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Abstract: The integration of large quantities of biological
information into mathematical models of cell metabo-
lism provides a way for quantitatively evaluating the ef-
fect of parameter changes on simultaneous, coupled,
and, often, counteracting processes. From a practical
point of view, the validity of the model’s predictions
would critically depend on its quality. Among others, one
of the critical steps that may compromise this quality is
to decide which are the boundaries of the model. That is,
we must decide which metabolites are assumed to be
constants, and which fluxes are considered to be the in-
puts and outputs of the system. In this article, we analyze
the effect of the experimental uncertainty on these vari-
ables on the system’s characterization. Using a previ-
ously defined model of glucose fermentation in Saccha-
romyces cerevisiae, we characterize the effect of the un-
certainty on some key variables commonly considered to
be constants in many models of glucose metabolism,
i.e., the intracellular pH and the pool of nucleotides.
Without considering if this variability corresponds to a
possible true physiological phenomenon, the goal of this
article is to illustrate how this uncertainty may result in
an important variability in the systemic responses pre-
dicted by the model. To characterize this variability, we
analyze the utility and limitations of computing the sen-
sitivities of logarithmic-gains (control coefficients) to the
boundary parameters. With the exception of some spe-
cial cases, our analysis shows that these sensitivities are
good indicators of the dependence of the model sys-
temic behavior on the parameters of interest. © 2000 John
Wiley & Sons, Inc. Biotechnol Bioeng 68: 18–30, 2000.
Keywords: model validation; sensitivity analysis; math-
ematical modeling; glucose fermentation

INTRODUCTION

A highly regulated and coupled network of enzyme-
catalyzed reactions and selective transport systems accom-
plishes the metabolic activities of living cells. In each case,
natural selection has lead to optimal systems that allows the

cell to be competitive in its natural environment. However,
an optimal design in a natural setting is not necessarily the
optimum design from a technological point of view. The
possibility of modifying a natural process to achieve a new
capability, from the optimization of batch cultures to the
design of new therapeutic drugs, is an important goal in
biotechnology (Bailey, 1991).

A rational approach to metabolic engineering must ana-
lyze the characteristics of the reaction network before at-
tempting specific genetic manipulations. Mathematical
models provide a support tool for critically exploring the
available experimental data. One of the crucial points for
developing useful mathematical models in metabolic engi-
neering is to develop strategies for appropriately validating
such models (Savageau, 1971; Shiraishi and Savageau,
1992a,b,c,d, 1993; Curto et al., 1995, 1997, 1998a,b; Cas-
cante et al., 1995; Sorribas et al., 1995; Ni and Savageau,
1996a,b). The implications of the impossibility of develop-
ing a complete, detailed model of a metabolic system in-
cluding all the cellular processes that have an impact in a
given pathway have been considered in a systematic manner
by Schlosser and Bailey (1990). Apart from that, there are
different potential sources of inaccuracies when building a
mathematical model. Among others, the more critical are: 1)
the selected mathematical representation is not adequate for
characterizing the biological system, 2) there are inaccura-
cies on the selected kinetic parameter values, and 3) the
model contains simplifications that compromise its validity.

The inadequacy of the mathematical formalism chosen to
achieve the goals desired in the characterization of the sys-
tem can be another source of inaccuracies. The choice of a
particular mathematical formalism is critical and determines
the kind of analysis that can be performed on the model.
Among other requirements, the mathematical representation
must facilitate computing the profile of parameter sensitivi-
ties, since this profile can be used as a diagnostic tool for
suggesting portions of the model that need further improve-
ment (Ni and Savageau, 1996a,b; Cascante et al., 1995;
Curto et al., 1997). The inaccuracies due to uncertainties in
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the kinetic parameter values are also critical for evaluating
the model predictions (Small and Fell, 1990; Thomas and
Fell, 1994; Petterson, 1996a,b; Petkov and Maranas, 1997).
In addition, the conceptual model can incorporate different
simplifications that can compromise the model predictions.
These simplifications lead us to consider some variables as
constant parameters, disconnecting the metabolic pathway
from the rest of the metabolic processes. While necessary
for making feasible the construction of a model, these sim-
plifications can be a potential source of biased results. The
use of auxiliary processes that allows a buffering effect on
key variables can overcome some of these problems (Voit
and Ferreira, 1998). However, when the involved variables
participate in different kinetic processes, a detailed analysis
of the effects of uncertainties in these variables is necessary
as a validation step for the model.

In this article we will not focus on a detailed analysis of
a particular physiological system, but on the implications
resulting from considering arbitrary boundaries in models of
metabolic pathways that incorporate complex enzyme ki-
netics equations. This can be the case, for instance, of con-
sidering constant the amount of nucleotides in a given
model. This may be necessary for simplifying the model,
but the uncertainties related to the experimental determina-
tion of this parameter can have a dramatic effect on the
system’s properties. A critical step in the process of model
definition is checking the system’s behavior for different
values of these parameters. Without considering if uncer-
tainties correspond to physiological phenomena, when it
comes to considering the model’s utility, parameter uncer-
tainty can be accepted if this does not involve dramatic
changes in qualitative behavior. Otherwise, further refine-
ments would be needed to clarify the appropriate values.
From a practical point of view, the most common situations
leading to these simplifications include considering con-
straints between dependent intermediates and fixing param-
eter values, e.g., by considering a particular fast reaction to
be in equilibrium or by considering the variability of a con-
centration metabolite to be negligible. Implicitly or explic-
itly, through a mathematical model representing the meta-
bolic system all thesefixed parameteruncertainties spread
through the calculations of the properties of the system and
may compromise its validity. At this point, it is critical to
check the effects of these simplifications.

MATERIAL AND METHODS

Model Description

As a case example, we shall use a model of the anaerobic
fermentation pathway from glucose to ethanol, glycerol, and
polysaccharides inSaccharomyces cerevisiaepublished by
Galazzo and Bailey (1990, 1991). This model is a combi-
nation of experimental measurements and literature re-
search, and contains some simplifications resulting from the
experimental conditions used, e.g., the absence of a nitrogen

source. Although many of the involved parameters were
specifically determined in this study, others were assumed
to be equal to those known in other cells. The experimental
conditions, and the resulting models, were chosen to explore
the difference between immobilized yeast cells entrapped in
calcium alginate and suspended cells, both in two different
cell environments defined by external pH 4.5 and 5.5. As a
reference system, we will only consider the immobilized
cell at pH 5.5 condition. The scheme for the fermentation
pathway is shown in Figure 1, and a description of the
kinetic model is shown in the Appendix section. In this
model, we indicate the rate-laws used to represent the in-
volved kinetics and the metabolite constraints and equilib-
rium relationships considered. Corresponding to the experi-
mental conditions indicated above, the total amount of ad-
enine nucleotides (AN) and the intracellular pH (pHin) are
considered constants, introducing a necessary simplification
that defines a boundary of the studied system.

Figure 1. Anaerobic fermentation pathway of yeastSaccharomyces cer-
evisiaefrom glucose to ethanol, glycerol, and polysaccharides. This meta-
bolic pathway involves five dependent concentrations and eight fluxes.
Chemical species: Glc, glucose; G6P, glucose-6-phosphate; F6P, fructose-
6-phosphate; FDP, fructose-1,6-diphosphate; PEP, phosphoenolpyruvate;
poolpol, polysaccharide pool (glycogen + trehalose). Enzymes/pathway
steps: Vin, glucose uptake; Vhk, hexokinase; Vpfk, phosphofructokinase;
Vgapd, glyceraldehyde 3-phosphate dehydrogenase; Vpk, pyruvate kinase;
Vpol, polysaccharide storage (glycogen + threhalose); Vgol, glycerol pro-
duction; VATPase, ATP consumption.
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Although the model considers fixed quantities for these
parameters, their interval of uncertainty can be obtained
from the original article. This makes this model appropriate
as an example for analyzing the effect of selecting bound-
aries in a metabolic model. In the model of Galazzo and
Bailey (1990, and references therein) the concentrations of
sugar phosphate intermediates and the summation of un-
bound ATP and ADP were estimated from data obtained by
in vivo 31P nuclear magnetic resonance spectroscopy
(NMR) (Galazzo and Bailey, 1989). In vivo pHin was de-
termined from the chemical shift of intracellular Pi reso-
nance using an NMR titration curve, where the error in the
determination of pH is expected to be less than 0.2 pH units
(Shanks and Bailey, 1988). In the original model, the con-
sidered value of pHin is 6.80 for immobilized cells at ex-
ternal pH 5.5. If we take an error lower than 0.2 pH units in
the determination of pHin, the uncertainty interval around
the reference value experimentally determined may be es-
timated to be between 6.7 and 6.9. For AN, these authors
estimate a mean value of 3 mM, with an uncertainty interval
between 2.7 and 3.3 mM. Since no experimental data exist
on the statistical distribution, we will assume a uniform
distribution of the possible values of these parameters
within their uncertainty interval. Assumption of a different
distribution would lead, essentially, to similar qualitative
conclusions.

Model Equations and Steady-State Adjustments

The model is defined as a set of ordinary differential equa-
tions that incorporates the different kinetic expressions for
each rate-law (see Appendix). To evaluate model perfor-
mance, we will consider changes with respect to two dif-
ferent categories of parameters: the boundary parameters
(AN and pHin) and the step activities (Vmax). At this point,
it is important to introduce a difference between parameters
that determine the system’s design and parameters that are
used to explore system behavior (Ni and Savageau,
1996a,b). Design parameters are those parameters that are
considered to change between two different situations of
interest. For instance, a pHin equal to 6.9 determines a dif-
ferent environment than a pHin equal to 7.1. Then, pHin is
considered a design parameter in our case. In each condition
defined by a different value of pHin, we are interested in
checking the system’s performance. Behavior parameters
are those parameters used to check the system response at
different values of the design parameters. In our case, the
response to a change in a Vmax is used as a measurement of
performance for comparing different designs. Then, Vmax is
a behavior parameter in this case. The distinction between
design and behavior parameters is important.

Each time we change the value of a design parameter we
must assure that an adjustment is introduced so that the
different designs are comparable (Savageau, 1974, 1977;
Irvine and Savageau, 1985a,b; Ni and Savageau, 1996a,b;
Hlavacek and Savageau, 1995, 1996, 1997). Since in the
original model of Galazzo and Bailey the steady-state val-

ues were obtained experimentally, some adjustments were
required so that the model could match these values for a
given set of design parameters. In that case, the ratio be-
tween reduced and oxidized NAD (NADH/NAD+) and the
Vmax of several enzymes were considered as model adjust-
able parameters. In the Appendix, an asterisk identifies each
adjustable parameter. For instance, each time a different
design parameter AN or pHin is considered, we must adjust
the model to maintain the same reference steady-state
changing the value of the model adjustable parameters. Oth-
erwise, the resulting comparisons are not valid.

Steady-State Behavior Characterization

Steady-state characterization involves quantification of the
system response to changes in external variables through the
use of sensitivity analysis. This characterization on the
original model is difficult because of the complexity of the
involved equations. As an alternative, the tools provided by
biochemical systems theory (BST) and metabolic control
analysis (MCA) are more convenient (for a complete ac-
count of methods, see Cascante et al., 1989a,b; Fell, 1997;
Curto et al., 1995, 1997, 1998a,b; Sorribas et al., 1995;
Cascante et al., 1995; and references therein). In many as-
pects, BST and MCA use quasi-equivalent representations
and yield similar results. Operationally, BST and MCA dif-
fer in including an explicit representation for the rate-
equations. In that sense, BST provide a differential equation
model in power-law form that allows model simulation and
a straightforward analysis of the system’s properties. MCA
considers an implicit representation of the underlying pro-
cesses leading to a compact set of matrix equations to derive
the steady-state characterization.

In both approaches, the steady-state characterization is
provided by computing systemic sensitivities, defined as a
normalized, or eventually nonnormalized, partial derivative
of any systemic property; for example, an intermediate me-
tabolite pool or a steady-state flux, with respect to any in-
dependent variable. As a general definition, a systemic sen-
sitivity is computed as:

S~F, p! = SdLn~F!

dLN~p!D0
= SdF

dpD0
?

p0

F0
(1)

whereF can be any systemic property, andp can be any
behavior parameter, for example, an external effector or an
enzyme activity (Savageau and Sorribas, 1989). The sub-
script 0 refers to the nominal operating point. Because BST
uses an explicit power-law for representing the underlying
processes, parameter sensitivities include the case in which
p is a rate constant or a kinetic order (see below).

Systemic sensitivities are calledlogarithmic gainsand
parameter sensitivitiesin BST, andcontrol coefficientsor
combined response coefficientsin MCA. The reader is re-
ferred to the literature for an account of equivalencies and
for comparing the operating similitude and differences be-
tween both approaches (Sorribas and Savageau, 1989a,b,c;

20 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 68, NO. 1, APRIL 5, 2000



Curto et al., 1995; Savageau, 1991, 1992). In the following,
we use the BST nomenclature, keeping in mind that loga-
rithmic-gains in BST correspond to control coefficients and
response coefficients in MCA.

Systemic sensitivities depend on the local sensitivities
defined as normalized partial derivative of any individual
reaction rate (v) with respect to any dependent or indepen-
dent variable that affects this rate. In MCA, these sensitivi-
ties are known aselasticities, and in BST are known as
kinetic orders. If we consider thatvi is a function of a set of
variables and parameters,vi(X1,X2 . . . ), a kinetic order is
defined as:

fij = SdLn~vi!

dLn~Xj!
D

0
(2)

The methods for computing systemic sensitivities from the
local sensitivities can be found in the literature (see, for
instance, Cascante et al., 1989a,b; Savageau and Sorribas,
1989). These methods have been implemented in a function
package,SYMMET(under development in our laboratory)
usingMathematica 3.0(Wolfram, 1996).

Steady-state characterization can be complemented by
analyzing nonnormalized second-order sensitivities, i.e., the
sensitivities of systemic sensitivities with respect to fixed
parameters considered as boundaries of the metabolic sys-
tem analyzed (Savageau, 1971, 1976):

S dS~F, p!

d~boundary parameter!D0
(3)

These sensitivities will be computed numerically by infini-
tesimally perturbing the boundary parameter around the op-
erational point. Because boundary parameters determine the
system’s design, steady-state adjustment is required after
any change in their values. These changes assure compara-
bility between the different scenarios considered. In the Re-
sults section, all the required computations were performed
usingMathematica 3.0.

Analysis of the Effect of Changes in
Boundary Parameters

The second-order sensitivities of logarithmic-gains predict a
linear dependency of the logarithmic gains with regard to
changes in boundary parameters around the operational
steady-state (Salvador, 1996). The actual logarithmic gains
corresponding to each value of a boundary parameter within
the uncertainty interval were computed directly from the
kinetic model by usingSYMMET, according to the methods
described above. These logarithmic gains were used as ref-
erence for comparison with the values predicted by the sen-
sitivity coefficients.

Stability of a given steady-state is a fundamental condi-
tion for the existence of a system and for ensuring that the
parameters used in the model are compatible with a realistic
situation (Sorribas and Savageau, 1989a; Savageau and Sor-
ribas, 1989; Savageau, 1972). When a value in boundary

parameters changes, the model is adjusted to preserve the
reference steady state but the stability of the resulting model
may be compromised. Then, in addition to the analysis of
systemic sensitivities, a stability analysis through the same
parameters’ intervals is necessary to identify critical param-
eter regions. The local stability of the nominal steady state
can be evaluated by examination of the eigenvalues of the
characteristic equation after a linearization of the local rep-
resentation of the system (Savageau, 1976). If the real parts
of all eigenvalues are negative, the nominal steady-state is
locally stable. In this case, the system will return to its
steady-state following small perturbations.

RESULTS AND DISCUSSION

The results presented in this article are organized in two
blocks. First, we compute the steady-state characterization
at the nominal operational point of the model through loga-
rithmic gains and through the second-order sensitivities of
logarithmic gains with regard the boundary parameters.
Second, using the kinetic model, we systematically recom-
puted the values of the logarithmic gains within the interval
of uncertainty of the boundary parameters. These values are
compared with the values predicted from second-order sen-
sitivities of logarithmic gains. Since stability of the refer-
ence steady state can be compromised when the value of
boundary parameters is changed, the local stability of the
model in the range of uncertainty of these boundary param-
eters is also checked.

Steady-State and Steady-State
Behavior Characterizations

The steady-state characterization of the reference model of
the anaerobic fermentation pathway described in the above
section was published elsewhere (Curto et al., 1995; Cas-
cante et al., 1995; Sorribas et al., 1995). We use these results
as a reference. Logarithmic gains with respect to each step
activity (Vmax

step) are shown in Table I. All of them have
absolute values between 0.1 and 2.5, with the exception of
the high values observed in the gains of phosphoenolpyru-
vate (PEP). Regarding ethanol production, it should be
noted that the steps displaying a higher logarithmic gain
were glucose uptake (Vin), phosphofructokinase (Vpfk) and
ATP consumption (VATPase).

The logarithmic-gain values can be used to tentatively
predict the steady-state system response to small perturba-
tions in any of the independent variables. From a theoretical
point of view, these predictions are strictly true only if the
changes in the independent variables are infinitesimal. In
practice, although they may be inaccurate for large changes,
in many cases they suffice for predicting the system re-
sponse within a physiological range of variation of the in-
dependent variables (see for instance Sorribas and Sav-
ageau, 1989a; Curto et al., 1998b). In our case, we concen-
trated our attention in the step activities as behavior
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parameters to check for system behavior. Logarithmic gains
are a function of the underlying kinetic orders and they can
be easily computed once the system scheme is defined (see,
for instance, Cascante et al., 1995). In general, the strategy
for analyzing a given system consists in fixing an operating
point in which the kinetic orders are computed from the
existing information. Once computed, the logarithmic gains
characterize the response of the system at this point.

According to their definition, kinetic orders depend on
the boundary parameters. Consequently, logarithmic gains
will change as we change any of these conditions. Despite
this, in many cases their values may be relatively similar for
a given range of boundary conditions. If this is the case, it
is an indication that the system response does not change
qualitatively within the considered range.

As a validation procedure, it may be a good strategy to
introduce an intermediary step in which kinetic orders are
computed as a function of critical variables. This may be the
case of expressing the kinetic orders as a function of AN
and pHin. If the dependency of kinetic orders with respect
design parameters is made explicit, we can check the effect
of uncertainties in these parameters. This uncertainty would
spread through the computation of logarithmic gains and
can lead to identify design problems in the model. As an
example, the kinetic order of ATP in glyceraldehyde
3-phosphate dehydrogenase (Vgapd) is:

fvgapd
,ATP = SdLn~Vgadp!

dLn~ATP! D0

=

S0.012+
0.0056AN− 0.016

=4AN − 5.76
D

~5.63+ 1672.3rNN!

1.05+ ~0.0043+ 0.015AN−
0.0028=4AN − 5.76!~5.63+ 1672.3rNN!

(4)

where the value of the adjustable parameter rNN depends on
the value of the design parameter AN and pHin.

If these dependencies are made explicit, the correspond-
ing logarithmic gains will be a function of AN and pHin.
Accordingly, we can compute the sensitivity of a given
logarithmic gain to changes in those design parameters.
These sensitivities will be computed as nonnormalized sec-
ond-order sensitivities with the general form indicated in
Eq. (3).

In the considered model, the analysis of second-order
sensitivities shows high values with respect to AN and pHin

(see Tables II and III), with the exception of these of hexo-
kinase (Vhk) and Vgapd that are almost all zero and are not
shown in these tables. In particular, the second-order sen-
sitivities of the different logarithmic gains in the case of
PEP are extremely high. Regarding ethanol production, sec-
ond-order sensitivities respect to infinitesimal changes in
AN or in pH show, in both cases, the highest values for Vpfk.

Table I. Flux and concentration logarithmic gains computed at the nominal steady state described
in the Appendix.

Activities

Vin
max Vhk

max Vpfk
max Vmax

gapd Vpk
max Vpol

max Vgol
max Vmax

ATPase

Vin 0.43 0.00 0.25 0.00 −0.03 0.21 0.03 0.11
Vhk 0.43 0.00 0.25 0.00 −0.03 0.21 0.03 0.11
Vpfk 0.37 0.00 0.43 0.00 −0.05 0.02 0.05 0.18
Vgapd 0.37 0.00 0.43 0.00 0.03 0.02 −0.03 0.18
Vpk 0.37 0.00 0.43 0.00 0.03 0.02 −0.03 0.18
Vpol 0.63 0.00 −0.28 0.00 0.03 0.77 −0.03 −0.12
Vgol 0.37 0.00 0.43 0.00 −0.97 0.02 0.97 0.18
VATPase 0.20 0.00 0.86 0.00 0.15 −0.44 −0.15 0.37
Glc 0.90 −2.12 0.48 0.00 −0.07 0.46 0.07 0.27
G6P 1.73 0.00 −0.77 0.00 0.08 −0.63 −0.08 −0.33
FDP 0.83 0.00 0.74 −2.46 0.01 0.21 −0.01 0.68
PEP 25.7 0.00 60.6 0.01 −34.3 −20.5 −8.65 −22.9
ATP 0.20 0.00 0.86 0.00 0.15 −0.44 −0.15 −0.63

High values of PEP and ethanol production (Vpk) logarithmic gains are indicated in bold face.

Table II. Second-order sensitivities of flux and concentration logarith-
mic gains respect to infinitesimal changes in pHin at the nominal steady-
state described in the Appendix.

Activities

Vin
max Vpfk

max Vpk
max Vpol

max Vgol
max Vmax

ATPase

Vin 0.45 −1.18 −0.13 0.21 0.13 0.52
Vhk 0.45 −1.18 −0.13 0.21 0.13 0.52
Vpfk 0.76 −2.00 −0.22 0.36 0.22 0.88
Vgapd 0.76 −2.00 −0.22 0.36 0.22 0.88
Vpk 0.76 −2.00 −0.22 0.36 0.22 0.88
Vpol −0.50 1.32 0.14 −0.23 −0.14 −0.58
Vgol 0.76 −2.00 −0.22 0.36 0.22 0.88
VATPase 1.54 −4.05 −0.44 0.72 0.44 1.78
Glc 0.86 −2.26 −0.25 0.40 0.25 1.00
G6P −1.37 3.59 0.39 −0.64 −0.39 −1.58
FDP 1.32 −3.46 −0.37 0.61 0.37 1.52
PEP 155. −175. −92.5 13.4 15.1 83.7
ATP 1.54 −4.05 −0.44 0.72 0.44 1.78

Each second-order sensitivity is in correspondence with the logarithmic
gains in Table I. High values of second-order sensitivities of PEP and
ethanol production (Vpk) logarithmic gains are indicated in bold face.
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Second-order sensitivities of Vin and VATPase logarithmic
gains with regard to pHin are also relatively high. These
high second-order sensitivities predict important changes in
the relative qualitative importance of the different steps in
the pathway associated with the uncertainty interval for the
boundary parameters.

Analysis of Second-Order Sensitivity Predictions

Second-order sensitivities predict the change in systemic
properties as a result of changing the design parameters.
From a theoretical point of view, these sensitivities are an
approximation to the actual behavior of the system at the
operating point. For illustrative purposes, it would be inter-
esting to compare the result of this analysis with the sys-
tem’s behavior obtained by simulation of the original
model. This comparison will help in understanding the util-
ity of these sensitivities as a validation tool in the consid-
ered model.

First, the logarithmic-gains for the reference model are
computed systematically at different values of the boundary
parameters pHin and AN. This is made by selecting a value
for each parameter and by computing the corresponding
kinetic orders. In each case, the appropriate adjustments are
made so that the reference steady state is preserved. After
these computations, the logarithmic gains are obtained as
indicated in the Methods section.

Once the logarithmic gains are computed, the analysis is
first made through one-dimensional graphical plots to show
the effect of each design parameter. Then, through two-
dimensional graphical plots, we show the joint effect of
simultaneous changes in both parameters. Figure 2 shows
the step logarithmic gains of PEP and ethanol production
(Vpk). This analysis clearly shows a qualitative change in
those systemic properties, including some positive-negative
changes. This is especially remarkable with respect to glu-

cose uptake (Vin) and phosphofructokinase (Vpfk) perturba-
tions. In Figure 2, the predictions of the sensitivities of
logarithmic gains at the nominal operational point appear as
tangent lines to the series of logarithmic gains. In general,
these results clearly show the predictive validity of the sec-
ond-order sensitivity analysis. In some special cases, it may
occur that the change in logarithmic gains is not monoto-
nous. For instance, the dependency of logarithmic gains of
PEP with respect to changes in Vpfk by ranging AN (see Fig.
2c). In those cases, the prediction from the second-order
sensitivities is questionable.

Figures 3 and 4 show the analysis of the logarithmic gains
of PEP and ethanol production (Vpk) on the two-dimen-
sional region described by simultaneously considering the
pHin and AN uncertainty intervals. Contour lines identify
equivalent logarithmic gain values. From these results it is
immediately seen that pHin has a higher effect than AN on
the final values. Moreover, the curvature of the lines also
shows that the dependency is not necessarily monotonous.
Before attempting an interpretation of these results, a sta-
bility analysis is done in parallel with the computation of
logarithmic gains. Analysis of stability through examination
of eigenvalues shows areas where the real parts of the eig-
envalues of the characteristic equation are positive. These
two areas of instability are represented in black in Figures 3
and 4. One of these areas shows positive eigenvalues and
corresponds to the maximum pHin and minimum AN inter-
val values. For the considered interval of parameter values,
this area is a small region. However, it is important to note
that it may become relevant for a simultaneous pHin in-
crease and AN decrease out of the considered limits. The
second area, with a positive eigenvalue, corresponds to a
region of low pHin and AN values. Both unstable areas
corresponds to extreme values of AN and pHin, that lie
outside the considered uncertainty ranges of both param-
eters. Irregularities in the contour lines in this limit region in
Figures 3 and 4 correspond to limitations in the graphical
representation.

All these results show that the second-order sensitivities
corresponding to PEP and some fluxes present a pattern of
behavior that is strongly dependent on pHin or AN (Tables
II and III). The computation of the logarithmic gains within
the range of values inside the interval of uncertainty of the
two boundary parameters confirm the strong dependency
predicted by the second-order sensitivities of logarithmic
gains (Figs. 2, 3, 4). These results also show that these
sensitivities are a good prediction of the system’s response.
This result agrees with the underlying theory that relates
these sensitivities with an approximation of the actual
changes in the system.

In principle, computation of second-order sensitivities
suffices for checking this situation in this particular case. A
complementary stability analysis helps in identifying pa-
rameter combinations leading to unstable steady-states. The
combination of both analyses leads to a diagnostic of the

Table III. Second-order sensitivities with respect to infinitesimal
changes in AN at the nominal steady state described in the Appendix.

Activities

Vin
max Vpfk

max Vpk
max Vpol

max Vgol
max Vmax

ATPase

Vin −0.07 0.35 0.05 −0.10 −0.05 −0.18
Vhk −0.07 0.35 0.05 −0.10 −0.05 −0.18
Vpfk −0.12 0.59 0.08 −0.16 −0.08 −0.31
Vgapd −0.12 0.59 0.08 −0.16 −0.08 −0.31
Vpk −0.12 0.59 0.08 −0.16 −0.08 −0.31
Vpol 0.08 −0.39 −0.05 0.11 0.05 0.20
Vgol −0.12 0.59 0.08 −0.16 −0.08 −0.31
VATPase −0.23 1.19 0.15 −0.33 −0.15 −0.63
Glc −0.13 0.67 0.09 −0.18 −0.09 −0.35
G6P 0.21 −1.06 −0.14 0.29 0.14 0.56
FDP −0.12 1.12 0.14 −0.29 −0.14 −0.51
PEP −31.9 22.3 3.63 7.16 −0.03 −1.15
ATP −0.23 1.19 0.15 −0.33 −0.15 −0.63

Each second-order sensitivity is in correspondence with the logarithmic
gains in Table I. High values of second-order sensitivities of PEP and
ethanol production (Vpk) logarithmic gains are indicated in bold face.
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model in the considered uncertainty region for the design
parameters.

Guidelines for Model Improvement

The results presented in this article show that the uncertain-
ties associated with boundary parameters may have a sig-
nificant effect on the characterization of systemic proper-
ties. Even when the range of uncertainty is narrow, these

effects can lead to a variety of different qualitative behav-
iors. This can be quantified by changes in the logarithmic
gains computed within the considered range. In those cases,
the predictive value of the results is questionable. Second-
order sensitivities are an appropriate tool for characterizing
the dependency of systemic responses from system param-
eters. We have shown that changes in logarithmic gain val-
ues are correctly predicted by the second-order sensitivities
and that these are an alternative to an exhaustive exploration

Figure 2. Two-dimension plots of systemic coefficients with respect to Vpfk
max, Vin

max, Vmax
ATPase, Vpol

max and Vpk
max, through a range of pHin or AN. Logarithmic

gains appears as succession of points, diamonds, squares, or triangles. Lines tangents to these successions in the middle value of pHin or AN correspond
to the second-order sensitivities from Tables II and III.a: Logarithmic gains of PEP through a range of pHin from 6.55 to 7.05.b: Logarithmic gains of
ethanol production (Vpk) through a range of pHin from 6.55 to 7.05.c: Logarithmic gains of PEP through a range of AN from 2.4 to 3.6.d: Logarithmic
gains of Vpk through a range of AN from 2.4 to 3.6.
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of the parameter region. In some extreme cases, however, it
has been observed that the system behavior predicted from
the second-order sensitivities deviates significantly from the
actual system behavior. This is observed in our model for
values of the boundary parameters that correspond to the
limit region between stability and instability of the system.

Stability analysis offers a complementary vision of the
influence of design parameters of the system response. We
have shown that unstable steady-states may appear for par-
ticular combinations of the considered parameters within

the considered region of variability. These instability re-
gions represent a sort of forbidden combination for the con-
sidered parameters, since an unstable steady-state is unex-
pected to occur in this system under physiological condi-
tions.

The combined results of sensitivity and stability analyses
allow identifying a high variability of system behavior as-
sociated with small changes in the values of the boundary
parameters. If we consider that this observation is not ac-
ceptable as reproducing a true physiological phenomenon,

Figure 3. Logarithmic gains and stability through two-dimension contour plots confronting a range of pHin from 6.55 to 7.05 and a range of AN from
2.4 to 3.6. Contour lines identify the logarithmic gains. Black areas correspond to unstable regions; a big area to low pHin and AN and an extreme area
to the maximum pHin and minimum AN values.a: Logarithmic gains of PEP with respect to Vin

max, where contour lines separate five units.b: Logarithmic
gains of ethanol production (Vpk) with respect to Vin

max, where contour lines separate 0.05 units.c: Logarithmic gains of PEP with respect to Vpfk
max, where

contour lines separate five units.d: Logarithmic gains of Vpk with respect to Vpfk
max, where contour lines separate 0.05 units.
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then it is necessary to consider the possible explanations for
this inconsistency so that a change in the model can correct
this problem.

First, we should consider if the variables that have been
defined as boundary parameters in the model were in fact
dependent on other system variables. If this is the case,
assuming fixed values for them in our model we may be
altering the actual regulatory pattern of the system, which
may result in the anomalous behavior observed. A solution
for this situation is to incorporate additional processes that

refine the system description. For instance, Bailey and co-
workers refined their original model maintaining AN as a
constant, but expanding it by making pHin depend on ATP
(Schlosser et al., 1994). Although this is an improvement of
the original model, further refinements may consider the
processes related to the AN pool. Alternatively, the strategy
suggested by Voit and Ferreira (1998) could be applied.
However, in our case buffering the pHin and AN within a
narrow range would not correct some of the problems de-
tected.

Figure 4. Logarithmic gains and stability through two-dimension contour plots confronting a range of pHin from 6.55 to 7.05 and a range of AN from
2.4 to 3.6. Contour lines identify the logarithmic gains. Black areas correspond to unstable regions; a big area to low pHin and AN and an extreme area
to the maximum pHin and minimum AN values.a: Logarithmic gains of PEP with respect to Vpk

max, where contour lines separate five units.b: Logarithmic
gains of ethanol production (Vpk) with respect to Vpk

max, where contour lines separate 0.05 units.c: Logarithmic gains of PEP with respect to Vmax
ATPase, where

contour lines separate five units.d: Logarithmic gains of Vpk with respect to Vmax
ATPase, where contour lines separate 0.05 units.
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Second, the problem may not originate in the model sim-
plification itself but in a poor characterization of some steps
of the model. In this case, identification of the problematic
steps may be difficult. In principle, the pattern of systemic
sensitivities can be used as a search tool (Shiraishi and
Savageau, 1992a,b,c,d). Alternatively, model simulations
may be used for investigating the possible candidates. Once
identified, they can be refined through new experimental
measurements or by changing specific parameter values. A
new sensitivity analysis would help in checking if the
changes introduced alleviate the high sensitivity to the
boundary parameters. In a previous analysis of this model
we showed a potential problem that can be associated with
a poor characterization of a particular step in the reference
model. We observed that, while fluxes and intermediates
quickly reach steady-state levels, PEP takes a long time to
reach the new steady-state and it seems to accumulate in-
definitely (Sorribas et al., 1995). In the considered model,
Vpk is the only enzyme to degrade PEP and in the studied
conditions the steady-state level of PEP (0.5 mM) leads to
a 97.68% saturation of Vpk . The consequence of this satu-
ration and the direct or indirect (through FDP) dependency
of Vpk on AN and pHin account for the accumulation of PEP
when a change in one or both parameters leads to an in-
crease in PEP. Vpk slowly reverses this accumulation be-
cause this enzyme is working near its maximum velocity
and cannot rapidly buffer it. In the analysis presented in this
article, we found an important variability in PEP accumu-
lation and on the weight of some enzymatic or step activities
in flux regulation for different values of AN and pHin. In
that situation, we suggest refining the model by improving
the characterization of Vpk. Alternatively, one may try to
investigate if the model should include alternative reactions
for degrading PEP.

CONCLUSIONS

Mathematical modeling is a powerful tool for studying com-
plex systems. Model development requires a sound knowl-
edge of the biological problem and great experience. This
experience is required to capture the essential components
of the problem so that the model accurately represents the
target system without unnecessary complications. These
complications should be avoided mainly because math-
ematical analysis is painful if the model of the system in-
corporates complicated equations.

A typical exercise in modeling is simplifying several pro-
cesses by considering a constant amount of some pool. This
is particularly common if this pool represents a sort of
boundary, source, or sink for the biological system. This
strategy is also used with internal metabolites that appar-
ently do not change during the measured response. This is
the case of considering rapid equilibrium in many instances.
Without discussing the appropriateness of these simplifica-
tions in the different models, we have addressed the possible
implications of considering a given value for this constant
variables. The analysis of a model of ethanol fermentation

pathway inSaccharomyces cerevisiaeis an example of a
nongeneral but possible case where, within the experimen-
tally measured uncertainty range, the system can display an
important variety of behaviors. In the most critical cases, the
system can even enter a parameter region in which no stable
steady-state exists.

Our results point to the problem of giving too much credit
to a parameter value without critically checking the im-
plications of this selection. In the example examined in
this article, it seemed obvious that a fixed AN value of 3
mM was a good choice. However, a critical examination of
the alternative values, in combination with the feasible
pHin values, reveals a potential problem in the model.
Whether the observed variability in system behavior is ad-
missible or not depends on the biology of the studied sys-
tem. However, in many cases, we expect a relatively robust
behavior, at least in qualitative terms, within a given pa-
rameter region. In those cases, results similar to those re-
ported in this article lead to serious doubts about the utility
of the model.

APPENDIX

In this appendix we show a version of the model from
Galazzo and Bailey corresponding to the immobilized pH
5.5 conditions (1990, 1991). The corresponding kinetics,
metabolite levels, and fluxes are taken from the original
article and personal communication with the authors.
Steady-state values agree with previously published analy-
sis of the same model (Curto et al., 1995).

Mass Balance Equations

dGlc

dt
= Vin − Vhk

dG6P

dt
= Vhk − Vpfk − Vpol

dFDP

dt
= Vpfk − Vgapd−

1

2
Vgol

dPEP

dt
= 2Vgapd− Vpk

dATP

dt
= −Vhk − Vpfk + 2Vgapd+ Vpk − Vpol − VATPase

Steady state:

Intermediates(mM): fluxes(mM/min):

Glc 4 0.17 Vin 4 34.33
G6P4 3.05 Vhk 4 34.33 Vpol 4 8.48
FDP 4 5.38 Vpfk 4 25.85 Vgol 4 3.63
PEP4 0.499 Vgapd 4 24.03 VATPase4 27.48
ATP 4 1.92 Vpk 4 48.06
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Dependency on Sum of Adenosine Nucleotides
and Intracellular pH

The original model considers equilibrium between ATP,
ADP, and AMP. Furthermore, a constant pool of adenosine
nucleotides (AN) is assumed. The value of the equilibrium
constant for adenylate kinase (Keq) and AN determine the
relationship between ATP, ADP and AMP:

• Adenilate kinase: Keq =
ADP2

ATP AMP
,

Keq = 1, Keq is the equilibrium constant

• Sum of nucleotides: AN= ATP + ADP + AMP

These relationships allow eliminating ADP and AMP in
model. They are substituted for expressions depending on
ATP, Keq, and AN:

ADP 4

−
Keq ATP − =4AN Keq ATP − 4Keq ATP2 + Keq

2 ATP2

2
,

and

AMP = AN − ADP − ATP

where Keq 4 1.
After these substitutions, in the final model the activity of

piruvate kinase (Vpk), phosphofructokinase (Vpfk), and
glyceraldehide 3-phosphate-dehydrogenase (Vgapd) depends
on AN (see below). On the other hand, Vpk is also affected
by the intracellular pH (pHin) that appears in the expression
of the allosteric constant (Lpk) and in the binding affinity
constant of PEP (KR,PEP). Vpfk is also affected by pHin as it
appears in the expression of the allosteric constant (Lpfk)
(see below).

Model Processes Associated with a Particular
Kinetic Rate-Law

Hexokinase:Vhk = Vhk
max

1

0.00062

*Glc ATP
+

0.11

*Glc
+

0.1

ATP
+ 1

,

Vhk
max = 68.50 mM min−1

Phosphofructokinase:

Vpfk = *V pfk
maxvpfk,

vpfk =
50 ATP G6P Rpfk

Rpfk
2 + LpfkTpfk

2

Rpfk = 1 + 0.3 G6P+ 16.67 ATP+ 50 G6P ATP,

Tpfk = 1 + 0.00015 G6P+ 16.67 ATP+ 0.0025 G6P ATP,

Lpfk = −S~1658.22− E−20.42+4.17 pHin
!S1 + 0.76 AMP

1 + 40 AMP D2D

Vpfk is an allosteric enzyme described by the concerned
transition model of Hess and Plesser (1978), based on the
allosteric theory of Monod et al., (1965). In this model, vpfk

is the fractional saturation, Rpfk is the equilibrium constant
of the R conformation, Tpfk is the equilibrium constant of
the T conformation, and Lpfk is the equilibrium constant of
R to T conversion.

Glyceraldehide3-phosphate dehydrogenase:

Vgapd= Vgapd
max vgapd,

Vgapd
max = 49.90 mM min−1,

vgapd=
1

1 +
0.25

FDP
+ 11 +

0.25S1 +
2 −

2

1 + *rNN

0.0003
D

FDP
2

~1 + *rNN !0.09(1+ 0.91 AMP+
0.67 ADP+ 0.4 ATP)

where rNN is the ratio between reduced and oxidized NAD
(NADH/NAD+).

Piruvate kinase(ethanol production):

Vpk = *V pk
max vpk,

vpk =
1

1 + 10−8.0210pHin

0.02
PEP

KR,PEP
ADP Rpk +

0.004 Lpk PEP ADP Tpk

Rpk
2 + Lpk Tpk

2
,

Rpk = 1 +
PEP

KR,PEP
+ 0.2 ADP+

0.02 PEP ADP

KR,PEP

,

Tpk = 1 + 0.02 PEP+ 0.2 ADP+ 0.004 PEP ADP,

Lpk = L0S1 + 0.05 FDP

1 + 5 FDP D2
,

L0 =
0.33 Ri~0.2 Li − Ri Ti!

−0.004+ 3.006 Ti

, Ri = 3 + 1.2 Li,

Ti = 11.83− 8.72√pHin + 1.61 pHin,

Li = 1.79~1 + 10pHin−6.16!, KR,PEP=
0.05581

1 + 10pHin−6.16

Vpk is, like Vpfk, an allosteric enzyme described by the
concerned transition model, where, L0 is the constant of the
R and T conformations in a substrate and modifier-free
solution, and KR,PEPis the binding affinity constant to PEP.

Model Processes Associated with Simplifications
That Do Not Correspond to an Individual
Enzyme Reaction

Glucose uptake:Vin = *V in
maxS1 −

3.7 G6P

45.6 D
28 BIOTECHNOLOGY AND BIOENGINEERING, VOL. 68, NO. 1, APRIL 5, 2000



Polysaccharide storage~trehalose+ glycogen!:

Vpol = *V pol
max~vtre + vgly!, vtre = 0.1vgly,

vgly =
G6P8.25

304.44+ G6P8.25S0.56S1 +
1.1

G6PD + 1D−1

Glycerol production:Vgol = *V gol
max vpk

It was assumed that Vgol/Vpk is constant.

Consumption of ATP:VATPase= *V ATPase
max ATP
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