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ABSTRACT 
Approximated kinetic formalisms provide useful mathematical 
representations for modeling complex genetic and metabolic 
networks. Although the different formalisms that currently have a 
wider use for modeling biological systems have technical 
similarities, their practical utility differs. A formal comparison of 
the rational behind each formalism help understanding their 
similarities and differences. From a practical point of view, we 
discuss basic requirements of a useful mathematical description 
and provide a rational for selecting a particular formalism 
depending on the purpose of the study. Such an analysis, suggests 
that the power-law formalism has clear advantages if one’s 
purpose is that of analyzing circuit design and systemic 
properties. The recently proposed Saturable and Cooperative 
formalism can provide an additional tool that allows for a 
complementary analysis of the predictions based on the power-
law formalism. 
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1. INTRODUCTION 
Driven by the current rise of Systems Biology, there is a renewed 
interest in obtaining a systemic view of how metabolic processes 
work. Mathematical models are fundamental in such a task and 
they are becoming central to many Systems Biology applications.  

There are several issues at stake when one has to decide upon 
which mathematical approximation and model are more 
appropriate to address a specific problem. First, one needs to 
choose a model that is able to represent the aspects of the system 
one whishes to study. Second, one must choose a mathematical 
approximation that is able to capture the dynamic aspects of 
interests in the systemic behavior in an accurate way. Third, it 

facilitates one’s job if the approximation has a regular structure 
that allows for automatic generation of the equations from the 
model schema. Fourth, an added bonus of using a regular 
representation is that it facilitates model transference, recycling 
and expansion by other researchers and for distinct purposes.. 

In this context, the choice of an appropriate mathematical 
formalism is an important issue. Among other possibilities, the 
use of approximate kinetic representations provides a practical 
solution.  

The power-law formalism, based on a Taylor’s series 
approximation in logarithmic coordinates, was derived by 
Savageau in the late sixties [1]. A well developed set of tools exist 
for systemic modeling and analysis using this approach [2]. The 
application of approximation theory by different groups has 
resulted in various formalisms that offer alternative strategies for 
obtaining useful representation for mathematical modeling.  

In this contribution we compare the more popular formalisms that 
have been derived using approximation theory, with a focus on 
the formalisms that are theoretically supported by the Taylor 
Theorem. These include the power-law formalism, and the 
recently proposed (log)linear and Lin-log formalisms (see [3] for 
a review) as well as the recently suggested Saturable and 
Cooperative formalism [4]. We highlight similarities and 
differences between formalisms, and discuss their individual 
advantages, limitations, and potential utility.  

 

2. APPROXIMATED KINETIC 
FORMALISMS 
Mathematical models provide a tool for investigating the 
integrated behavior of complex systems. Mathematical 
formalisms based on different simplifications and on 
approximated kinetic representations that reduce the mathematical 
complexity of the model while still reproducing its dynamic 
behavior help in simplifying the analysis and in providing an 
appropriate tool for understanding systemic properties of a 
network. This focus is justified by the following reasons:  
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(1) In many cases, one cannot find information that can be used 
for a detailed description of the mechanisms and for the 
estimation of individual parameter values. This is especially true 
while dealing with poorly characterized systems. Thus, we need 
mathematical formalisms that can be used under such restrictive 
conditions. 



 

(2) The widespread use of rational kinetics (e.g. Michaelis-
Menten) may be accurate only if the theoretical conditions that 
support the derivation of such functions hold. It is not clear if they 
correspond to the properties of in vivo conditions. Approximated 
representations may guarantee a valid representation.  
(4) When in the process of model simplification, one often lumps 
different variables and processes together. This creates aggregated 
processes, often like black boxes, with non-traditional and 
unknown kinetic descriptions. Thus, use of approximation theory 
to derive a mathematical description for the kinetics of this black 
box  also facilitates the modeling process.  
(5) Approximate representations provide a systematic and 
automatable way for building a model from scratch. This is 
especially useful while modeling large systems or when exploring 
large alternative sets for fitting to unknown network structures.  
(6) Optimization problems using nonlinear models are a difficult 
task. Models based on regular approximate representations of the 
different processes (i.e. structured models) can facilitate this task 
because optimization methods that take advantage of the 
mathematical structure can be developed. The caveat here is that 
the representation must capture the essential properties of the 
problem. 
(7) Approximate representations also have the advantage of 
allowing models to account for regulatory interactions for which 
not much information is available. Furthermore, qualitative 
information can be easily incorporated in this class of models. 

2.1 Formalisms based on approximation 
theory 
 
Consider a process which velocity can be expressed as 

),,( θXEv Ψ=  (1) 

where is a vector of metabolites, efectors, etc., θ is a vector of 
parameters, and 

X
E is the enzyme. Ψ is a non-linear function that 

accounts for the kinetics of the process. As in many cases the 
velocity is linear with respect to the enzyme, one can alternatively 
consider the expression: 

),( θXΨ= Ev   (2) 

The function could be any of the commonly used kinetic rate-
laws. However, selection of a given function will be difficult, 
unless sound evidence exist on the kinetic characteristics of the 
target process. In many practical modeling situations 

Ψ

Ψ will be 
unknown, and the use of a particular non-linear function for 
modeling purposes based on a subjective choice, either by 
familiarity or by mimetic reason, may be discussable. In such a 
case, we can use approximation theory (Taylor’s series) to 
develop different approximations toΨ  around an operating point 
and obtain a simple and structured representation of the original 
unknown function. The different formalisms are obtained after 
using Taylor’s series at different levels.  After considering each 
case, they can be formally related in the following way: 
 
 

Approximation strategy Name 

Taylor series approximation of  ),,( θXEΨ Linear-1  

Taylor series approximation of 
),,( θXEΨ and approximation of (y-1) by 

Log(y) 

(log)linear 

Taylor series approximation of  ),( θXΨ Linear-2 

Taylor series approximation of  and 
approximation of (y-1) by Log(y) 

),( θXΨ Lin-log 

Taylor series approximation of 
),,( θXEΨ in log-log space 

Power-law 

Taylor series approximation of 
),,( θXEΨ in generalized inverse space 

Saturable and 
Cooperative 

 
According to these strategies, the formal expressions obtained for 
the different formalisms are as follows: 
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(log)Linear 
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Linear (2) 
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Lin-log 
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Power-law 
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Saturable and Cooperative 
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The previous equations show each of the formalisms in a 
representation that help comparing their relationships. In all these 
cases, the following features are common: 
1. Any of these representations is exact at the operating point. 
2. Any of these representations provides an accurate 

approximation around the operating point. 
3. For any of these representations the accuracy decreases when 

we move away from the operating point. 
4. The resulting of any of these representations is systematic in 

the sense that it has the same mathematical form for any 
case. 

Furthermore, they share the following basic parameters (although 
they appear with different names and are treated in slightly 
different manner): 

Operational point values of metabolites and fluxes: By 
definition, the metabolite values and fluxes have the same value at 
the operating point. 

Local sensitivities at the operating point: Local sensitivities, 
defined as 
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are equal for each of the formalisms. 

3. ADVANTAGES AND LIMITATIONS 
Although any of the proposed formalisms is useful for modeling 
purposes, their applicability varies. For instance, the linear 
formalism is clearly the less adequate as this approximation 
cannot capture the essential non-linear features of many 
biological processes.  
The power-law formalism is, by large, the most developed of the 
alternative representations. A wide set of tools exist for analyzing 
a model developed with this formalism. These include stability 
analysis, steady-state characterization, parameter estimation, 
optimization, etc.  
Focusing on the non-linear representations, we can identify some 
limitations that must be considered in applications. The 
(log)linear and lin-log formalism may approximate saturation in 
some cases better than the power-law formalism, although by 
definition none of them saturate. On the other hand, if the system 

moves below the operating point values, negative values for the 
velocities are obtained for the (log)linear and lin-log 
representations. This problem is, in practice, an important 
limitation for these approximations. Although the sensitivity of 
the (log)linear and lin-log approximations to any of the variables 
changes as we move from the operating point, the obtained values 
may violate the admissible values. For example, while 
sensitivities for a Michaelis-Menten equation go from 0 to 1, the 
corresponding (log)linear or lin-log representation produces 
values greater than 1 when we move below the operating point. 
On the contrary, the power-law formalism yields the same 
sensitivity for any value of the variables. Conversely, using a 
power law will necessarily mean that one needs to be careful if 
any concentration goes to zero, because then the whole rate term 
goes to zero. This can be solved by a mathematical translation of 
the concentration values. 
Besides these limitations, the important use of these formalisms 
concerns system’s representation. The basic representations that 
may be obtained obey to the following equations: 

Node equations 
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Aggregated node equations 
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where irμ are stoichiometric coefficients. In each case, 

substitution of by their approximations will lead to the 
corresponding model. In the case of the power-law formalism, the 
first strategy leads to Generalized Mass Action models (GMA), 
and the second to S-system models. Although no formal 
development has been made for the rest of formalisms, the same 
procedure can be applied. 

rv

One advantage of the S-system form is that it has an explicit 
steady-state solution, which greatly facilitates the analysis of 
alternative system design. Curiously, an analogous of the GMA 
representation using the (log)linear and lin-log formalisms 
produces exactly the same solution as the S-System. The lin-log 
formalism has the advantage of a close form solution for dynamic 
curves. It is unclear how accurate these solutions are in general. 
Use of the SC formalism yields models that cannot be 
algebraically analyzed. In all cases, stability and parameter 
sensitivity can be obtained.  

4. SUGGESTIONS FOR SELECTING AN 
APPROPRIATED FORMALISM 
 
Mathematical models are required for dealing with complexity. 
However, the perception of their usefulness and purposeless 
greatly varies depending of the goals. The selection of a particular 
formalism would depend on the goals. Based on experience, we 
may suggest the following practical rules: 

Fit experimental data. This is a very common goal that makes 
people use models. In many cases, this may be a quite descriptive 



 

use without further expectative. If a mathematical model fits the 
data appropriately, then the conceptual scheme used to derive that 
model represents a possible explanation of the mechanisms that 
generate the data. So far, any model based on these formalisms 
could be used. However, some technical issues may preclude the 
use of some of them, especially when parameters must be 
estimated form dynamic data [5]. Power-law models appear as 
more appropriate than (log)linear and Lin-log models for this task. 
Although no results have been obtained with the SC formalism, 
the flexibility of this representation may be an advantage for 
fitting this kind of data. 

Reconstruct and identify the topology of biological pathways 
and circuits. This is an important scientific challenge that 
requires an integrative use of many different types of tools and 
information mined from genomic, proteomic, and metabolomic 
data [6]. Mathematical models play a central role in this task as 
they can be used to characterize the dynamic behavior of 
alternative network structures and compare that behavior to what 
is observed experimentally. Mathematical representations used for 
this type of model building should be easy to manipulate in a 
systematic and automated way regarding the inclusion/exclusion 
of alternative processes and metabolites. Any of the considered 
nonlinear approximations may be used for this purpose.  

Identify design principles in gene circuits, metabolic pathways, 
etc. This goal requires being able of analyzing class of systems to 
establish their fundamental properties and design principles. The 
exploration of design principles by the method of Controlled 
Mathematical Comparisons is greatly facilitated by using a 
formalism that provides a symbolic steady-state solution. Thus, 
the S-system form of the power-law formalism should be the 
method of election. Once the design principles are derived, the SC 
formalism can help in exploring the quantitative aspects of these 
principles. Basically, the SC introduces the degree of saturation as 
a parameter. This may be useful in identifying their impact on 
system’s behavior, beyond the general predictions of the power-
law model. 

Optimize specific properties of a system. This is an important 
problem in many biotechnological applications that aim at 
optimizing the production of specific metabolites. The ultimate 
goal of metabolic engineering is precisely to be able of 
manipulating cell metabolism to obtain specific products by 
capitalizing on modified cell physiology. Power-law models, 
either in S-system or GMA forms, are specially suited for 
optimization. Recently, the method of Geometric Programming 
(GP) has been used for optimizing GMA models. Specific 
methods can be developed for the other formalisms, although the 
requirements of the optimization techniques favor the use of the 
power-law solution. Through recasting into power-law, models 
based on the SC formalism can also be optimized using GP. This 
opens an interesting possibility as the SC formalism incorporates 
saturation and cooperativity in a systematic way. 

Model exchange. Models based on approximated representations 
greatly facilitate model exchange. In all cases, models can be 
generated in a systematic way from conceptual maps. This is a 
valuable advantage for automatic generation of models. Any of 
these nonlinear approximations could be used and interchange of 
models between formalisms can be automatically performed. 

5. CONCLUSIONS 
The use of approximate kinetic representations facilitates 
modeling and analysis of complex metabolic networks. Models 
based on the power-law formalism are specially suited for dealing 
with most of the problems that leads to use mathematical models 
in Systems Biology. Although other alternatives such as 
(log)linear and lin-log models can be used, no clear advantage has 
been demonstrated that may suggest use these models instead of 
power-law based models. On the contrary, technical limitations 
related to the properties of the (log)linear and lin-log 
representations suggest using other alternatives. The SC 
formalism provides an extension of the power-law formalism that 
can be useful for complementing some analysis. 
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