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Abstract

The power-law formalism was initially derived as a Taylor series approximation in logarithmic space for
kinetic rate-laws. The resulting models, either as generalized mass action (GMA) or as S-systems models,
allow to characterize the target system and to simulate its dynamical behavior in response to external per-
turbations and parameter changes. This approach has been succesfully used as a modeling tool in many
applications from cell metabolism to population dynamics. Without leaving the general formalism, we re-
cently proposed to derive the power-law representation in an alternative way that uses least-squares (LS)
minimization instead of the traditional derivation based on Taylor series [B. Hern�andez-Bermejo, V. Fair�en,
A. Sorribas, Math. Biosci. 161 (1999) 83±94]. It was shown that the resulting LS power-law mimics the target
rate-law in a wider range of concentration values than the classical power-law, and that the prediction of the
steady-state using the LS power-law is closer to the actual steady-state of the target system. However, many
implications of this alternative approach remained to be established. We explore some of them in the present
work. Firstly, we extend the de®nition of the LS power-law within a given operating interval in such a way
that no preferred operating point is selected. Besides providing an alternative to the classical Taylor power-
law, that can be considered a particular case when the operating interval is reduced to a single point, the LS
power-law so de®ned is consistent with the results that can be obtained by ®tting experimental data points.
Secondly, we show that the LS approach leads to a system description, either as an S-system or a GMA
model, in which the systemic properties (such as the steady-state prediction or the log-gains) appear averaged
over the corresponding interval when compared with the properties that can be computed from Taylor-
derived models in di�erent operating points within the considered operating range. Finally, we also show that
the LS description leads to a global, accurate description of the system when it is submitted to external
forcing. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

The power-law approach provides a useful strategy for modeling complex biochemical systems
by providing a suitable representation of the underlying rate-laws [2±14]. The traditional recipe
within the power-law formalism for approximating any general di�erentiable target function
vr �X1;X2; . . . ;Xn�m�, is to use a Taylor series approximation in logarithmic coordinates. This yields

vr�: vr0Qn�m
j�1 X frj

j0

Yn�m

j�1

X frj
j � cr

Yn�m

j�1

X frj
j : �1�

In this power-law representation of the target function vr, the parameters frj are known as kinetic-
orders and have a de®nite interpretation as a result of the Taylor series approximation of vr

frj � ovr

oXj

� �
0

Xj0

vr0

; �2�

where the subscript 0 indicates the operating point. The parameter cr is known as rate-constant
and its interpretation is clear from (1). This intrepretation of the power-law parameters as local
sensitivities is on the basis of many applications of this technique. In particular, it is the starting
point for relating the kinetic-orders with experimental measurements through di�erent strategies
(see [15±19] for details). Using this approach, a suitable representation of vr can be derived even in
the case that its actual functional form is unknown. This is an important property that allows the
use of the power-law formalism as a foundation for modeling complex systems and for discussing
their properties and design principles.

Using the power-law formalism for building up a mathematical model of a target system leads
to a canonical representation, either a generalized mass action (GMA) model or an S-system
model, that greatly facilitates the analysis of the system properties [12±14]. As an illustration, let
us consider a kinetic pathway of the form

_Xi � V �i �X1;X2; . . . ;Xn�m� ÿ V ÿi �X1;X2; . . . ;Xn�m�; �3�
where i � 1; . . . ; n runs for the dependent variables, m indicates the number of independent
variables and the in¯ows V �i and out¯ows V ÿi can possibly be decomposed as the sum of other
functions describing di�erent contributions to the velocity. The power-law representation (1)
allows to build a mathematical model of (3) in the familiar S-system format [8±10,12±14]:

_Xi � ai

Yn�m

j�1

X gij
j ÿ bi

Yn�m

j�1

X hij
j ; i � 1; . . . ; n; �4�

where ai and bi are called rate constants and gij and hij are called kinetic-orders. From this
representation, using the notation: aij � gij ÿ hij with j � 1; . . . ; n for AD and j � �n� 1�; . . . ; �n�
m� for AI; yk � log�Xk� with k � 1; . . . ; n for YI and k � �n� 1�; . . . ; �n� m� for YI; bi � log�bi=ai�
for B, it is possible to analytically express the steady-state solution as [8±10,12±14]

YD � ÿAÿ1
D � AI � YI � Aÿ1

D � B: �5�
According to (5), the steady-state prediction for any of the dependent variables, YD, in these

classes of models is a linear function of the independent variables, YI, in logarithmic space. This
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can be interpreted, in the classical formulation of the power-law formalism, as the ®rst-order
approximation in the Taylor series expansion of the actual, often unknown, steady-state solution
of the target system around the operating point. Consequently, the solution in (5) is tangent to the
actual solution for the considered system and it accurately re¯ects the behavior of the actual
steady-state for su�ciently small deviations around the reference operating point. Despite the
apparent limitation of this approach, it has been shown that, in many cases, the steady-state
predictions remain accurate over wide ranges of the independent variables [12±14,20].

Although the preceding results can be adequate for many applications, sometimes it may be
desirable to give a description of the system over a range which cannot be covered by its ap-
proximation at a single operating point. This is the case, for instance, if the system is subjected to
su�ciently wide variations of the independent variables. In such cases it is more convenient to
think of an operating interval, rather than a single operating point. Then, if the evolution of the
system is such that it can move through the whole operating interval, a collection of local, Taylor-
based S-systems, each being accurate for a given subinterval of the operating range, will not be
suitable in order to provide a uni®ed description of the dynamics over the entire range. At this
point, we need a di�erent approach to cover the target range. One possibility is using recasting
techniques to exactly represent the target function by means of a power-law [21,22]. Alternatively,
we can look for a method that, without leaving the power-law formalism, would lead to a better
representation of the observed phenomena within the selected range. Certainly, it might happen
that a global description for the considered range, whatever it is, will not be as accurate, at a given
point, as the corresponding local S-system description for the subinterval containing that point.
However, the advantage of a model of the entire operating interval is obvious ± it is the only one
that can be helpful if the actual dynamics of the system over the entire range is to be considered.

In a previous work [1], it was shown that a least-squares (LS) minimization provides an al-
ternative way for de®ning the power-law approximation for rate-laws. In [1], the least-squares
approximation was derived by requiring the resulting power-law function to pass through the
selected operating point within a considered operating interval. This is a requirement in the Taylor
power-law and it seemed appropriate to derive the least-squares power-law in the same fashion.
However, the idea of ®tting a least-squares power-law within a range can be further elaborated if
we relax that condition. This new formulation is more consistent with the results that can be
obtained by ®tting experimental data and opens new perspectives in modeling the target system.
In this paper, we shall explore the implications of this new strategy focusing on the steady-state
characterization and on the prediction of the system's dynamic response. Furthermore, we shall
brie¯y discuss the ®tting of a power-law to experimental data as a method for obtaining a suitable
model for the intact system.

2. Least-squares power-law modeling

2.1. Why a least-squares power-law? Deriving a power-law representation from experimental data

The power-law strategy is very useful when the underlying rate-law is unknown. In such a case,
it is possible to derive a mathematical representation provided we know the variables that modify
the target rate-law. For instance, a model of the thyroid hormone metabolism may consider the
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regulation of the TSH release V ÿTSH within the anterior pituitary (see [23] for details). This process
is regulated by T3 and T4 and has the internal TSHI concentration as a substrate. On the other
hand, the hormone TRH produced by the hypothalamus can stimulate this process. We can
represent this process as

V ÿTSH � V ÿTSH�T3; T4;TSHI;TRH�: �6�
At the biological level, (6) is an aggregated process that includes di�erent individual reactions,

probably including enzymatic and transport systems. At the modeling level, it may su�ce to
consider the overall process and all the variables that in¯uence it. Consequently, because this is a
particular conceptualization of this process, no kinetic characterization could be found in the
literature. This makes it di�cult, a priori, to select a speci®c kinetic function to represent this
process in a mathematical model of thyroid metabolism. The power-law representation can be
easily written and is a valid alternative in this case

V ÿTSH � cTSHT
fT3

3 T
fT4

4 TSH
fTSHI

I TRHfTRH : �7�
Although the actual function V ÿTSH is unknown, the rationale behind the Taylor power-law

allows one to write (7) from scratch using qualitative information. The theory behind this rep-
resentation predicts that this function will accurately represent the actual function around the
reference operating point. Parameter estimation can now proceed in several ways. Qualitative
considerations can be used to suggest some tentative values. For instance, if we want to consider
that a process is ®rst-order for a given variable, we can immediately take a kinetic-order of one.
On the other hand, partial observations on the intact system can provide some clues on the pa-
rameters. For instance, if a 10% increase in T3 would lead to a 25% inhibition in TSH release, then
we can adjust fT3

to re¯ect this observation (see [15,16,23] for an account of methods).
Alternatively, one could experimentally measure the target rate at di�erent values of the in-

volved variables and ®t a power-law function to the data points. To simplify the exposition, we
shall consider a single variable process

v � v�X � � cX f : �8�
Measurement of v for di�erent values of X would lead to a set of data points that can be used to
obtain the parameters in the power-law showed in (8). The least-squares criteria can be written asXs

i�1

vi

ÿ ÿ cX f
i

�2 ! Minimum: �9�

As an example, in Fig. 1 we show simulated data and the resulting power-law ®t in di�erent
situations. If we use this strategy, no operating point is selected and the overall range of variation
of X is taken as the region of approximation of the target process. Accordingly, the power-laws
obtained for each case do not correspond to a Taylor power-law since they are not tangent to the
velocity curves. Furthermore, as it results from the data shown in Fig. 1, the obtained LS power-
law functions provide an overall accurate description of the observed velocities within the con-
sidered range. It is worth noting that the LS ®t produces a single power-law for a given set of
experimental data. This would be di�erent if we were to follow the Taylor strategy that would
produce a di�erent power-law for each operating point selected. Of course, the di�erent LS power-
laws obtained for each set of data are an estimation of the corresponding LS power-law repre-
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sentation of the underlying function within the operating range of X. We shall elaborate on this
idea and explore its implications for characterizing the target system.

2.2. Least-squares power-law of a given function

In a previous paper [1], we proposed an alternative strategy for obtaining a power-law repre-
sentation of a target function vr �X1; . . . ;Xn�. In this formulation of the least-squares criterion,
minimization was constrained within the operating interval X � �L1;U1� � �L2;U2� � � � � � �Ln;Un�,
so that for a given operating point �X10; . . . ;Xn0� 2 X we have vr�X10; . . . ;Xn0� � cr

Qn
i�1 X fri

i0 . This
condition can be relaxed to obtain a least-squares representation that is optimal within an overall
range in which no preferential operational point is considered. Instead of the traditional Taylor-
like algorithm, which is essentially of local nature (the approximating power-law is determined by
the behavior of vin a single point, i.e. the operating point), we will presently consider the power-
law approximation of vr which is optimum in the sense of LS, i.e. such that the following integral
achieves a minimum:

Fig. 1. Fitting of a power-law function to experimental data. Data points are simulated from the same kinetic equation

with a random variation and di�erent sample points for the independent variable. The dotted line indicates the LS

power-law that ®ts the data points. The continous line indicates the underlying kinetic equation from wich data points

are simulated. The LS power-law parameters obtained for each data set are: (a) a � 2:65; f � 0:38;

(b) a � 2:35; f � 0:44; (c) a � 2:46; f � 0:40; (d) a � 2:80; f � 0:36.
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Z
X

v�X1; . . . ;Xn�
"0@ ÿ cr

Yn

j�1

X frj
j

#2

dX1 � � � dXn

1A1=2

! Minimum: �10�

Thus, the problem amounts to determining the set of LS kinetic orders frj and the LS rate
constant cr, which do not coincide in general with those in (2). Moreover, as it has been shown in
the previous section, this approach is in natural correspondence with the data analysis of ex-
perimentally measured ¯ux (see below).

It is important to stress that minimization of (10) will produce a unique power-law represen-
tation for the whole range (see Appendix A). As said, this minimization requires the target
function vr �X1; . . . ;Xn� to be known. Fitting experimental data will produce an estimation of this
optimal power-law, the quality of which will depend on the experimental design. Although this
issue would require a deeper discussion and the analysis of actual data, we shall include a sim-
ulation example to show the possibilities of this approach. In the following, we shall ®rst focus on
the results obtainable from the original functions through minimization of (10). Then we shall
discuss an example of deriving a power-law model through the LS approach using data from the
whole system.

3. Steady-state characterization and system's dynamics using a least-squares derived power-law
model

3.1. Alternative S-system representations using Taylor and least-squares strategies

As was illustrated for some simple cases in our previous paper [1], the least-squares approach
can ameliorate substantially the quality of the representation of a given velocity ± for example, the
LS ®tting can account in a more realistic way for the saturation property of the velocity. This is a
consequence of the fact that in an LS approximation, all points of the operating interval in which
function v is to be approximated are equally weighted, i.e. they are equally relevant. This gives an
important degree of ¯exibility to the LS method, since we can choose the most convenient op-
erating interval for each situation ± a degree of ¯exibility not present in a Taylor-based scheme.
Once we have established the appropriateness of the least-squares approach, it is necessary to
explore in more detail the consequences of this new perspective.

Firstly, as the obtained power-law is formally similar to the Taylor power-law, in both cases we
will obtain an S-system model, or the corresponding GMA alternative model, for the target
system. Which is the interpretation of the steady-state characterization if we use the LS strategy?
Secondly, how do the Taylor and the LS power-law models relate when we compare the dynamic
responses? For the sake of clarity, it is simpler to answer these questions by means of a detailed
example.

The ®rst issue to explore concerns the interpretation of the steady-state characterization of a
given S-system. In the case of a Taylor based S-system, logarithmic gains and sensitivities have a
clear interpretation that relates to the Taylor series approximation of the actual solution. In
practice, in this approach logarithmic gains and parameter sensitivities are global sensitivities in
the sense of sensitivity theory. How must we interpret a logarithmic gain when the S-system is

92 B. Hern�andez-Bermejo et al. / Mathematical Biosciences 167 (2000) 87±107



derived from LS? The question is relevant since, for a given operating interval, we can have in-
®nite Taylor approximations but only one LS approximation. Each of the Taylor models char-
acterizes the system's response in the considered operating point, while the LS model produces a
unique characterization for the whole interval. Which is the interpretation of the LS character-
ization? To clarify this point, we shall use a reference model de®ned in terms of kinetic equations.
This model will be used to produce a reference steady-state that can be used to compare the
Taylor and LS strategies. In a real application, the underlying equations would be generally
unknown and the analysis carried out on experimental measurements.

The reference system is shown in Fig. 2. In this system, X1 and X2 are internal metabolites, and
X3 is an external metabolite whose concentration can be experimentally controlled. We shall as-
sume that the system is initially given as

_X1 � v1�X2;X3� ÿ v2�X1�; �11�
_X2 � v2�X1� ÿ v3�X2�: �12�

We may consider, for example, the following typical situation, which will de®ne our reference
system for comparing the Taylor and LS approaches:

v1 � 10X3

3�1� 0:5X2� � X3

; v2 � 24X 2
1

7�20� X 2
1 �
; v3 � 260X2

21�10� X2� : �13�

Let us ®rst concentrate on the form of the steady-state dependence of X1 and X2 in terms of X3

(Fig. 3). Suppose we take 26X36 7 as our operating interval. Within this interval the steady value
of X2 behaves almost linearly as a function of X3. In that case, any of the possible Taylor S-systems
would provide a good ®t for practical purposes. On the contrary, this is not the case for the X1

versus X3 curve. The non-linearity of the X1 steady-state curve would make di�cult to capture it
by a single Taylor S-system. This makes X1 especially suitable in order to critically compare the
two di�erent power-law approximations ± LS and Taylor.

The notable non-linearity in the X1 steady-state dependence on X3 suggests that local, Taylor-
based S-systems derived for Eqs. (11)±(13) might not be the best possible option in order to give a
uni®ed description of the original system over the entire operating interval. We shall see that this
is the case independently of the choice of the operating point within the interval ± even though
some operating points will certainly lead to better predictions than the rest. To check these
statements, we can ®rst approximate the velocities (13) in system corresponding to Eqs. (11) and
(12) according to the standard Taylor approach corresponding to Eqs. (1) and (2). This cannot be
done in a unique way, since we ®rst need to ®x an operating point. A representative sample of
operating points is given by the extremes and the middle point of the interval, i.e. X30 equal to 2.0,
4.5, and 7.0. With these values, the resulting steady-states corresponding to model Eqs. (11)±(13)
are

Fig. 2. Metabolic scheme of system (11)±(13).
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�X10;X20;X30� � fP1 � �4:658; 1:684; 2�;
P2 � �8:767; 2:816; 4:5�; P3 � �23:892; 3:653; 7�g: �14�

The standard procedure to derive the corresponding Taylor power-laws yields the following three
S-systems:

Model I : _X1 � 1:228Xÿ0:376
2 X 0:822

3 ÿ 0:408X 0:959
1 ; �15�

_X2 � 0:408X 0:959
1 ÿ 1:142X 0:856

2 ; �16�
at P1

Model II : _X1 � 1:414Xÿ0:423
2 X 0:728

3 ÿ 1:110X 0:413
1 ; �17�

_X2 � 1:110X 0:413
1 ÿ 1:213X 0:780

2 ; �18�
at P2 and

Model III : _X1 � 1:578Xÿ0:432
2 X 0:669

3 ÿ 2:672X 0:068
1 ; �19�

_X2 � 2:672X 0:068
1 ÿ 1:282X 0:732

2 ; �20�
at P3.

Let us now derive the LS alternative. We thus approximate each of the velocities in (13) by their
optimal LS power-laws. For the sake of illustration, one of the resulting LS approximate ve-
locities is shown in Fig. 4. Notice how the LS power-law is not tangent to the exact velocity at any
point.

After approximating the velocities we are led to a resulting model that di�ers from any of the
previous Taylor-like S-systems, namely

Model IV : _X1 � 1:347Xÿ0:384
2 X 0:723

3 ÿ 1:446X 0:277
1 ; �21�

_X2 � 1:446X 0:277
1 ÿ 1:195X 0:791

2 : �22�

Fig. 3. Steady-state value of X1 and X2, versus X3 for system (11)±(13).
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We shall now compare all these four S-systems from two points of view: the steady-state
characterization and the model's response to changes in the external variable.

3.2. Steady-state characterization

As indicated in (5), the steady-state solution of an S-system is linear in log±log space. Ac-
cordingly, this solution is a power-law in normal space and corresponds to an approximation to
the actual steady-state of the target system. As an illustration, we can compare graphs of the
steady state prediction of X1 versus X3. This is done in Fig. 5 for the Taylor S-systems derived at
the operating points P1 (Model I), P2 (Model II), and P3 (Model III). These predictions are
compared with the actual solution from (13). In each case, it is worth recalling that each one of the
three S-system predictions is tangent to the actual solution.

We can now look at the steady-state prediction given by the S-system obtained from the least-
squares power-law approximation (Model IV). As is shown in Fig. 6, the estimated curve is not
tangent to the exact solution at any point. Consequently, the LS solution does not correspond to
any of the possible Taylor S-systems. The LS result is, as expected, an average estimation over the
whole interval. As we said before, a local, Taylor-based prediction will be probably more accurate
in the neighborhood of the chosen operating point. However, in the LS representation there is not
a privileged operating point but a whole interval of points for which we look for the best rep-
resentation. Accordingly, the LS solution will be, on the average, more accurate than any of the
possible Taylor based solutions over the whole interval.

It is worth mentioning also that the LS steady-state prediction does not correspond mathe-
matically to the least-squares power-law ®tting of the actual solution. It can be seen, however, that
typically both will be close in relative terms (we elaborate on this in Appendix B) and the LS
estimation of the steady state can be considered, from a practical point of view, as a good esti-
mation of the power-law least-squares approximation of the actual solution.

Fig. 4. LS approximation of the velocity v2�X1� � V ÿ1 within the operating range. The LS approximation is indicated as

a dashed line.
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3.3. Sensitivity analysis

The LS strategy leads to an S-system model from which the usual steady-state characterization
can be derived. For instance, in an S-system model, logarithmic-gains quantify the change in a
dependent variable as a response to a change in an independent variable. Logarithmic-gains can
be obtained from matrix L

Fig. 5. Comparative steady-state predictions for X1 versus X3 for system (11)±(13). The exact solution (solid line) is

shown together with the Taylor power-law approximations (dotted lines) obtained when the operating point is chosen

at (a) X30 � 2, (b) X30 � 4:5 and (c) X30 � 7.

Fig. 6. Least-squares steady-state predictions for X1 versus X3 for system (11)±(13). The exact solution (solid line) is

shown together with the least-squares power-law approximation (dotted line) obtained for the operating interval

26X36 7.

96 B. Hern�andez-Bermejo et al. / Mathematical Biosciences 167 (2000) 87±107



L � ÿAÿ1
D � AI: �23�

Formally, in the Taylor approach a logarithmic-gain is the slope of the steady-state solution
predicted by (5) in logarithmic space. Which is the meaning of the logarithmic-gains derived from
the LS representations? Both the Taylor and the LS predictions of the steady-state are straight
lines in logarithmic plane (Eq. (5).) The Taylor-based method produces one di�erent approxi-
mating line per operating point, thus giving a di�erent estimation of the gain for every point in the
operating interval. On the contrary, the LS method leads to a unique approximation for the whole
interval, thus giving a unique, averaged value for the gain over the operating range (Table 1).

3.4. Dynamical aspects

By de®nition, it is to be expected that the LS approach will be especially useful in those cases in
which the dynamics deviates from the range of validity of the Taylor approach. This may happen,
for instance, if the system is externally driven. We shall assume a forcing of the system by some
function X3�t�. We can thus ®nd the time evolution of X1�t� and X2�t� for the exact system (Eqs.
(11)±(13)), and compare it with the estimations provided by both the Taylor and the LS methods.
Due to the fact that the sharpest di�erences between the LS and the Taylor approximations can be
observed on X1, we shall choose this variable in order to clearly monitorize the di�erences between
both approaches. Regarding the Taylor algorithm, we shall work on three operating points: The
center of the operating interval (X30 � 4:5) and both extremes X30 � 2 and X30 � 7. The ®rst one is
probably one of the most balanced choices for the Taylor method, while the extremes of the
interval can result in advantageous choices if the system is forced into the extremes of the op-
erating range.

For the time variation of X3 we shall consider the case of a chaotic dependence. For this, we
shall use R�ossler's equations, rewritten in GMA form and with a convenient choice of parameters
[22]

Table 1

Di�erent logarithmic gains of the steady-state prediction of X1 and X2 in terms of X3 over the operating interval, for

both the Taylor and the LS methods

X3 X1 Log-gain X2 Log-gain

2 0.59532 0.66718

3 0.74081 0.63375

4 0.97011 0.61206

5 1.37615 0.59633

6 2.28756 0.58413

7 6.21267 0.57424

Mean (6 points) 2.03044 0.61128

Mean (10 points) 1.81002 0.61004

Mean (50 points) 1.64690 0.60907

Mean (100 points) 1.62823 0.60895

Mean (300 points) 1.61605 0.60887

LS S-system 1.75788 0.61495
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_z1 � z2 ÿ z3; �24�
_z2 � 0:36z2 ÿ z1; �25�
_z3 � z1z3 ÿ 22:5z3 ÿ 49:6z1 � 1117:8: �26�

We take as initial conditions z1�0� � 18, z2�0� � 47 and z3�0� � 50. To obtain the desired chaotic
signal in X3 we use the transformation

Fig. 7. Time evolution of X1 with chaotic forcing in X3. The exact solution (thickest black line) is displayed together

with the LS solution (thickest grey line) and the three Taylor solutions (medium thickness black line for P1, thin grey

line for P2, and thin black line for P3 ): (a) a � b � 2 (X3 oscillates over the entire operating range); (b) a � 4, b � 3 (X3

oscillates between 3 and 5); (c) a � 12, b � 6:5 (X3 oscillates around 6.8); (d) a � 4, b � 5:6 (X3 oscillates between 5.5

and 8). In all cases the initial conditions are X1�0� � 10 and X2�0� � 3. In (a) and (b) the LS and P2 solutions are almost

indistinguishable from the exact solution.
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X3�t� � z1�t� ÿ 14

a
� b; �27�

where we can set a and b in order to ®x the average value and the amplitude of the forcing. Several
comparisons are displayed in Fig. 7. In all cases, a and b are chosen in such a way that the os-
cillation of X3 is bounded within di�erent regions of the operating interval.

Generally speaking, we can say that both the Taylor and the LS methods tend to reproduce
with fair accuracy the pattern of oscillations of X1. However, in many cases the averaging nature
of the LS solution leads to a closer estimation of the time evolution than most Taylor-based
predictions ± sometimes closer than any of the considered Taylor-based predictions. As ex-
pected, one of the Taylor systems may give in some speci®c cases a better prediction than the LS
approximation, but the LS is clearly the best one if we consider the whole interval, thus pro-
viding a compact description of the actual system over the operating range in just one single
model.

4. Fitting a least-squares power-law model to data obtained on an intact system

Power-law models provide a valuable modeling tool for a given system. Their fundamental
advantage, as we have discussed in a previous section, is that the mathematical representation for
the di�erent rates is provided by a rather simple mathematical function. Despite this simplicity,
the ®nal model is adequate for studying system's properties and dynamic responses within the
surroundings of an operating point.

In this paper, we have discussed the advantages of deriving this representation from a new
perspective: the least-squares power-law representation of the target rate-law. We have shown
that the resulting representation is adequate and how it is related to the usual Taylor-derived
power-law. Now, we shall turn to the application of the LS strategy to the analysis of data ob-
tained on the intact system. The point is to show how to obtain a power-law model if data on the
actual system were available. We shall consider data corresponding to steady-state measurements
of ¯ux and concentrations for di�erent values of the external variables. In such a case, the system
is explored in a range of values of these variables, and the election of a single operating point may
be not the most convenient possibility.

As a reference pathway for discussing the ®t of a power-law LS model, we shall use the hy-
pothetical pathway shown in Fig. 8. To simulate this system, a set of enzyme rate-laws is selected
(see Appendix C). From the reference model, a Taylor±GMA model is derived at the operating
point: X7 � 3;X8 � 5. This model is

_X1 � 0:100952X 1:87508
7 Xÿ0:902837

5 ÿ 1:8706X 1:75015
1 ;

_X2 � 1:8706X 1:75015
1 ÿ 0:036679X 1:87508

2 Xÿ0:916405
6 ;

_X3 � 0:122197X 1:52854
8 Xÿ0:735981

5 ÿ 1:25069X 1:52854
3 ; �28�

_X4 � 1:25069X 1:52854
3 ÿ 0:0838928X 1:52854

4 Xÿ0:747041
6 ;

_X5 � 0:036679X 1:87508
2 Xÿ0:916405

6 � 0:0838928X 1:52854
4 Xÿ0:747041

6 ÿ 1:28821X 1:27869
5 ;

_X6 � 1:28821X 1:27869
5 ÿ 1:28821X 1:27869

6 :
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Simulated experiments are performed at di�erent values of the independent variables by
computing the resulting steady-state ¯ux and concentrations. In each case, random error is in-
troduced as indicated in Appendix C. The LS power-law model is ®tted for each velocity using the
obtained data points (Fig. 9). The resulting model is

_X1 � 0:129274X 1:69816
7 Xÿ0:883239

5 ÿ 1:5858X 1:29586
1 ;

_X2 � 1:5858X 1:29586
1 ÿ 0:0508275X 1:66596

2 Xÿ0:765177
6 ;

_X3 � 0:141724X 1:42718
8 Xÿ0:717182

5 ÿ 1:22311X 1:44826
3 ; �29�

_X4 � 1:22311X 1:44826
3 ÿ 0:0924435X 1:44753

4 Xÿ0:686011
6 ;

_X5 � 0:0508275X 1:66596
2 Xÿ0:765177

6 � 0:0924435X 1:44753
4 Xÿ0:686011

6 ÿ 1:53047X 0:852397
5 ;

_X6 � 1:53047X 0:852397
5 ÿ 1:52499X 0:858319

6 :

Although both approaches yield similar models, the LS strategy produces a better approxi-
mation to the actual one (Fig. 9). The LS minimization results in a power-law representation that
may be more adequate than the Taylor representation at a given operating point (Fig. 9(a)±(b)). It
is worth noting that the relevant range of variation of the dependent variables may be far more
restricted than the potential range for the same variable studied in vitro. In the case of a velocity
that is a function of several variables, as it is the case of v1 or v4 in the reference system, the
resulting data are an approximated sample of the corresponding surface within the operating
range considered. For instance, as a consequence of the system constraints, X5 changes only
between 1 and 3 in the set of simulated experiments using the X7 and X8 set of values indicated in
Appendix C (Fig. 9(c)±(d)). Then, the resulting rate-law should account for the measured ve-
locities and needs not consider the full range of potential values. In such case, the power-law is a
good alternative for building a realistic model for these velocities.

The performance of the LS power-law can be better appreciated in dynamic simulations. In
Fig. 10 we simulate the system dynamics to di�erent perturbations. In each case, we consider a

Fig. 8. Reference metabolic pathway. X7 and X8 are external variables that can be experimentally ®xed. Dotted lines

indicate regulatory signals. The circled numbers correspond to enzyme reactions (see text and Appendix C for details).
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momentary increment in X6. In the ®rst experiment, X7 and X8 are changed from the original
values. In the second experiment, they are maintained at the reference values. It can be clearly
appreciated that the LS±GMA model provides a better representation of the underlying dynamics
in both cases. Although one can imagine other experiments in which the Taylor approach can be
also a good representation, these results show the potential utility of the LS approach. Fur-
thermore, as the experimental data consist in a series of concentration and rate measurements, it
seems far more adequate to use the LS approach.

5. Final comments

We have seen that the LS method is a natural strategy in order to derive the representation of a
metabolic pathway in the framework of the power-law formalism over su�ciently wide operating

Fig. 9. LS power-law ®tting to data. Simulated experiments are used as data for ®tting the corresponding LS power-law

representation. In (a) and (b) dots indicates the measured velocity for a given value of the considered variable. The

actual rate-law is depicted in black. A continous grey line indicates the LS power-law ®tting to those data. The cor-

responding Taylor representation at the operating point is indicated by a dotted line. In (c) and (d) the experimental

points for v1 and v4 are indicated. For clarity, the surfaces corresponding to the di�erent approaches are not shown.

They correspond to Eqs. (28), (29) and (C.1).
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intervals. This methodology does not represent a contradiction with the traditional Taylor-based
procedure, of which it is a generalization: as was shown in [1], the LS and the Taylor approxi-
mations do coincide in the limit of small operating intervals or, more precisely, in the limit in
which the operating interval reduces to a single point.

From a practical point of view, this means that the LS method may be the most convenient
choice in almost every case, and not only in those in which the system ¯uctuates. In those cases in
which the system does not deviate substantially from a given point, the LS result will be very
similar to the Taylor one. However, there is a conceptual di�erence between both attitudes: A
Taylor-based methodology assumes a somehow static picture of the evolution of the system, since
such evolution is considered as taking place on a single point, and every deviation from such point
is, essentially, also a deviation from the basic modeling hypotheses underlying the method. On the
contrary, in the LS approach it is assumed that real systems are subjected to variations and
¯uctuations of very di�erent nature, and therefore the modeling strategy must be adapted from
the very beginning to contemplate such phenomena as a part of the problem. This leads, as we
have seen, to models that describe reality in a global, averaged way. These models have also
proven to be appropriate for obtaining the accurate predictions within the considered operating
range.

Finally, it is worth recalling that the LS reformulation of the power-law formalism is quite
natural from the experimental point of view. When our input is not a di�erential model, but a set
of experimental points, the problem is how to develop a modeling strategy leading to the dif-

Fig. 10. Dynamic simulations. In these experiments, the predictions from the GMA model derived from the LS power-

law equations are compared to the reference system and to the Taylor±GMA. The reference system is indicated by a

black line. The LS±GMA is indicated by a continuous grey line. The Taylor±GMA is indicated by a dotted grey line.

For each case, the initial conditions for fX1;X2; . . . ;X8g are: (a) and (b) {0.5, 5, 1, 6, 1.3, 20, 2, 2}; (c) and (d) {0.5, 5, 1,

6, 1.3, 20, 3, 5}.
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ferential description. Clearly, the concept of derivative, which is the basis of the Taylor-based
power-law, is of limited application in this context. On the contrary, a LS regression of the data
appears more appropriate. This is, among other reasons, why we suggest that the LS approach
might provide the basis for deriving the power-law representation, specially in the case where
experimental data are the starting point. A preliminary analysis of the problem shows that such
approach is adequate. In a forthcoming paper we shall discuss in detail the advantages of the LS
strategy when the system's model is to be derived from experimental measurements of the actual
velocities and concentrations in situ.
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Appendix A. Uniqueness of the optimal LS power-law approximation

Consider a velocity function v �X1; . . . ;Xn�m� de®ned on a domain X in which we seek the LS
minimization to a power-law of the form

v �X1; . . . ;Xn�m��: c
Yn�m

j�1

X gj
j : �A:1�

Assume that the global minimum is not unique, i.e. there exist at least two di�erent power-laws

pi �X1; . . . ;Xn�m� � ci

Yn�m

j�1

X gij
j ; i � 1; 2; �A:2�

such that the minimization integral takes the same minimum value for bothZ
X
�v

�
ÿ pi�2 dX1 � � � dXn�m

�1=2

� l! Minimum; i � 1; 2: �A:3�

If we square and subtract both expressions, this implies in particular thatZ
X
�p2

1 ÿ p2
2 � 2v�p2 ÿ p1��dX1 � � �dXn�m � 0: �A:4�

Let us de®ne e�X1; . . . ;Xn�m� � p1 ÿ p2 in X. Then, after some simple algebra integral (A.4) can be
written asZ

X
e�p1 � p2 ÿ 2v�dX1 � � �dXn�m � 0: �A:5�

Now, both p1 and p2 are approximations to v in X, so the di�erence p1 � p2 ÿ 2v will be typically
small in absolute value when compared to v. Also, p1 � p2 ÿ 2v will be a vanishing function on a
subset of X of zero measure. However, p1 � p2 ÿ 2v is not zero in general (apart from the trivial
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case in which v itself is a power-law, in which the uniqueness problem is straightforward).
Therefore, the term p1 � p2 ÿ 2v cannot generically account for the cancellation of integral (A.5).
This means that the only possibility is that e�X1; . . . ;Xn�m� � 0, i.e. that p1 � p2, actually.
Therefore we have reached a contradiction and the LS minimum is unique.

Appendix B. Least-squares properties of the steady-state prediction

As indicated in Section 3.2, here we shall give some estimations regarding the closeness between
the LS steady-state prediction and the power-law LS ®t of the exact steady-state function. We
shall consider for the sake of simplicity the case corresponding to one independent and one de-
pendent variable. There is no lack of generality in this, since the argument can be straightfor-
wardly generalized to a higher number of variables.

Consider a steady-state equation of the form

v1 �XI;XD� � v2 �XI;XD�: �B:1�
Assuming that the hypotheses of the implicit function theorem are veri®ed (which will be the case
in practice) then there exists a unique function u�n� such that

XD � u�XI�: �B:2�
Of course, u�n� will be unknown in most practical situations, but for what follows we only need to
know that it exists. Then, there exists an optimal LS power-law approach to u in the corre-
sponding domain

XD�: cX g
I �B:3�

For simplicity, we shall call this function p�XI�, i.e. p�XI� � cX g
I . We thus have that

I�c; g� �
Z

X
�u�XI�

�
ÿ cX g

I �2 dXI

�1=2

�B:4�

is minimum.
It is possible to ®nd an approximation of (B.3) as follows. We ®rst approximate v1 and v2 by

means of their LS power-laws

v1�XI;XD��: l1X q11

I X q12

D ; �B:5�
v2�XI;XD��: l2X q21

I X q22

D : �B:6�
Then, after equating the right-hand sides of (B.5) and (B.6) we immediately arrive to an ap-
proximate solution of Eq. (B.1)

XD�: ~cX ~g
I : �B:7�

This is the LS approximation for the steady-state. We shall again set ~p�XI� � ~cX ~g
I . The problem is

to know to what extent the following integral:

I 0�~c; ~g� �
Z

X
�u�XI�

�
ÿ ~cX ~g

I �2 dXI

�1=2

�B:8�

104 B. Hern�andez-Bermejo et al. / Mathematical Biosciences 167 (2000) 87±107



is close to the minimum (B.4). In order to establish the closeness between I 0 and I, we should ®rst
note that

I 0 � I

�������������
1� IC

I2

r
; �B:9�

where

IC �
Z

X
�p ÿ ~p��2uÿ p ÿ ~p�dXI �B:10�

Eqs. (B.9) and (B.10) can be obtained easily from (B.8). Now notice that typically we have
j p ÿ ~p j�j uÿ p j for most points of the operating interval, since both p and ~p have the same
power-law form and ~p is an approximation of p. On the contrary, u is not a power-law in general,
so the di�erence j uÿ p j will be much larger than j p ÿ ~p j, in spite of the fact that p is the best LS
power-law ®t of u. For example, in the case of system (11)±(13) we have (Fig. 11) that p and ~p are
exceedingly close, and their di�erence is certainly smaller in absolute value than uÿ p for most
points of the interval.

Consequently, after examining the integrands of IC and I2 we conclude that

IC '
Z

X
2�p ÿ ~p��uÿ p�dXI � I2 �B:11�

and therefore

IC

I2
� 1: �B:12�

According to (B.9), this implies that I 0 is close to the minimum I in relative terms, as we expected.
For example, in the case of model Eqs. (11)±(13)we easily ®nd I 0 ' 1:13I, thus being a good es-
timation of the true minimum.

Fig. 11. Plot of the exact steady-state solution u�X3� (continuous line), its LS power-law ®t p�X3� (- - - -) and the

approximation obtained in Section 3.2 ~p�X3� ( ± ± ± ) for variable X1 of system (11)±(13).
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Appendix C. Reference model for Section 4

The model depicted in Fig. 9 has been used to simulate steady-state measurements. For each of
the pathway reactions, a rate-law has been selected

v1 � 10X 2
7

5�1� X5=0:05� � X 2
7

;

v2 � 10X 2
2

2� X 2
1

;

v3 � 10X 2
2

9�1� X6=0:03� � X 2
2

;

v4 � 5X 2
8

3�1� X5=0:05� � X 2
8

;

v5 � 5X 2
3

3� X 2
3

;

v6 � 5X 2
4

3�1� X6=0:03� � X 2
4

:

�C:1�

Using (C.1), the reference model is

_X1 � v1 ÿ v2;

_X2 � v2 ÿ v3;

_X3 � v4 ÿ v5;

_X4 � v5 ÿ v6;

_X5 � v3 � v6 ÿ v7;

_X6 � v7 ÿ v8:

�C:2�

The steady-state values for the dependent variables X1±X6 are computed from (C.2) for di�erent
values of the independent variables X7 and X8. The resulting values are perturbed by adding
statistical noise resulting in a 10% error on the unperturbed values (normally distributed with 0
mean). Once the perturbed concentrations are obtained, the corresponding rates are computed
using (C.1). The resulting velocities are also perturbed to simulate a 10% experimental error.

The simulated experiment discussed in Section 4 is generated using a grid of values of X7 and X8.
In both cases, the values are: 2; 3; 4; . . . ; 10. The resulting steady-state values for ¯uxes and
concentrations are used as data for the LS ®t of the corresponding power-laws. The ®tted model is
indicated in (29). The Taylor model is computed at the operating point X7 � 3 and X8 � 5. The
resulting equations are indicated in (28).

In all cases, results are obtained by using Mathematica. Dynamic simulations are performed
using the NDSolve routine in Mathematica.
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