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SUMMARY

Growth trends in children are often based on cross-sectional studies, in which a sample of the population is
investigated at one given point in time. Estimating age-related percentiles in such studies involves "tting
data distributions, each of which is speci"c for one age group, and a subsequent smoothing of the percentile
curves. The "rst requirement for this process is the selection of a distributional form that is expected to be
consistent with the observed data. If a goodness-of-"t test reveals signi"cant discrepancies between the data
and the best-"tting member of this distributional form, an alternative distribution must be found. In
practice, there is seldom an objective argument for selecting any particular distribution. Also, di!erent
distributions can yield very similar "ts, so that any selection is somewhat arbitrary. Finally, the shapes of the
observed distributions may change throughout the age range so drastically that no single traditional
distribution can "t them all in a satisfactory manner. To overcome these di$culties in population studies,
non-parametric smoothing techniques and normalizing transformations have been used to derive percentile
curves. In this paper we present an alternative strategy in the form of a #exible parametric family of
statistical distributions: the S-distribution. We suggest a method that guides the search for well-"tting
S-distributions for groups of observed distributions. The method is "rst tested with simulated data sets and
subsequently applied to actual weight distributions of girls of di!erent ages. As far as the results can be
tested, they are consistent with observations and with results from other methods. Copyright ( 2000
John Wiley & Sons, Ltd.

1. INTRODUCTION

The assessment of growth trends in populations of children is often based on cross-sectional
studies, in which the population is investigated at one given point in time [1]. The main goal of
such studies is the determination of age-speci"c reference intervals that can be used for screening
purposes and for a general characterization of the children's health status. The reference intervals



are usually de"ned as symmetric percentiles around the median. When the measurement of
interest varies with age, it is common practice to estimate smooth curves showing the trend of the
reference intervals with age. A smooth trend re#ects that the change in distribution is progressive
with age and that consecutive age groups exhibit similar distributions. Given su$cient smooth-
ness, interpolations can be made for any desired age.

Age-related percentiles are currently computed by a number of procedures that are based on
one of two strategies [2]: (i) interpolation techniques without assumptions about the underlying
statistical distributions; and (ii) parametric methods based on the normal distribution or on
a suitable, normalizing transformation of the data. Among the interpolation techniques, the
method suggested by Healy et al. [3] and extended by Pan et al. [4] has received much attention.
This method involves several steps. First one ranks the data by age and forms a group from the
"rst n individuals, where n is at least 50. Individuals 2 to n#1 form a second group, and further
groups are composed from individuals 3 to n#2, 4 to n#4, and so forth, until the entire data
range is exhausted. In the second step, &raw' percentiles are estimated for each group, and the
totality of these estimates is "tted with a polynomial of su$ciently high order. Finally, the
coe$cients of the polynomials are smoothed by regressing them on the normal equivalent
deviates of the percentiles. Since no underlying distributions need to be estimated, this technique
provides an attractive characterization of the percentile curves. Indeed, many &standard growth
curves' used in public health are based on this type of procedure [5]. An alternative to Healy's
technique is the method suggested by Tango [6], which uses smoothed additivity and variance
stabilization. The strength of these methods is also their main disadvantage; since no parametric
estimation is involved, the result is in a form that sometimes makes further numerical character-
izations and comparisons di$cult.

Parametric methods for estimating age-related reference ranges are typically based on the
normal distribution [7] and on polynomial "tting of the sample data [8]. Since the age-
conditional distributions are seldom normal, Wright and Royston [9] suggested a relatively
simple method based on an exponential transformation of the standardized variable. This
transformation leads to a distribution with three parameters, which correspond to the median,
scale and skewness. Fractional polynomials in age are "tted to these parameters and yield the
desired description of the data, and subsequently, estimates for percentiles.

The ¸MS method is an alternative parametric method. It was developed by Cole and Green
[10] and assumes that a Box}Cox power transformation [11] normalizes the original variable.
Upon normalization, penalized likelihood estimation optimizes three natural cubic splines that
model the age-dependent trends in: (i) the Box}Cox power j used in the transformation (curve ¸);
(ii) the mean (curve M); and (iii) the coe$cient of variation (curve S). Application of this method to
the estimation of reference percentiles for di!erent measurements in a human population can be
found in Cole et al. [1].

Some data of interest form age-dependent distributions that no single traditional distribution
can adequately model without prior transformation of the data. A case in point is a study relating
birth weights to weeks of gestation, in which the authors report skewness values ranging from
0.05 to 7.30 [2]. Studying the weights of girls at di!erent ages, Cole et al. [1] identi"ed a trend
from normality at birth, to a log transform at 1 year, to an inverse transform at 9 years, and back
to a log transform at 14 years. The authors were able to model these di!erent shapes with
a continuous trend in the Box}Cox power, but it is interesting, nevertheless, that a representation
without prior data transformation would require repeated switches from one distributional form
to another. In some time trends, the changes in distributional shape are even more extreme. For
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instance, size distributions of even-aged trees are known not only to change the weights of their
tails, but even to reverse skewness [12}14].

It would clearly be an advantage if one could "nd a single distributional form covering the
entire spectrum of observed distributional shapes. As Cole et al. [1] pointed out, a functional
form represents summary curves in a parsimonious fashion and allows the assessment of
asymptotic behaviour. Furthermore, an explicit functional form facilitates comparisons, hypothe-
sis testing, and classi"cation. A potential limitation of a single functional form is insu$cient
#exibility in modelling the data distributions in all age classes. This lack of #exibility could
theoretically be addressed by the construction of some &superfamily' of distributions that would
contain all traditional distributions of interest as special cases. To some degree, e!orts in this
direction, beginning over a hundred years ago with Pearson [15] (see also Johnson and Kotz
[16]), have had some success. However, all-encompassing superfamilies, such as the one proposed
by Savageau [17] and extended by Voit and Rust [18], are so unwieldy that they are of very
limited use in practical data analyses.

In this paper, we propose a parametric method for estimating trends in distributions that is
based on the S-distribution [19]. With a few trivial exceptions, this distribution does not contain
the traditional distributions as exact special cases, but it does approximate very many distribu-
tions with high accuracy. This feature of approximately subsuming distributions with di!erent
shapes and types of skewness had led to novel classi"cations of continuous and discrete
distributions [19}21] and to statistical analyses, for instance in environmental health risk
assessment, that would otherwise have been cumbersome [22, 23].

Our goal is to demonstrate the ability of the S-distribution in providing accurate representations
of trends in age-dependent distributions. First, we discuss the quality of data "ts with the
S-distribution in comparison with some traditional distributions. Secondly, we characterize trends,
showing that the S-distribution provides good "ts to entire sets of data and to accurate descriptions
of the observed trends. Finally, we assess the performance of the proposed technique using
simulated data sets and actual data from a cross-sectional study on the growth of Spanish children.

The conceptual components of the proposed method are quite similar to those of the ¸MS
method [10]: a parametric distribution forms the basis for data modelling, and the age trends are
characterized by polynomials in parameters, which allow for more or less smoothness in the
percentile curves. However, there are also crucial di!erences. The proposed method does not
transform the original data, there is not assumption of normality for the transformed data, and
the ultimate result consists of a smooth family of parametric distributions in the original
age-dependent random variable. Not just the distributions of subsequent age classes have
a natural &commonality', as it is considered desirable in the pertinent literature (for example, see
discussion of methods in the paper of Cole and Green [10]), but all distributions constituting the
resulting distribution family are structurally equivalent and simply di!er smoothly in their
parameter values.

2. REPRESENTATION OF OBSERVED DISTRIBUTIONS

2.1. Fitting traditional distributions to data

The selection of a distribution for "tting data is not a trivial problem. Very rarely are there
theoretical reasons for selecting a particular distribution, and the selection is thus subject to
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arbitrariness and possibly a sequence of trials and errors. Even worse, simulation studies show
that objective criteria, such as the minimal residual error, do not necessarily yield the true
underlying distribution.

As a demonstration of this surprising fact, we "t di!erent distributions to simulated data sets
generated from normal, Weibull and gamma distributions, using as the optimization criterion the
usual sum of squared errors, SSE. For each of the three di!erent distributions, we "t 25 samples
with 160 data points each. As Table I clearly shows, the true distribution, from which the sample
was obtained, does not necessarily produce the best "t, even though the sample size is fairly large.
For example, data generated from a normal are actually best modelled by a normal distribution
only in a third of the cases, while for two-thirds of the cases, the log-normal, Weibull or gamma
distribution produces the best "t. The reason for these &misclassi"cations' is that, within the
stochasticity of the sample, di!erent distributions can have essentially the same shape and yield
equivalent "ts if their parameters are speci"ed accordingly.

In these simulated scenarios, the true underlying distributions are known. Of course, this is not
the case in an analysis of real data, and one might have to optimize several distribution families
before "nding the best possible "t. As an actual example, consider the weights of girls at di!erent
ages, "tted with some standard distributions (Table II). Not only do the di!erent distributions
often produce "ts of comparable quality, the best-"tting distributional type changes from one age
group to the next. The Gumbel distribution seems to be the most appropriate distribution for
many age classes, although in some classes the log-normal, logistic, or gamma yields a lower SSE.

2.2. S-distribution: basic concepts and approximation of traditional statistical distributions

The S-distribution was introduced a few years ago as a distribution that can model a wide range
of shapes and all types of skewness. It is given as the solution of a di!erential equation in so-called
S-system form [19, 20]. The variable of interest in this equation is the cumulative distribution
function (CDF), F, and the di!erentiation is executed with respect to the random variable X:

dF

dX
"a (Fg!Fh ) (1)

Counting the initial condition F(X
0
)"F

0
, which determines its location, the S-distribution has

four parameters. As the value of a CDF, F
0

lies between 0 and 1, and the remaining parameters
satisfy the conditions a'0 and g(h. The non-linear di!erential equation in equation (1) has
explicit closed-form solutions only for some special cases (however, see Voit and Savageau [24]).
For instance, one obtains the exponential distribution for g"0 and h"1 and the logistic
distribution for g"1 and h"2. For most other cases, the solution is obtained numerically.

Since the probability density function (PDF), f, equals the derivative of F, the S-distribution
can be written in purely algebraic form as

f"a (Fg!Fh ) (2)

The hallmark of the S-distribution is its relative simplicity, combined with its #exibility in
shape (Figure 1). With an appropriate choice of parameter values, it rather accurately models
most traditional continuous } and even discrete } distributions [19, 20]. Given a traditional
distribution, the corresponding S-distribution is obtained by "tting a set of points (F(X

i
), f (X

i
))

with some non-linear "tting routine. For instance, a Gumbel distribution with parameters g"35,
q"6 is represented by an S-distribution with parameters a"1.031, g"0.922, h"1.084, and the
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Table I. Arti"cial data sets are "tted with di!erent distributions, namely, a normal with mean k and
standard deviation p, a Weibull with PDF f (X)"ab~aXa~1 exp (!(X/b)a), and a gamma distribution with
PDF f (X)"b~aXa~1exp (!X/b)/!(a). Parameter values were selected so that the resulting Weibull and
gamma distributions are close to symmetric. In each case, 25 samples were generated with 160 data points
each. Each sample was subsequently "tted with di!erent distributions, and it was recorded how often each

distribution yielded the lowest sum of residual errors, SSE.

Normal Gumbel Log-normal Logistic Weibull Gamma

Normal k"100, p"6 32% 0% 28% 16% 16% 8%
Weibull a"3, b"100 36% 0% 4% 24% 24% 12%
Gamma a"100, b"1 20% 4% 24% 20% 12% 20%

Table II. Sums of residual errors, SSE for di!erent distributions, "tted to 2631 weight data of girls at di!erent
ages. Bold type indicates the best-"tting distribution for each age group. Data from Puente et al. [5].

Age Mean SD n Normal Gumbel Log-normal Logistic Weibull Gamma

5.5 20.5 3.6 109 0.038 0.029 0.021 0.037 0.084 0.025
6. 21.8 3.6 87 0.091 0.050 0.059 0.081 0.167 0.068
6.5 23.5 4.2 91 0.116 0.039 0.073 0.102 0.197 0.086
7. 23.2 4.1 87 0.202 0.065 0.130 0.186 0.305 0.153
7.5 26.4 4.9 114 0.131 0.033 0.066 0.133 0.222 0.084
8. 27.2 4.7 127 0.010 0.025 0.054 0.095 0.207 0.067
8.5 28.9 5.4 108 0.214 0.067 0.129 0.205 0.322 0.155
9. 30.3 5.2 111 0.066 0.027 0.028 0.064 0.139 0.037
9.5 31.9 5.5 80 0.069 0.028 0.037 0.071 0.119 0.045
10. 33.4 7.0 75 0.051 0.029 0.029 0.052 0.091 0.034
10.5 35.3 7.0 120 0.106 0.047 0.055 0.119 0.161 0.067
11. 38.1 7.7 161 0.050 0.045 0.027 0.062 0.105 0.030
11.5 39.3 8.0 102 0.080 0.094 0.071 0.068 0.120 0.070
12. 43.6 8.6 67 0.037 0.040 0.029 0.045 0.054 0.029
12.5 45.6 9.3 120 0.033 0.025 0.009 0.033 0.080 0.011
13. 48.8 8.4 129 0.031 0.072 0.035 0.037 0.058 0.030
13.5 51.1 8.6 126 0.030 0.065 0.028 0.028 0.072 0.026
14. 52.3 7.8 122 0.076 0.076 0.060 0.058 0.146 0.063
14.5 52.5 7.9 128 0.130 0.051 0.090 0.110 0.242 0.102
15. 54.6 9.1 107 0.064 0.032 0.033 0.068 0.129 0.040
15.5 54.9 9.7 110 0.083 0.078 0.068 0.064 0.145 0.071
16. 54.1 9.7 114 0.075 0.033 0.042 0.081 0.139 0.050
16.5 55.0 6.8 133 0.097 0.046 0.063 0.088 0.223 0.073
17. 56.6 8.0 92 0.098 0.025 0.060 0.094 0.190 0.072

PDF and CDF of the two are essentially indistinguishable. Other examples are found in the
literature [19, 20].

It is worth nothing that the S-distribution preserves relationships between di!erent traditional
distributions, such as the approach of the normal by t and gamma distributions, if the character-
istic parameters tend toward in"nity [19].

The fact that traditional distributions can be validly approximated by S-distributions implies
that data "ts with the S-distribution have SSEs comparable to the best-"tting traditional
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Figure 1. Flexibility of the S-distribution. Densities (PDFs) of S-distributions with parameters: 1 g"0.1,
h"2; 2, g"0.4, h"0.5; 3, g"1, h"2; 4, g"1.2, h"4.5. In all cases a"1 and F(0)"0.001.

Figure 2. Fitting a sample of Weibull distributed data with an S-distribution and with a Weibull distribu-
tion. Data are generated from a Weibull distribution with a"10 and b"100. Sample size is 40. Grey line:
"tted Weibull (a"9.59, b"97.71), with residual error SSE"0.118. Black line: S-distribution (g"0.081,

h"1.13, a"7.86, F (95.35)"0.5) with residual error SSE"0.041.

distributions. Furthermore, since the S-distribution also allows for combinations of parameter
values that do not correspond to traditional distributions, one might in many cases expect an
even better "t than is possible with the traditional distributions. Figure 2 exhibits such a case.
Data were generated from a Weibull distribution with parameters a"10, b"100, and sub-
sequently "tted with a Weibull distribution and with an S-distribution. While the Weibull
distribution is fairly well estimated and yields an acceptable SSE and a satisfactory graphical "t to
most of the data, the S-distribution actually returns a visually better "t as well as a lower SSE.
The lower SSE per se does not imply that the S-distribution is necessarily a better model for these
particular data, but that it can serve as a valid default if the actual distribution is unknown. If data
are skewed to the left, distributions like the gamma and the log-normal are unsuitable, yet the
S-distribution is still able to capture such a shape.

2.3. S-distribution xtting of observed data

The "tting of an S-distribution to observed data can be accomplished through integration
of (1) and minimization of the corresponding SSE using the sample CDF as data. We developed
a specially tailored module in Mathematica( for this purpose and used it for all analyses of
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Figure 3. Quasi-equivalent S-distributions. For a given set of data, one may obtain slightly di!erent
optimized S-distributions for di!erent pre-set a values. The resulting S-distribution parameters and residual
errors are shown in the table. The parameter values of the "ve sets form a well-de"ned pattern in parameter
space. (a) Dots show the sample cumulative. The "ve "tted S-distributions curves are indistinguishable
within the accuracy of the graph; they are represented by the grey line. (b) Trends in the "tted parameters
g and h as functions of a. (c) Trend in the "tted parameter h as a function of g, given a from panel (b).

this study. To "t an S-distribution to a set of data, the module computes in the "rst step
the median and uses it to initiate the di!erential equation solver with F(median)"0.5.
In the second step, the minimization routine FindMinimum, which is included in the standard
Mathematica( language, determines the optimal triplet (a, g, h) from a user-supplied initial
guess.

A common problem is that the minimization surface is relatively #at over a wide region of the
parameter space, which makes it di$cult to locate a global minimum. Expressed di!erently,
di!erent sets of parameter values lead to data "ts of almost identical quality. This type of
redundancy is the price for the high #exibility of S-distributions. Besides the logistic di$culty of
optimizing three parameters simultaneously, the redundancies tend to make the "nal result
dependent on the starting guess.

As an alternative to optimizing a, g and h simultaneously, it turned out to be bene"cial to use
di!erent values of one of the parameters and run the minimization for the other two parameters at
each of the selected values. The set of values that produce the minimum SSE is selected for further
analysis. It is easy to show with a multiplicative transformation of the random variable that the
parameter a is inversely related to the variance of the distribution [19]. Thus, if nothing is known
about a, a rule of thumb for "tting an S-distribution to a data set is to compute the sample
standard deviation and to select 1/s as a "rst value for a.

The strategy of "xing the value of a and leaving g and h to be "tted produces a set of
quasi-equivalent S-distributions. These S-distributions are characterized by di!erent triplets
(a, g, h) of parameter values and are mathematically slightly di!erent, yet have very similar
residual errors (Figure 3) and essentially indistinguishable distributional shapes. While often
noticeably di!erent, the triplets are not scattered throughout the parameter space. For instance,
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when plotted against a, the optimal values of the g and h parameter form well-de"ned regions. In
particular, plots of g against log (a) and against h are essentially straight lines. The characteriza-
tion of these redundancies in parameters [25, 26] is very useful in practice, as we shall demon-
strate below.

3. COMPUTING TRENDS IN AGE-DEPENDENT DATA USING S-DISTRIBUTIONS

3.1. General procedure

Given a set of age-dependent data, the goal is to estimate an S-distribution for each age group so
that all S-distribution "ts taken together provide an accurate description of the distributional
trend as a function of age. Thus, it is not su$cient to determine one S-distribution per age class
without consideration of neighbouring distributions. In addition to adequate individual "ts, we
desire a smooth variation in distributional shape throughout the entire age range. The following
procedure yields such an overall "t:

1. For each age group, plot the sample median against age and "t the relationship with
a polynomial or some other convenient, smooth function. Use this function for selecting
a &smoothed' median for each age group.

2. Compute the sample variance s2 for each age group. Plot 1/s, 2/s or 10/s, or 1/s2 versus age
and "t the relationship with a polynomial or some other convenient smooth function. Use
this function for selecting a &smoothed' a value for each age group. The combination of
a"1/s and a second-order polynomial has proven to be a good default. The particular
choices are actually not as important as they might seem, as long as the trend with age is well
represented by the approximating function.

3. Use the Mathematica( module described in Section 2.3 to determine for each age group the
(g, h) pair that minimizes SSE. For this purpose, use the &smoothed' a value from step 2 and
initiate the numerical solution of the S-distribution at the &smoothed' median from step 1
with F(smoothed median)"0.5.

4. Plot the g values from step 3 versus age, and "t the relationship with a polynomial or
another smooth function. This "t is used for selecting a &smoothed' g values for each data
group.

5. Using the &smoothed'median, a and g values for each group, run another minimization just
for h.

6. Plot the estimated h values from step 5 against age. Fit a polynomial in order to obtain
&smoothed' h values for any age.

7. Using the &smoothed' parameters obtained in steps 1}6, compute the &smoothed' S-distribu-
tions for each age group.

The results of this procedure depend to some degree on the choice of polynomials. High-order
polynomials allow for more raggedness in trends, while polynomials of lower degree sometimes
lead to a more pleasing representation of the trend. Clearly, the decision depends on the number
of age classes, the purpose of the study, and on other information that may suggest that either
a smooth or a rather ragged trend is more realistic. This ambiguity is not due to the methods
proposed here, but germane to all smoothing algorithms of this type (for example, see discussion
in Cole and Green [10]).
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Figure 4. Trends in S-distribution parameters obtained after "tting the corresponding S-distributions to
simulated data sets obtained from equation (3). These trends can be used to obtain } by interpolation } the

corresponding S-distribution parameters for any age.

The results also depend on the sample sizes in each age group. If several age classes are
grouped, the increased sample sizes are expected to yield more certain parameter estimates. At the
same time, the loss in the number of classes leads to increased uncertainty in the estimation of
trend parameters. Again, this is a general compromise in the "eld.

3.2. Application to simulated data

It is generally useful to test a new procedure "rst with simulated data. To this end, we de"ne
a scenario in which the conditional distribution for each age group is normal. Throughout the age
range, these normal distributions exhibit arti"cial trends in mean and standard deviation of the
form

k (age)"
100]age3

1000#age3
(3)

p(age)"
k(age)

10

We generate samples for each age group from 11 to 18 years, with a sample size of 100
individuals each. Application of the procedure in Section 3.1 leads to a well-de"ned pattern in
each of the S-distribution parameters (Figure 4), and to a corresponding trend in distributions.

Of course, the resulting representation of the actual trend depends on the sampling results. In
this simulation the results are quite accurate when compared with the original distributions. To
appreciate the performance of the method, we compare di!erent percentile values. Percentiles are
compared for an S-distribution by integrating the inverted S-distribution equation [19, 22]

dX

dF
"

1

a(Fg!Fh )
X(0.5)"median (4)

ESTIMATING AGE-RELATED TRENDS USING S-DISTRIBUTIONS 705

Copyright ( 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:697}713



A comparison of percentiles obtained from the true distributions and from the "tted S-
distributions reveals that the di!erences are small in all cases (Table III). A comparison of the
S-distribution percentiles with percentiles of "tted normal distributions produces errors of
a similarly small magnitude, attesting to the good "t of the S-distribution (results not shown).

In real applications, the characteristics of a trend may be much more complicated. Some
examples include data on triceps skin folds in Gambian females from birth to age 50 years [10],
weight and height growth of children [1,5], counts of CD4 lymphocytes versus age in non-HIV-1
infected children [9], and alkaline phosphatase measurements on girls from birth to 18 years [6].
Taking these situations as conceptual reference, we modelled complex trends to test the perfor-
mance of the S-distribution. Three examples are shown in Figure 5. In the "rst example, data were
generated from Weibull distributions with a quadratic trend in means (Figure 5(a)). In the second
example (Figure 5(b)), a sinusoidal function was used as a trend for the mean. The underlying
distributions were chosen to model strong heteroscedasticity. As a third example (Figure 5(c)),
a fourth-order polynomial was used as a trend for the mean. As in the second example, strong
heteroscedasticity was simulated. These examples demonstrate that the S-distribution method is
capable of accurately estimating percentiles even in these more complex cases. As was observed
with other methods (for example, Cole and Green [10]), the estimation at the extremes of the age
range is somewhat less accurate than in the central values. Cole and Green discuss these edge
e+ects, and we may add as a possible explanation that the "rst and last data sets are only
constrained by one neighbouring distribution each, whereas all others are constrained by two
neighbours.

3.3. Application to actual growth data

As a realistic illustration, we consider weights of 2631 girls from the Catalonia region in Spain [5].
The data span an age range from 5.5 to 17 years and are shown as bars in Figure 6; some
summary statistics are given in Table II.

As a "rst quality assessment, one may "t each distribution in Figure 6 individually with an
S-distribution. The results are not shown, but are actually slightly better than the superimposed
densities in Figure 6, which represent S-distributions that are constrained by age trends in
parameters (see below). For each individual (unconstrained) S-distribution, one easily computes
all desired percentiles, as shown in Section 3.2, and these may be graphed along with the original
data (Figure 7). Simply connecting the percentiles along age classes represents the extreme case in
which the data within each class are smoothed by S-distributions, but the corresponding
percentiles among classes are not smoothed (straight line connections of points) or minimally
smoothed (for example, by spline). This representation constitutes the most detailed, least smooth
characterization of the data that is based on S-distribution "tting.

The question now arises as to what degree the ups and downs in the percentile curves are true
features of the entire population of Catalan girls of a given age, and to what degree they are
idiosyncrasies of the speci"c samples. This is an unanswerable question, and much of the scienti"c
discussion about percentile curves has dealt with the issue in general (for instance, see Cole and
Green [10]). In fact, the smoothness of any trend line computed from the raw data or from
something like the age class speci"c S-distribution percentiles is to some degree a matter of
aesthetics and personal taste.

Two avenues can be pursued: an interpolation between percentiles of neighbouring age classes,
or an estimation of trends in S-distribution parameters. The "rst option is easily executed, for
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Table III. Comparison of percentile values for simulated data sets. Estimated percentiles
correspond to S-distributions obtained from the procedure in Section 3.1. True values are

percentiles computed from the original distributions.

Age Estimated True value Relative di!erence

Percentile 3
11 43.47 46.36 !0.062
12 51.82 51.43 0.008
13 56.68 55.80 0.016
14 60.83 59.51 0.022
15 64.22 62.63 0.025
16 66.26 65.26 0.015
17 68.30 67.46 0.012
18 67.72 69.31 !0.023

Percentile 10
11 49.05 49.78 !0.015
12 56.73 55.23 0.027
13 61.23 59.91 0.022
14 65.16 63.90 0.020
15 68.65 67.26 0.021
16 70.84 70.08 0.011
17 73.34 72.44 0.012
18 74.00 74.42 !0.006

Percentile 25
11 53.20 53.25 !0.001
12 60.68 59.07 0.027
13 65.19 64.09 0.017
14 69.11 68.35 0.011
15 72.85 71.94 0.013
16 75.11 74.96 0.002
17 77.82 77.48 0.004
18 79.37 79.61 !0.003

Percentile 50
11 56.94 57.10 !0.003
12 64.46 63.34 0.018
13 69.24 68.72 0.008
14 73.29 73.29 0.000
15 77.47 77.14 0.004
16 79.73 80.38 !0.008
17 82.44 83.09 !0.008
18 84.79 85.36 !0.007

Percentile 75
11 60.43 60.95 !0.008
12 68.16 67.62 0.008
13 73.39 73.36 0.000
14 77.69 78.23 !0.007
15 82.46 82.35 0.001
16 84.64 85.80 !0.013
17 87.20 88.69 !0.017
18 90.30 91.12 !0.009

ESTIMATING AGE-RELATED TRENDS USING S-DISTRIBUTIONS 707

Copyright ( 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:697}713



Table III. (Continued)

Age Estimated True value Relative di!erence

Percentile 99
11 71.07 70.38 !0.010
12 79.74 78.08 0.021
13 86.88 84.71 0.026
14 92.24 90.34 0.021
15 99.34 95.09 0.045
16 101.08 99.08 0.020
17 102.68 102.42 0.003
18 108.16 105.22 0.028

Figure 5. Estimated percentile (P) curves for simulated data. Data are generated upon de"ning age-
dependent trends in median and shape. Dots indicate percentiles computed from the original distributions.
Curves exhibit trends in percentiles estimated with the S-distribution method. In each case, the underlying
age-related distributions and the corresponding trends in mean and variance were inspired by published
cases: (a) Weibull distributions with quadratic trend in the mean; (b) a sinusoidal function is used as a trend
for the mean } the process is strongly heteroscedastic; (c) a fourth-order polynomial is used as a trend for the

mean } the process is strongly heteroscedastic.

instance, in Excel(. Figure 7 shows such interpolations with sixth-order polynomials. Indeed,
these interpolations are very similar to the curves resulting from the interpolation method of
Puente et al. [5] (comparison not explicitly shown, however compare Figures 7 and 8, right
panel).

The second option follows the procedure outlined in Section 3.1. It begins with the selection of
a polynomial capturing the age-dependent trend in medians. Evaluating several alternatives, we
decided to use a "fth-order polynomial. A lower-order polynomial would lead to smoother results
but carry the risk of ignoring true local changes in trend, while a polynomial of very high order
could become unrealistically ragged. The polynomial chosen for the age-dependent medians has
the form

Median(age)"!231.1#129.9]age!26.09]age2#2.532]age3!0.1162]age4

#0.002027]age5 (5)

Further executing the procedure proposed in Section 3.1, the following polynomials were selected
for capturing the changes in the remaining S-system parameters:

a(age)"1.8080!0.2031]age#0.0071]age2
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Figure 6. Histograms of weights of girls between ages 5.5 and 17 years (top right corner of each panel),
overlaid with "tted S-distributions. Descriptive statistics for the data are presented in Table II. Data were

redrawn from Puente et al. [5].

g(age)"0.6236#0.0077]age2!0.00041]age3

h(age)"1.0382#0.0088]age2!0.00046]age3 (6)

In the cases of a (age) and g (age), the polynomials are used as intermediate re"nement steps for
selecting appropriate parameter values for the "nal step of obtaining h. The "tted h values show
a de"nite trend that is accurately modelled by h(age) in equation (6) (r2"0.997).

As the a, g and h parameters determine the spread and shape of the underlying S-distribution, it
is clear that higher-order polynomials in these parameters over age would lead to distributions
and associated percentiles that would more closely resemble the unconstrained percentiles in
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Figure 7. Comparison of raw data, percentiles of S-distributions that were "tted for each age class without
regard of constraints between classes, and interpolating sixth-order polynomial trend lines. The centre trend
line was computed from the raw data, while all other trend lines were computed from S-distribution
percentiles. Data redrawn from Puente et al. [5]; one outlying data point was considered in the computa-

tions but not graphed.

Figure 8. Percentile curves for the weights of Catalan girls, ages 5.5 to 17 years [5]. Left panel: comparison
of observed distributions of individual weights with percentiles curves obtained from the estimated trend in
S-distributions. From bottom to top, the percentile curves are 1, 3, 5, 25, 50, 75, 95, 97 and 99 per cent. Right
panel: comparison of two methods for "tting percentile curves. Black curves represent percentiles of
S-distributions (as in left panel). Grey lines connect percentiles estimated by Puente et al. [5]. From bottom

to top, the percentile values are 3, 5, 25, 50, 75, 95 and 97 per cent.

Figure 7 (symbols). Thus, the chosen functions in equations (5) and (6) are compromises, subject
to discussion.

Execution of the smoothing method reveals a clear trend in the age-related distributions, which
can be seen in the PDFs themselves (see Figure 6) or in the percentile curves (Figure 8). The left
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panel of Figure 8 shows how the smoothed percentiles compared with the individual data. It is
noted that the percentile curves are not strictly parallel, which is an indication of the non-
normality and the heteroscedasticity in the data. The 99 per cent percentile curve shows
a maximum around age 15, which, interestingly, is very similar to the maximum observed in
American girls [10]. The right panel of Figure 8 compares the results with those obtained by
Puente et al. [5] using interpolation techniques. While the central percentile curves are rather
similar, di!erences clearly exist in the lower percentiles of older age groups. Inspection of the data
in the left panel explains this di!erence. For instance, for ages 14 to 15, the reported minimum
weights are much higher than for the neighbouring classes. As a simple interpolation, the method
used by Puente et al. [5] re#ects this phenomenon, while the S-distribution method with the
relatively low-order polynomials chosen above smoothes it out. Whether the phenomenon is real
or a coincidental sampling e!ect cannot be decided from the data. A similar phenomenon creates
slight di!erences in the upper percentiles around age 9. The decision between smoother or more
ragged percentile curves is a well-known conundrum (see Cole and Green [10]), and if a more
detailed representation were preferred over the smoother trend lines shown here, one would
simply use higher-order polynomials or other functions to capture the development of the
S-system parameters over the observed range of age classes (see above).

The age-dependent parameter values allow us to estimate weights of girls of any age within the
given range, along with any percentiles of interest. For example, the results suggest that the
S-distribution of weights of 12.5 year old girls has the parameter values F (45.2)"0.5, a"0.379,
g"1.027 and h"1.510. Percentiles of interest are obtained by integrating this S-distribution.
For instance, the percentile corresponding to a 12.5-year-old girl weighing 40.2 kg is 24.8. The
same weight percentile for 12-year-old girls is considerably higher at 35.8.

One of the important uses of age-speci"c reference intervals is the characterization of extreme
values. Continuing with the same example, a 12.5-year-old girl weighing 35 kg corresponds to
a percentile of 8.1, while a weight of 31 kg corresponds to a percentile of 2.7. Very low or very high
percentiles may be used as guidelines for thresholds outside which further screening for patholo-
gies might be recommended.

DISCUSSION

The computation of age-speci"c percentile curves of a biological marker provides an important
tool for a "rst screening of potentially pathological situations of public health concern. We have
presented a new parametric method based on S-distributions for computing such curves. The
approach estimates conditional distributions as functions of age by employing a "tting procedure
that reveals age trends in the S-distribution parameters. Simulation studies suggest that the
methodology yields accurate results and that it can deal with complex trends. An analysis of actual
data furthermore demonstrates that percentile curves computed with the S-distribution method are
close to those estimated by other techniques, even though the similarity of results depends on the
chosen degree of smoothness. If the data are "tted within each class and the resulting S-distribution
percentiles are locally interpolated with splines, the results are essentially equivalent with those of
Puente et al. [5]. Additional smoothing among classes gradually eliminates the raggedness of the
percentile curves, but risks missing true deviations from expected smoothness.

The proposed method can be applied to data distributions with vastly di!ering shapes.
The theory behind S-distributions and a growing body of experience suggest that parameter
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combinations exist that reproduce the known, relevant types of unimodal distributions, as well as
distributions that are di$cult to model with any traditional distribution, such as those extremely
skewed to the left.

Although the S-distribution method was introduced in the context of age-related percentile
curves, the same techniques can be applied to conditional distributions that are functions of other
covariates [22, 23]. In its present form, the method requires groups represented by a single
covariate. In many applications this appears an acceptable strategy that yields useful results.
None the less, if needed, it seems plausible to extend the method to more complex groupings by
using a strategy similar to the one discussed by Healy et al. [3].

While consistency with other methods is a good indication of quality, any new method should
show advantages beyond the current standard. We see these advantages in two di!erentiating
aspects. First, the proposed method does not require the original data to be transformed. While
transformations, such as the one proposed by Box and Cox [11] and used in the ¸MS method
[10], may in many cases be straightforward, there is no guarantee that the resulting distributions
are su$ciently normal. As Cole and co-workers demonstrated, the ¸MS method captures trends
in distributions with moderate changes in skewness well. It remains to be seen whether the ¸MS
method allows for the same degree of shape #exibility and possibly trend reversal as methods
based on S-distributions, namely the method proposed here or a more complicated S-distribution
method presented elsewhere [27].

Secondly, there is no doubt that the method proposed here naturally emphasizes the commonal-
ity [10] among distributions in di!erent age classes. In addition to guaranteeing commonality
between neighbouring classes, the S-distributions for all age classes are intimately related, since
they all fall into the same mathematical structure. The parameters of the di!erent S-distributions
are constrained through some smooth functions. These functions can be chosen almost arbitrar-
ily, as long as they represent the individual parameter trends well. This choice obviously
introduced some arbitrariness, which however is typical and necessary for all smoothing tech-
niques in that it allows the researcher to pre-set the level of smoothness or raggedness.
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