative term) and writing one power term for each 
variable that directly influences the rate law in question (metabolites, 
effectors, enzymes, etc.). See [17] for details. The exponent parameters 
in each power term are referred to as kinetic orders. The kinetic orders 
are defined as 

8Xj )o(V+ ]=gq, r, , - ~ : ) 0 ( ~ ) = h q , , ,  (2) 

where the subscript 0 indicates evaluation at a given steady state. 
In each case, the first subscript, i, is associated with the correspond- 

ing V, and the second subscript, j, is associated with the variable Xj 
that modulates the process. The third subscript, r, is an ordinal that is 
added to distinguish each individual process when there is more than a 
single process accounting for the synthesis (or degradation) of X,. The r 
subscript is omitted when there is only a single reaction contributing to 
the flux for synthesis (or degradation). 

The rate constants are defined as 
n+m n+m 

Olir=Vi+l, pl.= gjogq,r , [~ir=Vir, , j~ g ~  hij'r . (3) 

For the model pathway described in Figure 1, the variables that 
directly influence a rate law are identified by inspection of the metabolic 
scheme. To make this explicit, and to facilitate the construction in the 
power law terms, we will indicate these influences by first making them 
explicit in the mass balance equations: 

-~1 = V? ( X2,X6) - V 1 ( XI,X5,X7),  
i¢ 2 = V; ( Xl ,Xs ,X7)  - V2,,( X ~ , X s , X ~ ) -  V~2( X2, X,l) ,  
-~3 = V;  ( X 2 , X s , X 8 )  - V~,,l( X 3 , X s , X 9 , X l 4  ) - V(,2( X 3 , X 4 , X 5 , X 1 2 ) ,  
2 4 -~- V4 + ( X 3 , X 5 , X 9 , X 1 4 ) -  V 4 ( X 3 , X 4 , X 5 , X l o ) ,  
~c~ -- V;~l( X3, x~, x~, x~,) + v;,,~( x~, x~, x~, X~o) - v;~( x~, x~, xT) 

-- V5~2( X2, Xll  ) - V5,3( X2, X5, X8) - V5,4( X5, X13 ) . (4) 

The extracellular concentration of glucose does not appear as a 
variable because we consider this metabolite constant [29]. Since [ATP] 
does not appear explicitly in the rate expression of Vpo L [29], we have 
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not included this variable explicitly in V2, 2 and VS. 2 . Further, since 
Galazzo and Bailey considered VGo L to be proportional to vpK, the 
kinetic orders h33,2, h34,2 , and h35,2 have exactly the same values as h43, 
h44 , and h45. [ATP] and [PEP] also are not involved in the VGo L process 
(see Table 4). 

From Equation (4) the GMA equations can be written as 

S l  ,,~ ~zgl2Ygl6 __ 17t X h n X h l s S h 1 7  
~ 1 ~ ' 2  ~ ' 6  t-"l 1 5 7 , 

X2 = o~2Xf21X5 g2"5Xg27 -- ~2,1xh22'lX5 h25,lXh2~'l -- / ~ 2 , 2 X h z 2 ' 2 X h l  2 n ' z '  

S3=o13Xg32x5935X~38-  [33,1xh33,1xh35,'Xgh39,1X~ '4,' 

-- j~3,2xh33,2xh3',2xh35,2xhi12, 2 

X4 = OLaXg43xg'5xg49xg~14- J~4xh43xh44xha5x~  10, 

S5  = °[5,1gg53'lXg55'lXg59'l gg~la'l -JF o[5,2xg53,2xg54.2xg55,2Xfdl°,2 

- 8 5 ,  y h 5 1  l~t 'h55 1 y h 5 7  i - -  t~ gh522Xhsll  2 
I~LI  ' zL5 ' "~7  ' t J5 ,2  2 ' 11 ' 

/~ lzh52 3 y h 5 5  3 y h 5 8  3 - -  /~ gh55 4 x h 5 1 3  4 
- -  t-'5,3-¢~2 ' ~ 5  ' z~8 ' 5,4 5 ' 13 ' • (5) 

In Equations (5) we have included all the enzyme concentrations 
(maximum velocities) as independent variables to make the interpreta- 
tion of the results more transparent and facilitate the comparison of 
MCA and BST. 

Precursor-product relationships determine the conservation of flow 
between some components. This means that the corresponding parame- 
ters have the same value. For example, in our case, the degradation of 
X~ is the same as the synthesis of X 2, and so the corresponding power 
laws are the same. Accordingly it should be noted that the following 
equivalences appear between the kinetic orders and rate constants in 
the above GMA representation: 

Og2 = ~ 1  = /~5 ,1 '  013 = ~ 2 ,  l = ~ 5 , 3 '  0~4 = 2/33,1 = °tS, l '  

J~4 = °~5,2 ,  ~ 5 , 2  = ~ 2 , 2 ,  hi1 = g21  = hsl,1, 

g32 = hez,1 = h52,3,  g43 = h33,J = g53,1, ha3 = g53,2, 

h 5 2 , 2  = h 2 2 , 2 ,  h15 = g25 = h55,1, g35 = h25 ,1  = h 5 5 , 3 ,  

g a s  = h35 ,1  = g 5 5 , 1 ,  h a a  = g 5 a , 2 ,  h 5 1 1 , 2  = h 2 1 1 , 2 ,  

h i 7  = g 2 7  = h 5 7 , 1 ,  g 3 8  = h28 ,1  = h 5 8 , 3 ,  g a 9  = h 3 9 , 1  = g 5 9 , 1 ,  

h a 5  = g 5 5 , 2 ,  g a l a  = g 3 1 a , l  = g s l a , 1 ,  h a l o  = g 5 1 0 , 2 .  
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These equivalences allow one to identify the final set of parameters 
involved in the GMA representation of the reference system (see 
Table 4). 

The values of the kinetic order set in the GMA representation can 
easily be computed from the rate laws and the operational steady-state 
values of system variables described in the original papers of Galazzo 
and Bailey [29, 30]. Despite the different names and nomenclature, it 
should be noted that the different elasticity coefficients have the same 
interpretation as the kinetic orders in GMA, as can be appreciated by 
inspection of their definition once the correspondence between the 
nomenclature used to indicate variables and fluxes is realized. Hence, 
there is a one-to-one correspondence between the elasticity coefficients 
and the kinetic orders in the GMA representation [18]. The list of 
elasticity coefficients that can be defined in the example, their values at 
each experimental condition considered, and the corresponding equiva- 
lences with the GMA kinetic orders appear in Table 4. 

Representation of Rate Laws in the S-System Variant Within BST 

The experience accumulated using BST indicates that it is often 
better to transform Equation (5) to the S-system representation [17, 18, 
25, 38, 39]. The advantages include a greater efficiency in characterizing 
the system, the possibility of obtaining an explicit solution for the 
steady-state equations, greater accuracy in predicting the dynamic re- 
sponse of the system, and the possibility of investigating the stability of 
the steady state [10, 16-18]. The corresponding S-system equations are 
obtained by defining a power law representation for each of the aggre- 
gated fluxes V/+ and V,- (see the mass balance equations). 

X l  .w Y g l 2 Y g l ,  x h i t  y h t 5  Yh17  
= ~ 1 " 2  " ' 6  - -  ]31 -'L5 1x7  . 

~ t~g21Yg25Yg27  _ 17~ y h 2 2  ~g'h25~h28 y h 2 1 1  
) [ ' 2  O~2~1  "~5 ~"7  t " 2 " L 2  ~L5 ~ 8  1~11 . 

_~. ,a, Y g 3 e  "Yg35 YR3~ - -  ~ ~tlh33 y'h3.~ ~¢'h35"yh39 ~'zh312 ~1h314 
~"3  ~ 3 ~ 2  "~5 ~ 8  h"3- 'x3 ~ 4  ~ 5  ~ 9  1"12 ~ 1 4  , 

= o ~ 4 X ~ 4 3 X s g 4 5 x g 4 9 x g ~ l  4 -  [~4xh43x]4144X5h45X1h{~ 10 ' 

x5 = 

__ 17~ y h 5 1 y h 5 2 ~ h 5 5  y h 5 7  y h s ~  y h 5 1 1 y h 5 ~ 3  
b ' 5 Z ' l  ~ 2  ~ 5  ~ 7  1~8 l ~ l l  ~ 1 3  • (6) 

Equations (5) (the generalized mass action representation) and (6) 
(the S-system representation) differ in those metabolites that have more 
than one process either in their synthesis (X 5 in our case) and/or  their 
degradation (X 2, X 3, and X s in our case) [17, 25, 38]. For these cases, 
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the correspondence between the GMA and S-system representations is 

V5+ -~- V5+, 1 q- V5+2, V 2 - - ~ - V £ 1 - - k V 2 , , 2 ,  V 3 = V £ 1 + V £ 2 ,  

V 5- ~-- V571 -{- V57 2 -~ V57 3 -{- [757 4 . ( 7 )  

Solving the Steady-State Equations 

The aggregation strategy is a particular characteristic of  the S-system 
variant of BST and allows us to solve the steady-state equations explic- 
itly. If we look at the S-system representation of our system, the 
steady-state equations can be written 

0 ~ ~ Y g 1 2 Y g 1 6  - -  17t y h l l y h L s y h 1 7  
~ 1 ~ " 2  ~ 6  k ' l ' r* l  *~5 "~7 , 

0 = o { 2 X f 2 1 X ~ 2 5 X  g27 - ~ 2 x h 2 2 x h 2 5 x h 2 8 x h ~  11 , 

0 = o 1 3 x g 3 2 x ~ 3 5 X ~ 3 8  - -  17~ x h 3 3 x h 3 4 x h 3 5 x h 3 9 x h 3 1 2 x h 3 1 4  
/"3 3 4 5 9 12 14 

0 = "~ Y g 4 3  Yg45  Y g 4 9 Y g 4 1 4  - -  12t y h 4 3 y h 4 4 y h 4 5 y h 4 1 0  
" ~ 4 ~ 3  "~5 " t 9  ~ 1 4  t - ' 4 ~ 3  ~ 4  ~'x5 ~Xl0 

0 = o ~ 5 X ~ ' 3 X g 4 5 4 X ~ 5 5 X ~ 5 9 X f ( ~ l O X g 2 1 4  

- -  ~ 5 X 1 h 5 1 x h 5 2 x h 5 5 x h 5 7 x h 5 8 x h ~ l l X h ~ l  3 " (8) 

If none of  the a i or /3 i terms is equal to zero, a logarithmic 
transformation of  the system variables reduces the equations to a set of 
linear algebraic equations. Upon identifying Yi = log Xi and b i = 

log( fli/°~i), Equations (8) can be written as 

0 g12 0 0 0 

g21 0 0 0 g25 

0 g32 0 0 g35 

0 0 g43 0 g45 

0 0 g53 g54 gs5 

-hll 
0 

- 0 

0 

h51 

0 0 0 hi 5 -!1 

h22 0 0 hzs 

0 h33 h34 h35 

0 h43 h44 h45 

h52 0 0 h55 . 

Yl 

Y2 

Y3 

Y4 
Y5 

+ 

-g16 0 0 0 .0 0 0 0 0 

0 g27 0 0 0 0 0 0 0 

0 0 g38 0 0 0 0 0 0 

0 0 0 g49 0 0 0 0 g414 

0 0 0 g59 g510 0 0 0 g514 
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-0 h17 0 0 0 0 0 0 0 

0 0 h28 0 0 h211 0 0 0 

0 0 0 h39 0 0 h312 0 h314 
0 0 0 0 h410 0 0 0 0 

0 h57 hs8 0 0 hsl I 0 hsl 3 0 

bl 

b2 

= b 3 

b4 

b5 

~Y6 

Y7 

Y9 

' Yl0 

Yll 

Y12 

Y13 
~Y14 

(9) 

Equation (9) can be written as 

([GID--[H]D)'Y]o + ( [ G l t - [ H l , ) ' y ] , = b ] ,  (10) 

[G]D: 

[G]I: 

[HID: 

[H]l: 

Y]D: 
Y]I: 

where [G]o, [H]o,  [G]I, [H]l, Y]o, Y]I, and b] can be written systemati- 
cally by simple inspection of the S-system equations, that is: 

n × n matrix whose elements are the kinetic orders gij, where 
Xj is a dependent variable (gij = 0 if Xj does not affect Vi + ). 
n × m matrix whose elements are the kinetic orders gij, where 
Xj is an independent variable (gij = 0 if Xj does not affect V/+ ). 
n × n matrix whose elements are the kinetic orders hi j, where 
Xi is a dependent variable (hij = 0 if Xj does not affect V~- ). 
n × m matrix whose elements are the kinetic orders hij , where 
Xj is an independent variable (hit = 0 if Xj does not affect V~- ). 
n-dimensional vector of dependent variables (logarithmic scale). 
m-dimensional vector of the independent variables (logarithmic 
scale). 

b]: n-dimensional vector whose elements are the parameters b v 

If, additionally, we define 

[A]D=[G]D--[H]D and [A]I = [ G ] l -  I n ] i ,  
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then Equation (10) can be written as 

[A]D'Y]D + [ A ] , ' y ] ,  = b],  (11) 

which yields an explicit solution for Y]o, provided that [A] D has an 
inverse: 

Y]o = - [ A ] D " [ A ] , ' Y ] I  + [ A ] o l ' b ] -  (12) 

This equation has important implications. It allows us to characterize 
the response of the system after a change in an independent variable or 
a parameter of the representation. In the next two papers [31, 32] we 
use this property to characterize the experimental pathway. 

Aggregation of fluxes through pools to define an S-system has been 
claimed to be a artificial procedure that destroys the original structure 
of the system. However, it should be noted that elasticities and GMA 
kinetic orders are also parameters of a given aggregation strategy 
through individual processes. This is specially clear for reversible reac- 
tions. This issue is reviewed in [38] and developed further in [25]. 
Differentiation and normalization of Equations (7) yields the following 
relationships: 

h22 h22,1V2,1 + h22,2V2, 2 h25,iV2,1 
= V 2 h25 V f  h28 hzg'IV2'l 

, V2 -  , 

, , h 34,2V3~ 2 h211 2Vz2 h33,1V3,,1 + h33,2V3,2 /134 , 
h211 = V 2 ' h33 = V~ ' V~- 

h39,1V3, i h312,2V312 h35 h35'llZ3'l + h35,2V3, 2 h30 h312 = 
v3- ' W ' v~ 

h314,1V3,1 h51,1Vs~ 1 
h314 I/3 ' hsi Vs- , 

h52,2Vs,2 -[- h52,3V5, 3 hss,jVf,  i + h55,3V5~3 q'- h55,4V5~ 4 

g510,2Vs+,2 
g51o = ~ • 

h 5 2 =  i /5 , h55 = i/5 ' 

h57,1Vs,, h58,3V~,3 h~ll,2V~2 
h57= Vf ' hss Vf ' h5~1 Vf 

h5,3 hs'3.aV~a g53,,Vs+l + g53,zVs+,2 g54,2Vs..2 
I/5 ' g53 = V5 + , g54 = V5 + , 

g55,1V~+l + U55.zV~2 gs.4,,V5~1 g59,,V,s +, 
g55 = 1/5+ g514 = "----~5+, g59 = ~ ,  
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TABLE 5 

Kinetic Orders for the S-System Representation of the Experimental System a 
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Suspended Suspended Immobilized Immobilized 
Calculated cells, cells, cells, cells, 

kinetic orders pH = 4.5 pH = 5.5 pH = 4.5 pH = 5.5 

h 22 0.739 1.355 0.286 0.288 
h25 - 0.394 - 1.678 - 0.019 - 0.324 
h 2s 0.999 0.944 0.77 0.753 
h 211 0.001 0.056 0.23 0.247 
h33 0.584 0.667 0.332 0.377 
h34 0.03 0.038 0.012 0.002 
h35 0.119 0.147 0.077 0.056 
h 39 0.944 0.937 0.935 0.93 
h 31 z 0.056 0.063 0.065 0.07 
h314 - 0.575 - 0.6464 - 0.301 - 0.353 
h51 0.198 0.223 0.153 0.169 
h 52 0.196 0.383 0.099 0.103 
h 55 0.372 - 0.035 0.314 0.18 
h57 0.265 0.283 0.347 0.357 
hss 0.265 0.267 0.267 0.269 
h 5 ~ 1 0.0002 0.016 0.08 0.088 
h513 0.47 0.435 0.305 0.286 
g53 0.333 0.439 0.181 0.203 
g54 0.266 0.301 0.094 0.011 
g55 0.024 -- 0.243 -- 0.043 -- 0.497 
gs14 - -  0.304 - 0.345 - 0.161 - O. 19 
g~9 0.5 0.5 0.5 0.5 
g510 0.5 0.5 0.5 0.5 

~These parameters are computed using Equation (2) for the aggregated fluxes. 
Correspondence of these parameters with those in Table 4 is indicated in the text. 

The  kinetic orders cor responding  to the aggregated rate laws appear-  

ing in the S-system representa t ion  can be calculated according to these 

equat ions.  As has been  poin ted  out  in [18], this fact also clarifies the 
relat ionships be tween  the elasticities of M C A  and kinetic orders of 
BST. The  values of these kinetic orders are given in Table  5 for the four 
exper imenta l  condit ions.  The  numer ica l  values of a i and  /3i are calcu- 
lated from these kinetic order  values and  steady-state concen t ra t ion  
values of metaboli tes ,  and  these appear  in Table  6. Since we have been  
using aggregated rate laws, some of the parameters  in the S-system 
represen ta t ion  are not  independen t .  This  is clear f rom the mean ing  of 
the aggregated fluxes. 
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TABLE 6 

Rate Constant Parameters for the S-System Representation a 

Suspended Suspended ImmobiliZed Immobilized 
Rate cells, cells, cells, cells, 

constant pH = 4.5 pH = 5.5 pH = 4.5 pH = 5.5 

a~ 0.8122 0.8667 1.0344 1.0848 
a 2 2.8632 3.3579 1.2593 1.3588 
a 3 0.5232 0.6304 0.7454 0.8055 
~4 0.022 0.014 0.1166 0.0797 
a 5 0.0913 0.08784 0.1102 0.0976 
~l 2.8632 3.3579 1.2593 1.3588 
~2 0.5239 0.5572 1.0158 1.1807 
~3 0.0148 0.010276 0.0672 0.048 
~4 0.0945 0.1372 0.026 0.03 
/35 3.2097 3.5023 3.2621 3.5332 

aThese parameters are computed using Equation 
In each experimental condition, the steady-state 
and 2 were used. 

(3) for the aggregated fluxes. 
values indicated in Tables l 

DISCUSSION 

Mathematical methods play an important  role in providing new 
insights in metabolic studies. Among the several alternatives, the MCA 
and BST approaches have achieved a leading position as tools for 
analyzing biochemical pathways. Application of both approaches to the 
same experimental system permit  one to understand the basis of  both 
methodologies and their relatedness and differences. The results pre- 
sented in this paper  show the following. 

(1) MCA and BST differ in the consideration of independent vari- 
ables. MCA considers source metabolite concentrations, external effec- 
tor concentrations, enzyme concentrations, etc., as separate sets of 
independent variables. Further, MCA has focused mainly on enzyme 
concentrations. In contrast, BST makes no distinctions among the kinds 
of independent variables the experimenter  may be interested in. In 
particular, enzyme levels can be considered independent variables [17, 
18]. In any case, it is trivial to identify each component  in either of the 
considered sets; relating the corresponding MCA and BST sets of 
variables is not difficult, and a dictionary list identifying the meaning of 
metabolites and fluxes can be written down following the rationale 
shown in this paper. It is a matter  of taste to prefer  MCA or BST 
nomenclature at this level. There is no fundamental  reason for not 
using a single set of independent variables. In BST, for simplicity, 
because it may be preferable for computation, and because a uniform 



MODEL DEFINITION AND NOMENCLATURE 47 

notation allows one to see important symmetries and other relationships 
in the explicit solutions, it is considered to be more convenient to keep 
track of a single set rather than to maintain several different sets 
(especially in developing software to compute all the desired steps in 
analyzing the pathway). It is important to realize that both MCA and 
BST refer to the same concepts and that the differences at this level are 
reduced to nomenclature preferences and are thus subjective. 

(2) To construct a BST model, either in the basic GMA variant or in 
the preferred S-system form, all that is needed is a scheme of the 
pathway, a list of dependent and independent variables, and a list of 
fluxes. At this level, this is the same information needed to build up the 
MCA description. However, MCA and BST differ beyond this point. 
The BST approach derives an explicit representation for each of the 
processes involved, whereas MCA does not. This has important implica- 
tions for the development of tools to predict the system behavior. We 
will show these implications in the following papers [31, 32]. 

(3) MCA elasticities and BST kinetic orders are related to the same 
concepts. We have illustrated this relatedness by using the fermentation 
pathway of Saccharomyces cerevisiae. First, the kinetic orders of the 
GMA representation within BST have a one-to-one translation with the 
elasticities of MCA. Second, the kinetic orders of the S-system repre- 
sentation are easily related to those of the GMA representation. Hence, 
we have clearly shown in our example that the same experimental 
measurements (those reported by Galazzo and Bailey [29, 30]) give the 
basic parameters for both BST and MCA. The fact that the S-system 
variant within BST uses aggregated fluxes should not be seen as an 
obstacle to interpreting the corresponding kinetic orders. Again, this is 
a matter of being acquainted with the nomenclature. 

(4) Elasticities and kinetic orders share the same definition: a partial 
logarithmic derivative evaluated at a given operating point. Hence, their 
values will change depending on the operating point considered (see 
Tables 4 and 5). This is true in MCA and in BST. In some cases this 
variation may be great, in others slight. This has important conse- 
quences, which will be seen when we discuss the implications of the 
description of the system at a given steady state [31]. 

In conclusion, we have shown that the differences between MCA and 
BST at the level of fundamental variables and parameters can be 
overcome by a simple glossary of terms. As Tables 4 and 5 show, the 
basic parameters are interchangeable and reflect the same concept: how 
an infinitesimal change in a variable affects a given process. Then, at 
this level, the information required to build up the representation of the 
target system is the same. 
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The  differences arise when we consider the system description. M C A  
does not  consider  an explicit representat ion for each rate law. BST 
develops an explicit representat ion using the power  law concept,  which 
involves impor tant  features for fur ther  analyzing the target pathway. 
The  implications o f  this choice will be clear when we consider the kinds 
of  questions that can be answered following each approach.  This is the 
subject o f  [31, 32]. 
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