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Abstract: The integration of large quantities of biological
information into mathematical models of cell metabo-
lism provides a way for quantitatively evaluating the ef-
fect of parameter changes on simultaneous, coupled,
and, often, counteracting processes. From a practical
point of view, the validity of the model’'s predictions
would critically depend on its quality. Among others, one
of the critical steps that may compromise this quality is
to decide which are the boundaries of the model. That is,
we must decide which metabolites are assumed to be
constants, and which fluxes are considered to be the in-
puts and outputs of the system. In this article, we analyze
the effect of the experimental uncertainty on these vari-
ables on the system’s characterization. Using a previ-
ously defined model of glucose fermentation in Saccha-
romyces cerevisiae, we characterize the effect of the un-
certainty on some key variables commonly considered to
be constants in many models of glucose metabolism,
i.e., the intracellular pH and the pool of nucleotides.
Without considering if this variability corresponds to a
possible true physiological phenomenon, the goal of this
article is to illustrate how this uncertainty may result in
an important variability in the systemic responses pre-
dicted by the model. To characterize this variability, we
analyze the utility and limitations of computing the sen-
sitivities of logarithmic-gains (control coefficients) to the
boundary parameters. With the exception of some spe-
cial cases, our analysis shows that these sensitivities are
good indicators of the dependence of the model sys-
temic behavior on the parameters of interest. © 2000 John
Wiley & Sons, Inc. Biotechnol Bioeng 68: 18-30, 2000.
Keywords: model validation; sensitivity analysis; math-
ematical modeling; glucose fermentation

INTRODUCTION

cell to be competitive in its natural environment. However,
an optimal design in a natural setting is not necessarily the
optimum design from a technological point of view. The
possibility of modifying a natural process to achieve a new
capability, from the optimization of batch cultures to the
design of new therapeutic drugs, is an important goal in
biotechnology (Bailey, 1991).

A rational approach to metabolic engineering must ana-
lyze the characteristics of the reaction network before at-
tempting specific genetic manipulations. Mathematical
models provide a support tool for critically exploring the
available experimental data. One of the crucial points for
developing useful mathematical models in metabolic engi-
neering is to develop strategies for appropriately validating
such models (Savageau, 1971; Shiraishi and Savageau,
1992a,b,c,d, 1993; Curto et al., 1995, 1997, 1998a,b; Cas-
cante et al., 1995; Sorribas et al., 1995; Ni and Savageau,
1996a,b). The implications of the impossibility of develop-
ing a complete, detailed model of a metabolic system in-
cluding all the cellular processes that have an impact in a
given pathway have been considered in a systematic manner
by Schlosser and Bailey (1990). Apart from that, there are
different potential sources of inaccuracies when building a
mathematical model. Among others, the more critical are: 1)
the selected mathematical representation is not adequate for
characterizing the biological system, 2) there are inaccura-
cies on the selected kinetic parameter values, and 3) the
model contains simplifications that compromise its validity.

The inadequacy of the mathematical formalism chosen to
achieve the goals desired in the characterization of the sys-

A highly regulated and coupled network of enzyme-tem can be another source of inaccuracies. The choice of a
catalyzed reactions and selective transport systems accolparticular mathematical formalism is critical and determines
plishes the metabolic activities of living cells. In each casene kind of analysis that can be performed on the model.
natural selection has lead to optimal systems that allows thﬁmong other requirements, the mathematical representation
must facilitate computing the profile of parameter sensitivi-
ties, since this profile can be used as a diagnostic tool for
suggesting portions of the model that need further improve-
ment (Ni and Savageau, 1996a,b; Cascante et al., 1995;
Curto et al., 1997). The inaccuracies due to uncertainties in
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the kinetic parameter values are also critical for evaluatingsource. Although many of the involved parameters were
the model predictions (Small and Fell, 1990; Thomas andpecifically determined in this study, others were assumed
Fell, 1994; Petterson, 1996a,b; Petkov and Maranas, 1997p be equal to those known in other cells. The experimental
In addition, the conceptual model can incorporate differentonditions, and the resulting models, were chosen to explore
simplifications that can compromise the model predictionsthe difference between immobilized yeast cells entrapped in
These simplifications lead us to consider some variables asalcium alginate and suspended cells, both in two different
constant parameters, disconnecting the metabolic pathwagsell environments defined by external pH 4.5 and 5.5. As a
from the rest of the metabolic processes. While necessameference system, we will only consider the immobilized
for making feasible the construction of a model, these sim<¢ell at pH 5.5 condition. The scheme for the fermentation
plifications can be a potential source of biased results. Theathway is shown in Figure 1, and a description of the
use of auxiliary processes that allows a buffering effect orkinetic model is shown in the Appendix section. In this
key variables can overcome some of these problems (Voinodel, we indicate the rate-laws used to represent the in-
and Ferreira, 1998). However, when the involved variablewvolved kinetics and the metabolite constraints and equilib-
participate in different kinetic processes, a detailed analysisum relationships considered. Corresponding to the experi-
of the effects of uncertainties in these variables is necessaiyental conditions indicated above, the total amount of ad-
as a validation step for the model. enine nucleotides (AN) and the intracellular pH (PHare

In this article we will not focus on a detailed analysis of considered constants, introducing a necessary simplification
a particular physiological system, but on the implicationsthat defines a boundary of the studied system.
resulting from considering arbitrary boundaries in models of
metabolic pathways that incorporate complex enzyme ki- Gle
netics equations. This can be the case, for instance, of con- (outside)
sidering constant the amount of nucleotides in a given—— LVin
model. This may be necessary for simplifying the model,
but the uncertainties related to the experimental determina @ Gle
tion of this parameter can have a dramatic effect on the (inside)
system’s properties. A critical step in the process of model|  aAtp
definition is checking the system’s behavior for different Vi
values of these parameters. Without considering if uncer{ ADPP ATP ADP
tainties correspond to physiological phenomena, when it .
comes to considering the model’s utility, parameter uncer- G6P \/‘ » polysaccharides

. . . . . A"
tainty can be accepted if this does not involve dramatic  ,p pol
changes in qualitative behavior. Otherwise, further refine- AV
ments would be needed to clarify the appropriate values. ADP pik
From a practical point of view, the most common situations
leading to these simplifications include considering con- FDP —» 2 glycerol
straints between dependent intermediates and fixing param- , spp Vgol
eter values, e.g., by considering a particular fast reaction to D
be in equilibrium or by considering the variability of a con- ~ 2ATP
centration metabolite to be negligible. Implicitly or explic- ~ 2NAD — gapd @
itly, through a mathematical model representing the meta- ; yapy <1

bolic system all theséixed parameteuncertainties spread + ATP
through the calculations of the properties of the system and
may compromise its validity. At this point, it is critical to 2 PEP
check the effects of these simplifications. > ADP Vatrase
2 ATP > Vpk

MATERIAL AND METHODS v

2 ethanol ADP
Model Description Figure 1. Anaerobic fermentation pathway of ye&dccharomyces cer-

evisiaefrom glucose to ethanol, glycerol, and polysaccharides. This meta-
As a case example, we shall use a model of the anaerobigjic pathway involves five dependent concentrations and eight fluxes.

fermentation pathway from glucose to ethanol, glycerol, ancchemical species: Glc, glucose; G6P, glucose-6-phosphate; F6P, fructose-
polysaccharides isaccharomyces cerevisipeblished by  6-phosphate; FDP, fructose-1,6-diphosphate; PEP, phosphoenolpyruvate;
Galazzo and Bailey (1990, 1991)_ This model is a Combipoolpol, polysaccharide pool (glycogen + trehalose). Enzyme_s/pathway
nation of experimental measurements and literature rescPS Vo glucose uptake; i, hexokinase; ., phosphofructokinase;

. - Co ; gapa glyceraldehyde 3-phosphate dehydrogenasg; pyruvate kinase;
search, and contains some simplifications resulting from th‘i’/pm, polysaccharide storage (glycogen + threhalose);, \glycerol pro-
experimental conditions used, e.g., the absence of a nitrogefuction; Vrpase ATP consumption.
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Although the model considers fixed quantities for theseues were obtained experimentally, some adjustments were
parameters, their interval of uncertainty can be obtainedequired so that the model could match these values for a
from the original article. This makes this model appropriategiven set of design parameters. In that case, the ratio be-
as an example for analyzing the effect of selecting boundtween reduced and oxidized NAD (NADH/NADand the
aries in a metabolic model. In the model of Galazzo andv,,,, of several enzymes were considered as model adjust-
Bailey (1990, and references therein) the concentrations able parameters. In the Appendix, an asterisk identifies each
sugar phosphate intermediates and the summation of umdjustable parameter. For instance, each time a different
bound ATP and ADP were estimated from data obtained bylesign parameter AN or gHis considered, we must adjust
in vivo 3P nuclear magnetic resonance spectroscopyhe model to maintain the same reference steady-state
(NMR) (Galazzo and Bailey, 1989). In vivo fHwas de-  changing the value of the model adjustable parameters. Oth-
termined from the chemical shift of intracellulay Rso-  erwise, the resulting comparisons are not valid.
nance using an NMR titration curve, where the error in the
determination of pH is expected to be less than 0.2 pH units . L.

(Shanks and Bailey, 1988). In the original model, the con-Steady-State Behavior Characterization

sidered value of pH is 6.80 for immobilized cells at x-  gioaqy . state characterization involves quantification of the

ternal pH 5.5. If we take an error lower than 0.2 pH units ingy g1em response to changes in external variables through the
the determination of pH, the uncertainty |n.terval around use of sensitivity analysis. This characterization on the
the reference value experimentally determined may be e%riginal model is difficult because of the complexity of the
t'mf"‘ted to be between 6.7 and 6'_9' For AN, th'ese.authorﬁwowed equations. As an alternative, the tools provided by
estimate a mean value of 3 mM, with an uncertainty intervay,;, ohemical systems theory (BST) and metabolic control
between 2.7 and 3.3 mM. Since no experimental data exisi, 5\ sis (MCA) are more convenient (for a complete ac-
on the statistical distribution, we will assume a uniform count of methods, see Cascante et al., 1989a,b: Fell, 1997:
distribution of the possible values of these parameterg .o ot al., 1995, 1997, 1998a,b; Sorribas et al., 1995
within their uncertainty interval. Assumption of a different Cascante et al., 1995; and references therein). In many as-
distribut.ion would lead, essentially, to similar qualitative pects, BST and MCA use quasi-equivalent representations
conclusions. and yield similar results. Operationally, BST and MCA dif-
fer in including an explicit representation for the rate-
Model Equations and Steady-State Adjustments equations. In that sense, BST provide a differential equation
model in power-law form that allows model simulation and

The mr(])de_l is defined asha sde_]:cfof ordll(r_lary_ differential eql;a-a straightforward analysis of the system’s properties. MCA
tions that incorporates the different kinetic expressions fof, ,qiqers an implicit representation of the underlying pro-

each rate-law (see Appendix). To evaluate model perforgeqses jeading to a compact set of matrix equations to derive

mance, we will consider changes with respect to two d'f'the steady-state characterization.

ferent categnories of parameters: the boundary parameters |, ,ih" anproaches, the steady-state characterization is
(AN and pH") and the step activities (). At this point, rovided by computing systemic sensitivities, defined as a

'th's lmportaht tor:ntroduce f’" dlffe.rence between parar?]etergormalized, or eventually nonnormalized, partial derivative
that determmtle the system’s dehS|gn and parameters that age any systemic property; for example, an intermediate me-
used to explore system behavior (Ni and Savageayyyjite ool or a steady-state flux, with respect to any in-

1996a,b). Design parameters are those parameters that g endent variable. As a general definition, a systemic sen-
considered to change between two different situations Ogitivity is computed as:

interest. For instance, a fHequal to 6.9 determines a dif-
ferent environment than a pHequal to 7.1. Then, pHis dLn(F) dF\ P
considered a design parameter in our case. In each condition SF,p) = (dLN(p)) = (%) "E. D
defined by a different value of pH we are interested in 0 o0
checking the system’s performance. Behavior parametenshereF can be any systemic property, apccan be any
are those parameters used to check the system responsebahavior parameter, for example, an external effector or an
different values of the design parameters. In our case, thenzyme activity (Savageau and Sorribas, 1989). The sub-
response to a change in g,)is used as a measurement of script, refers to the nominal operating point. Because BST
performance for comparing different designs. Thep Ms  uses an explicit power-law for representing the underlying
a behavior parameter in this case. The distinction betweeprocesses, parameter sensitivities include the case in which
design and behavior parameters is important. p is a rate constant or a kinetic order (see below).

Each time we change the value of a design parameter we Systemic sensitivities are callddgarithmic gainsand
must assure that an adjustment is introduced so that thearameter sensitivitiegr BST, andcontrol coefficientsor
different designs are comparable (Savageau, 1974, 197¢pmbined response coefficientsMCA. The reader is re-
Irvine and Savageau, 1985a,b; Ni and Savageau, 1996a,terred to the literature for an account of equivalencies and
Hlavacek and Savageau, 1995, 1996, 1997). Since in thi®r comparing the operating similitude and differences be-
original model of Galazzo and Bailey the steady-state valtween both approaches (Sorribas and Savageau, 1989a,b,c;
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Curto et al., 1995; Savageau, 1991, 1992). In the followingparameters changes, the model is adjusted to preserve the
we use the BST nomenclature, keeping in mind that logareference steady state but the stability of the resulting model
rithmic-gains in BST correspond to control coefficients andmay be compromised. Then, in addition to the analysis of
response coefficients in MCA. systemic sensitivities, a stability analysis through the same

Systemic sensitivities depend on the local sensitivitiegparameters’ intervals is necessary to identify critical param-
defined as normalized partial derivative of any individual eter regions. The local stability of the nominal steady state
reaction rate\() with respect to any dependent or indepen-can be evaluated by examination of the eigenvalues of the
dent variable that affects this rate. In MCA, these sensitivi-characteristic equation after a linearization of the local rep-
ties are known a®lasticities and in BST are known as resentation of the system (Savageau, 1976). If the real parts
kinetic orders If we consider thav, is a function of a set of of all eigenvalues are negative, the nominal steady-state is
variables and parameteng(X4,X, . ..), akinetic order is locally stable. In this case, the system will return to its
defined as: steady-state following small perturbations.

_ (dLn(v)
ij_(dLn(Xj)>0 (2 RESULTS AND DISCUSSION

The methods for computing systemic sensitivities from theThe results presented in this article are organized in two
local sensitivities can be found in the literature (see, fomlocks. First, we compute the steady-state characterization
instance, Cascante et al., 1989a,b; Savageau and Sorribagthe nominal operational point of the model through loga-
1989). These methods have been implemented in a functiofithmic gains and through the second-order sensitivities of
package SYMMET (under development in our laboratory) |ogarithmic gains with regard the boundary parameters.
using Mathematica 3.qWolfram, 1996). Second, using the kinetic model, we systematically recom-
Steady-state characterization can be complemented Qyuted the values of the logarithmic gains within the interval
analyzing nonnormalized second-order sensitivities, i.e., thef uncertainty of the boundary parameters. These values are
sensitivities of systemic sensitivities with respect to fixedcompared with the values predicted from second-order sen-
parameters considered as boundaries of the metabolic sysitivities of logarithmic gains. Since stability of the refer-

tem analyzed (Savageau, 1971, 1976): ence steady state can be compromised when the value of
dSF, p) boundary parameters is changed, the local stability of the
< ’ ) ©) model in the range of uncertainty of these boundary param-
d(boundary parametey eters is also checked.

These sensitivities will be computed numerically by infini-
tesimally pe_rturbing the boundary parameter around the OpSteady-State and Steady-State
erational point. Because boundary parameters determine tfifahavior Characterizations
system’s design, steady-state adjustment is required after
any change in their values. These changes assure compalihe steady-state characterization of the reference model of
bility between the different scenarios considered. In the Rethe anaerobic fermentation pathway described in the above
sults section, all the required computations were performedection was published elsewhere (Curto et al., 1995; Cas-
using Mathematica 3.0 cante et al., 1995; Sorribas et al., 1995). We use these results
as a reference. Logarithmic gains with respect to each step
activity (Vqep) are shown in Table I. All of them have
absolute values between 0.1 and 2.5, with the exception of
the high values observed in the gains of phosphoenolpyru-
The second-order sensitivities of logarithmic-gains predict avate (PEP). Regarding ethanol production, it should be
linear dependency of the logarithmic gains with regard tonoted that the steps displaying a higher logarithmic gain
changes in boundary parameters around the operationalere glucose uptake (¥, phosphofructokinase (y.) and
steady-state (Salvador, 1996). The actual logarithmic gain&TP consumption (Mrpasd-
corresponding to each value of a boundary parameter within The logarithmic-gain values can be used to tentatively
the uncertainty interval were computed directly from thepredict the steady-state system response to small perturba-
kinetic model by usingYMMET according to the methods tions in any of the independent variables. From a theoretical
described above. These logarithmic gains were used as rgboint of view, these predictions are strictly true only if the
erence for comparison with the values predicted by the serchanges in the independent variables are infinitesimal. In
sitivity coefficients. practice, although they may be inaccurate for large changes,
Stability of a given steady-state is a fundamental condiin many cases they suffice for predicting the system re-
tion for the existence of a system and for ensuring that thesponse within a physiological range of variation of the in-
parameters used in the model are compatible with a realistidependent variables (see for instance Sorribas and Sav-
situation (Sorribas and Savageau, 1989a; Savageau and Sageau, 1989a; Curto et al., 1998b). In our case, we concen-
ribas, 1989; Savageau, 1972). When a value in boundaryrated our attention in the step activities as behavior

Analysis of the Effect of Changes in
Boundary Parameters
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Table I.
in the Appendix.

Flux and concentration logarithmic gains computed at the nominal steady state described

Activities

VIR VRS VERO v VIS VIR VR ViR
Vin 0.43 0.00 0.25 0.00 -0.03 0.21 0.03 0.11
Vi 0.43 0.00 0.25 0.00 -0.03 0.21 0.03 0.11
Vo 0.37 0.00 0.43 0.00 -0.05 0.02 0.05 0.18
V gapd 0.37 0.00 0.43 0.00 0.03 0.02 -0.03 0.18
Vik 0.37 0.00 0.43 0.00 0.03 0.02 -0.03 0.18
Vol 0.63 0.00 -0.28 0.00 0.03 0.77 -0.03 -0.12
Vol 0.37 0.00 0.43 0.00 -0.97 0.02 0.97 0.18
V ATpase 0.20 0.00 0.86 0.00 0.15 -0.44 -0.15 0.37
Glc 0.90 -2.12 0.48 0.00 -0.07 0.46 0.07 0.27
G6P 1.73 0.00 -0.77 0.00 0.08 -0.63 -0.08 -0.33
FDP 0.83 0.00 0.74 -2.46 0.01 0.21 -0.01 0.68
PEP 25.7 0.00 60.6 0.01 -34.3 -20.5 -8.65 -22.9
ATP 0.20 0.00 0.86 0.00 0.15 -0.44 -0.15 -0.63

High values of PEP and ethanol production,Viogarithmic gains are indicated in bold face.

parameters to check for system behavior. Logarithmic gains If these dependencies are made explicit, the correspond-
are a function of the underlying kinetic orders and they caring logarithmic gains will be a function of AN and pH
be easily computed once the system scheme is defined (se&¢cordingly, we can compute the sensitivity of a given
for instance, Cascante et al., 1995). In general, the stratedggarithmic gain to changes in those design parameters.
for analyzing a given system consists in fixing an operatingThese sensitivities will be computed as nonnormalized sec-
point in which the kinetic orders are computed from theond-order sensitivities with the general form indicated in
existing information. Once computed, the logarithmic gainskg. (3).
characterize the response of the system at this point. In the considered model, the analysis of second-order
According to their definition, kinetic orders depend on sensitivities shows high values with respect to AN and'pH
the boundary parameters. Consequently, logarithmic gainee Tables Il and IIl), with the exception of these of hexo-
will change as we change any of these conditions. Despitkinase (M) and Vy,pqthat are almost all zero and are not
this, in many cases their values may be relatively similar forshown in these tables. In particular, the second-order sen-
a given range of boundary conditions. If this is the case, isitivities of the different logarithmic gains in the case of
is an indication that the system response does not chand®EP are extremely high. Regarding ethanol production, sec-
qualitatively within the considered range. ond-order sensitivities respect to infinitesimal changes in
As a validation procedure, it may be a good strategy toAN or in pH show, in both cases, the highest values fgg.V
introduce an intermediary step in which kinetic orders are
computed as a fgnctlon of_crlt!cal variables. This n_]ay be theFable Il.  Second-order sensitivities of flux and concentration logarith-
case O_f expressing the kinetic orders as a function of ANnic gains respect to infinitesimal changes in"pelt the nominal steady-
and pH". If the dependency of kinetic orders with respectstate described in the Appendix.
design parameters is made explicit, we can check the effect

of uncertainties in these parameters. This uncertainty would Activities

spread through the computation of logarithmic gains and y/max Ve vma o ymex o ymax o ymex
can lead to |den_t|fy _deS|gn problems in the model. As ar - 0.45 118 o013 021 013 052
example, the kinetic order of ATP in glyceraldehydevhk 0.45 118 013 021 013 0.52
3-phosphate dehydrogenasg(y) is: Vo 0.76 -200 -022 036 022 0.88
V gang 0.76 -200 -022 036 022 0.88

f ATP = dLn(Vgaap) vzkp 0.76 -200 -022 036 022 0.88
Vgapd dLn(ATP) /, Vol -0.50 1.32 014 -023 -0.14 -058
0.0056AN- 0.016 Vol 0.76 -2.00 -0.22 0.36 0.22 0.88
0.012+ V atpase 1.54 -405 -044 072 044 1.78
\/4AN -5.76 Glc 0.86 -226  -025 040 025 1.00
(5.63+1672.3rNN G6P -1.37 3.59 039 -0.64 -039 -158
_ FDP 1.32 -346  -0.37 061 037 1.52

1'0—5+ (0.0043+ 0.015AN PEP 155. -175. -925 134 151 83.7

4

Each second-order sensitivity is in correspondence with the logarithmic

where the value of the adjustable parameter rNN depends Qfains in Table I. High values of second-order sensitivities of PEP and

the value of the design parameter AN and"bH

22

ethanol production () logarithmic gains are indicated in bold face.
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Table lll.  Second-order sensitivities with respect to infinitesimal cose uptake (){) and phosphofructokinase Q’O perturba-

changes in AN at the nominal steady state described in the Appendix. tions. In Figure 2, the predictions of the sensitivities of
Activities logarithmic gains at the nominal operational point appear as

tangent lines to the series of logarithmic gains. In general,

Vin Vi vk Vo Vool VATPase  these results clearly show the predictive validity of the sec-
Vin -0.07 0.35 005 -010 -0.05 -0.18 ond-order sensitivity analysis. In some special cases, it may
Vi ~0.07 0.35 005 -0.10  -0.05 ~018 " gecur that the change in logarithmic gains is not monoto-
Vi -0.12 0.59 008 -0.16 -0.08  -0.31 For inst the d d ‘l thmi . ¢
Ve ~0.12 059 008 -0.6 -008 -031 nous.Forinstance, the dependency of logarithmic gains o
Vo -0.12 0.59 0.08 -0.16 -0.08 -0.31  PEP with respect to changes igqa/by ranging AN (see Fig.
Vool 008 -0.39 -0.05 011 0.05 0.20  2¢). In those cases, the prediction from the second-order
xgc" _8'22 g'ig 8'22 _8';2 _8'22 _82; sensitivities is questionable.

ATPase V. . . Y. Y. Y. . . - . .
Gle -013 0.67 009 -018  -0.09 ~0.35 Figures 3 and 4 show the ar_1aIyS|s of the Iogarlthr_mc gains
G6P 021 -1.06 -0.14 0.29 0.14 056 of PEP and ethanol production (y on the two-dimen-
FDP -0.12 112 014 -029 -014  -051 sjonal region described by simultaneously considering the
PEP —8L9 223 363 716 003  -1I5  in and AN uncertainty intervals. Contour lines identify
ATP -0.23 1.19 015 -0.33 -0.15  -0.63

equivalent logarithmic gain values. From these results it is
Each second-order sensitivity is in correspondence with the logarithmidmmediately seen that pHhas a higher effect than AN on
gains in Table |. High values of second-order sensitivities of PEP andhe final values. Moreover, the curvature of the lines also
ethanol production () logarithmic gains are indicated in bold face. shows that the dependency is not necessarily monotonous.
Before attempting an interpretation of these results, a sta-
Second-order sensitivities of,Vand Varpase logarithmic bility analysis is done in parallel with the computation of
gains with regard to pi are also relatively high. These logarithmic gains. Analysis of stability through examination
high second-order sensitivities predict important changes iof eigenvalues shows areas where the real parts of the eig-
the relative qualitative importance of the different steps inenvalues of the characteristic equation are positive. These
the pathway associated with the uncertainty interval for thewo areas of instability are represented in black in Figures 3
boundary parameters. and 4. One of these areas shows positive eigenvalues and
corresponds to the maximum [Hnd minimum AN inter-
val values. For the considered interval of parameter values,
this area is a small region. However, it is important to note
Second-order sensitivities predict the change in systemigat it may become relevant for a simultaneous"pir-
properties as a result of changing the design parametergrease and AN decrease out of the considered limits. The

From a theoretical point of view, these sensitivities are arkgcond area. with a positive eigenvalue, corresponds to a
approximation to the actual behavior of the system at th?egion of low pH" and AN values. Both unstable areas

operating point. For illustrative purposes, it would be inter'corresponds to extreme values of AN andpHhat lie

testlr’19 E)O rc];omparebtthg redsutl)t Of.thlsl iﬂa'ys'f tvr\:'th th.e.syf"outside the considered uncertainty ranges of both param-
em s hehavior obtained by simuiation ot the onginat o Irregularities in the contour lines in this limit region in

model. This comparison will help in understanding the util- _. o . .
. e L . ., Figures 3 and 4 correspond to limitations in the graphical
ity of these sensitivities as a validation tool in the consid- .

representation.

ered model. All th lts show that th d-ord tiviti
First, the logarithmic-gains for the reference model are ese resufts snow that the second-order sensilivities
orresponding to PEP and some fluxes present a pattern of

computed systematically at different values of the boundar% ! ! i
parameters pP and AN. This is made by selecting a value Pehavior that is strongly dependent on'pbr AN (Tables

for each parameter and by computing the correspondin%:”d [II). The computation of the logarithmic gains within
kinetic orders. In each case, the appropriate adjustments at@e range of values inside the interval of uncertainty of the
made so that the reference steady state is preserved. AftB¥0 boundary parameters confirm the strong dependency
these computations, the logarithmic gains are obtained daredicted by the second-order sensitivities of logarithmic
indicated in the Methods section. gains (Figs. 2, 3, 4). These results also show that these
Once the logarithmic gains are computed, the analysis i§€nsitivities are a good prediction of the system’s response.
first made through one-dimensional graphical plots to show! his result agrees with the underlying theory that relates
the effect of each design parameter. Then, through twothese sensitivities with an approximation of the actual
dimensional graphical plots, we show the joint effect ofchanges in the system.
simultaneous changes in both parameters. Figure 2 showsIn principle, computation of second-order sensitivities
the step logarithmic gains of PEP and ethanol productiorsuffices for checking this situation in this particular case. A
(VoW- This analysis clearly shows a qualitative change incomplementary stability analysis helps in identifying pa-
those systemic properties, including some positive-negativeameter combinations leading to unstable steady-states. The
changes. This is especially remarkable with respect to glueombination of both analyses leads to a diagnostic of the

Analysis of Second-Order Sensitivity Predictions
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Figure 2. Two-dimension plots of systemic coefficients with respect BV Vin® V&2 ... Vi and Vi through a range of pFor AN. Logarithmic
gains appears as succession of points, diamonds, squares, or triangles. Lines tangents to these successions in the midd|€ eala&l afoptéspond
to the second-order sensitivities from Tables 1l andallLogarithmic gains of PEP through a range of'pHom 6.55 to 7.05b: Logarithmic gains of
ethanol production () through a range of pPfrom 6.55 to 7.05c: Logarithmic gains of PEP through a range of AN from 2.4 to 8:6.ogarithmic
gains of \j, through a range of AN from 2.4 to 3.6.

model in the considered uncertainty region for the desigreffects can lead to a variety of different qualitative behav-
parameters. iors. This can be quantified by changes in the logarithmic
gains computed within the considered range. In those cases,
the predictive value of the results is questionable. Second-
order sensitivities are an appropriate tool for characterizing
The results presented in this article show that the uncertairthe dependency of systemic responses from system param-
ties associated with boundary parameters may have a sigters. We have shown that changes in logarithmic gain val-
nificant effect on the characterization of systemic proper-ues are correctly predicted by the second-order sensitivities
ties. Even when the range of uncertainty is narrow, thesand that these are an alternative to an exhaustive exploration

Guidelines for Model Improvement
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Figure 3. Logarithmic gains and stability through two-dimension contour plots confronting a range'bfrpht 6.55 to 7.05 and a range of AN from
2.4 to 3.6. Contour lines identify the logarithmic gains. Black areas correspond to unstable regions; a big area & émd BN and an extreme area
to the maximum p® and minimum AN valuesa: Logarithmic gains of PEP with respect tdT%, where contour lines separate five unlisLogarithmic
gains of ethanol production () with respect to }*, where contour lines separate 0.05 unitd.ogarithmic gains of PEP with respect td¥, where
contour lines separate five unitd. Logarithmic gains of Y, with respect to i, where contour lines separate 0.05 units.
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of the parameter region. In some extreme cases, however,tlie considered region of variability. These instability re-
has been observed that the system behavior predicted frogions represent a sort of forbidden combination for the con-
the second-order sensitivities deviates significantly from thesidered parameters, since an unstable steady-state is unex-
actual system behavior. This is observed in our model fopected to occur in this system under physiological condi-
values of the boundary parameters that correspond to th#ons.
limit region between stability and instability of the system. The combined results of sensitivity and stability analyses
Stability analysis offers a complementary vision of theallow identifying a high variability of system behavior as-
influence of design parameters of the system response. Wanciated with small changes in the values of the boundary
have shown that unstable steady-states may appear for pgrarameters. If we consider that this observation is not ac-
ticular combinations of the considered parameters withirceptable as reproducing a true physiological phenomenon,
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Figure 4. Logarithmic gains and stability through two-dimension contour plots confronting a range"bfrphi 6.55 to 7.05 and a range of AN from
2.4 to 3.6. Contour lines identify the logarithmic gains. Black areas correspond to unstable regions; a big area 16 émd AN and an extreme area
to the maximum p® and minimum AN valuesa: Logarithmic gains of PEP with respect g%, where contour lines separate five unlttsLogarithmic
gains of ethanol production () with respect to i, where contour lines separate 0.05 urgtd.ogarithmic gains of PEP with respect tq§5,s. Where
contour lines separate five unitd: Logarithmic gains of Y, with respect to \{75.s. Where contour lines separate 0.05 units.

then it is necessary to consider the possible explanations foefine the system description. For instance, Bailey and co-
this inconsistency so that a change in the model can correetorkers refined their original model maintaining AN as a
this problem. constant, but expanding it by making Ptdepend on ATP

First, we should consider if the variables that have beer{Schlosser et al., 1994). Although this is an improvement of
defined as boundary parameters in the model were in fadhe original model, further refinements may consider the
dependent on other system variables. If this is the cas@rocesses related to the AN pool. Alternatively, the strategy
assuming fixed values for them in our model we may besuggested by Voit and Ferreira (1998) could be applied.
altering the actual regulatory pattern of the system, whictHowever, in our case buffering the fHand AN within a
may result in the anomalous behavior observed. A solutiomarrow range would not correct some of the problems de-
for this situation is to incorporate additional processes thatected.
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Second, the problem may not originate in the model simpathway inSaccharomyces cerevisiag® an example of a
plification itself but in a poor characterization of some stepsnongeneral but possible case where, within the experimen-
of the model. In this case, identification of the problematictally measured uncertainty range, the system can display an
steps may be difficult. In principle, the pattern of systemicimportant variety of behaviors. In the most critical cases, the
sensitivities can be used as a search tool (Shiraishi anslystem can even enter a parameter region in which no stable
Savageau, 1992a,b,c,d). Alternatively, model simulationsteady-state exists.
may be used for investigating the possible candidates. Once Our results point to the problem of giving too much credit
identified, they can be refined through new experimentato a parameter value without critically checking the im-
measurements or by changing specific parameter values. plications of this selection. In the example examined in
new sensitivity analysis would help in checking if the this article, it seemed obvious that a fixed AN value of 3
changes introduced alleviate the high sensitivity to themM was a good choice. However, a critical examination of
boundary parameters. In a previous analysis of this modahe alternative values, in combination with the feasible
we showed a potential problem that can be associated withH™ values, reveals a potential problem in the model.
a poor characterization of a particular step in the referenc&/hether the observed variability in system behavior is ad-
model. We observed that, while fluxes and intermediatesnissible or not depends on the biology of the studied sys-
quickly reach steady-state levels, PEP takes a long time teem. However, in many cases, we expect a relatively robust
reach the new steady-state and it seems to accumulate ibehavior, at least in qualitative terms, within a given pa-
definitely (Sorribas et al., 1995). In the considered modelrameter region. In those cases, results similar to those re-
Vo« is the only enzyme to degrade PEP and in the studiegorted in this article lead to serious doubts about the utility
conditions the steady-state level of PEP (0.5 mM) leads tof the model.

a 97.68% saturation of ) . The consequence of this satu-
ration and the direct or indirect (through FDP) dependency.
of V,on AN and pH" account for the accumulation of PEP APPENDIX

when a_change in one or both parameters Ieads_to an ing this appendix we show a version of the model from
crease in PEP. y slowly reverses this accumulation be- 513770 and Bailey corresponding to the immobilized pH

cause this enzyme is quking near its maximum ve.locit_y5_5 conditions (1990, 1991). The corresponding kinetics,
and cannot rapidly buffer it. In the analysis presented in thigneanolite levels, and fluxes are taken from the original

artjcle, we found an important variability.in PEP accumu- article and personal communication with the authors.
lation and on the weight of some enzymatic or step aCt'V't'eSSteady-state values agree with previously published analy-

in flux regulation for different values of AN and gH In sis of the same model (Curto et al., 1995).
that situation, we suggest refining the model by improving ’

the characterization of ). Alternatively, one may try to
investigate if the model should include alternative reactiondVlass Balance Equations
for degrading PEP.

dGlc
T =Vin = Vi
CONCLUSIONS
Math ical modeling i ful tool f dyi dG6P—
athematical mode INg IS a powertu tool for stu ying com- T = th - fok - Vpol

plex systems. Model development requires a sound knowl-
edge of the biological problem and great experience. This 4rpp

experience is required to capture the essential components T Vi —vgapd—iv
of the problem so that the model accurately represents the

target system without unnecessary complications. These Jpgp

gol

complications should be avoided mainly because math- at - 2V gapa~ Vpk
ematical analysis is painful if the model of the system in-
corporates complicated equations. dATP
A typical exercise in modeling is simplifying several pro- g7~ = ~Vhk ™ Vpik + 2Vgapat Yok = Vo = Vatpase

cesses by considering a constant amount of some pool. This
is particularly common if this pool represents a sort of
boundary_, source, or smk _for the b|olog|ca_l system. Th'SSteady state:
strategy is also used with internal metabolites that appar-
ently do not change during the measured response. This istermediate{mM): fluxes (mM/min):

the case of considering rapid equilibrium in many instances.

Without discussing the appropriateness of these simplificag'ecpi03'1075 x - 3;13; V. _ 848
tions in the different models, we have addressed the possib@op — 538 Ve~ 2585 Vo — 3.63
implications of considering a given value for this constantpep = 0.499 vzapd = 24.03 vAgTPase: 27.48

variables. The analysis of a model of ethanol fermentatiorATP = 1.92 V. = 48.06
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Dependency on Sum of Adenosine Nucleotides

Vo« is an allosteric enzyme described by the concerned
and Intracellular pH

transition model of Hess and Plesser (1978), based on the

The original model considers equilibrium between ATP,

ADP, and AMP. Furthermore, a constant pool of adenosin

nucleotides (AN) is assumed. The value of the equilibrium

constant for adenylate kinase {lKand AN determine the
relationship between ATP, ADP and AMP:

, , ADP?
* Adenilate kinase: K,= ATP AMP

Keq= 1, Keqlis the equilibrium constant
» Sum of nucleotides: AN- ATP + ADP + AMP

These relationships allow eliminating ADP and AMP in

model. They are substituted for expressions depending on

ATP, Kgq and AN:
ADP =
KoqATP = \/4AN KoqATP = 4K ATP? + Ko ATP?
2
and
AMP = AN - ADP - ATP
where K = 1.

After these substitutions, in the final model the activity of
piruvate kinase (YY), phosphofructokinase (), and
glyceraldehide 3-phosphate-dehydrogenasgydepends
on AN (see below). On the other hand,\s also affected
by the intracellular pH (pH) that appears in the expression
of the allosteric constant (}) and in the binding affinity
constant of PEP (Kpep. Vi is also affected by pHas it
appears in the expression of the allosteric constapf)(L
(see below).

Model Processes Associated with a Particular
Kinetic Rate-Law
1
0.00062 0.11 0.1 !
+ + +
*Glc ATP *Glc ATP
68.50 mM min*

— \/Mmax
— Vhk

HexokinaseV,,

max _
hk —

Phosphofructokinase:

Von =*V g}ﬁ pfks

50 ATP G6P Ry,
Votk =5 . 2
3 Rﬁfk + LpfkTﬁfk

Ry = 1+0.3 G6P+ 16.67 ATP+50 G6P ATP,
Ty = 1+0.00015 G6P+ 16.67 ATP+0.0025 G6P ATP,

)

n (1+0.76 AMP\2
Lo = —<(1658.22— E20-424.17 P“”)(—)

1+ 40 AMP

28

e

allosteric theory of Monod et al., (1965). In this models,v
is the fractional saturation, Jg is the equilibrium constant
of the R conformation, J is the equilibrium constant of
the T conformation, and J, is the equilibrium constant of
R to T conversion.

Glyceraldehide3-phosphate dehydrogenase:

max

Vgapd: gapdvgapd
= 49.90 mM min,
1
Vgapd: 2
2 —_
05| 1 1+*rNN
0.25 : " 70.0003
14—+ \ 1+
FDP FDP

(1 +*rNN)0.09(1+ 0.91 AMP+
0.67 ADP+ 0.4 ATP)

where rNN is the ratio between reduced and oxidized NAD
(NADH/NAD*).

Piruvate kinas€ethanol productioj

%\ 7 Max

Vok ="V ok Voki

PEP

0.02—— ADP Ry, +
Kgr,pep

0.004 L, PEP ADP T,

2 2
Rpk + ka Tpk

B 1
1 + 10—8.02 1U)Hin

Vpk

0.02 PEP ADP
+ - .
KR,PEP

Tok=1+0.02 PEP+ 0.2 ADP+ 0.004 PEP ADP,
1+0.05 FDP\2
Lox=Lol 72 =cmn |’

1+5FDP

_0.33R(0.2L-RT)
0=7-0.004+3.006 T

T.=11.83- 8.72VpH" + 1.61 pH",

PEP
Ry =1+ +0.2 ADP

KR,PEP

R =3+1.2L,

0.05581

o +10PH" 6.1 - i
L =1.791+10°"" %19, Kp pep Py
Vi IS, like Vg4, an allosteric enzyme described by the
concerned transition model, wherg, i the constant of the
R and T conformations in a substrate and modifier-free
solution, and k pepis the binding affinity constant to PEP.

Model Processes Associated with Simplifications
That Do Not Correspond to an Individual

Enzyme Reaction
3.7G6
45.6

Glucose uptakeV, = *V max( 1-
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Polysaccharide storag@rehalose-i- glycoget): sponse: modulation of suppressor lymphocytes by alternative signals
including contrasuppression. J Immunol 134:2117-2130.

Vo =My oy ) v =01V, Monod J, Wyman J, Changeaux J-P. 1965. On the nature of allosteric
pol polx( tre Iy) tre gy transitions: a plausible model. J Mol Biol 12:88-118.
G6P>25 1.1 -1 Ni TC, Savageau MA. 1996a. Application of biochemical systems theory
e — +— ) + to metabolism in human red blood cells. Signal propagation and ac-
Vg 56 1 1
Y 304.44+ G6P2° G6P curacy of representation. J Biol Chem 271:7927-7941.
Ni TC, Savageau MA. 1996b. Model assessment and refinement using
Glycerol production:Vgo, =%\ ;”o"’l‘x Vok strategies from biochemical systems theory: application to metabolism
in human red blood cells. J Theor Biol 179:329-368.
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