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Optimization methods play a central role in systems biology studies as they can help in identifying key
processes that can be experimentally changed so that specific biological goals can be attained. Standard
optimization methods used in this field rely on simplified linear models that may fail in capturing the
underlying complexity of the target metabolic network. Within this general context, we present a novel
approach to globally optimize metabolic networks. The approach presented relies on (1) adopting a gen-
eral modeling framework for metabolic networks: the Generalized Mass Action (GMA) representation;
lobal optimization
eneralized Mass Action (GMA)
etabolic engineering

(2) posing the optimization task as a non-convex nonlinear programming (NLP) problem; and (3) devising
an efficient solution method for globally optimizing the resulting NLP that embeds a GMA model of the
metabolic network. The capabilities of our method are illustrated through two case studies: the anaerobic
fermentation pathway in Saccharomyces cerevisiae and the citric acid production using Aspergillus niger.
Numerical results show that the method presented provides near optimal solutions in low CPU times

comm
even in cases where the
gap.

. Introduction

The study of complex biological systems requires the integration
f experimental and computational research by adopting a systems
iology approach. Systems biology addresses the study of the inter-
ctions between the individual components of a biological system
hrough the integration of data and mathematical models. Here,
omputational biology plays a major role by developing mathemat-
cal tools that aim to provide a powerful foundation from which to
ddress critical scientific questions. In particular, the optimization
f metabolic networks has emerged as a very important goal in
iotechnology (Bailey, Birnbaum, Galazzo, Khosla, & Shanks, 1990;
anga, 2008; Cameron & Chaplen, 1997; Cameron & Tong, 1993;
endes & Kell, 1996; Torres & Voit, 2002).
In recent years, the use of genetic manipulation techniques has

ed to significant improvements in the production of certain bio-
hemical products. However, in most cases mutation and selection
f new processes have been made in a trial-and-error basis, which

as led to local optimal solutions. Hence, one expects that actual
iological processes could be further improved if quantitative
esign principles for the modification of the genes were provided by
more rational approach like optimization (Banga, 2008; Chang &
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ercial global optimization package BARON fails to close the optimality

© 2010 Elsevier Ltd. All rights reserved.

Sahinidis, 2005; Hatzimanikatis, Floudas, & Bailey, 1996; Polisetty,
Gatzke, & Voit, 2008; Vera, de Atauri, Cascante, & Torres, 2003; Voit,
1992). This optimization is known as metabolic engineering (Bailey
et al., 1990; Bailey, 1991, 1999) and consists of, given a model, find-
ing the appropriate changes in the enzyme activities that optimize
(maximize) a certain objective function (typically, the synthesis
rate of the desired product). The enzyme activities obtained in the
optimization solution can be implemented in the real system by
tuning the expressions of the corresponding genes.

The use of mathematical optimization to improve biotechnolog-
ical processes is nowadays gaining wider acceptance given their
potential to produce significant economical savings. These may
be achieved by reducing the number of experiments required to
find those microorganisms that lead to higher yields. Furthermore,
as manipulation of many enzymes at once may be prohibitive, a
theoretical analysis on the more promising alternative combina-
tions of limited changes is of great practical interest. Additionally,
the solutions of the optimization procedure can provide valuable
insights on the behavior of the biological systems, making these
techniques useful in other applications such as evolution studies
(Guillén-Gosálbez & Sorribas, 2009).
One of the key steps in this approach is the selection of the
appropriate mathematical model among the different represen-
tations available. Here, we can distinguish between three main
groups of models. The first group corresponds to stoichiometric
models. These models constitute simple linear representations of

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:Gonzalo.Guillen@urv.cat
dx.doi.org/10.1016/j.compchemeng.2010.03.001
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he stoichiometry of the network (i.e. network structure). However,
heir simplicity becomes at the same time their main limitation
s they fail to capture the non-linear behavior of some key pro-
esses of the networks such as regulation (Gavalas, 1968; Heinrich
Schuster, 1996). On the other extreme of accuracy, we would find

d hoc models. These models rely on the formulation of detailed
inetics equations, such as Michaelis–Menten, that allow account-
ng for modulating effects. Unfortunately, optimizing these systems
s not a straightforward task as it usually leads to complex math-
matical formulations (Polisetty et al., 2008). A third group of
odels includes representations that result from the combination

f linear stoichiometric descriptions and non-linear approximate
epresentations to express the velocities of the metabolic reac-
ions (Alves, Vilaprinyo, Hernàndez-Bermejo, & Sorribas, 2009;
orribas, Hernndez-Bermejo, Vilaprinyo, & Alves, 2007). Among
hem, models using the so called power-law formalism show a good
ompromise between accuracy and simplicity (Marin-Sanguino,
oit, Gonzalez-Alzon, & Torres, 2007). This group includes the S-
ystem and the General Mass Action (GMA) models, which seem
promising alternative in the area (Voit, 1992, 2003). The main

dvantage of these models is that they can capture the non-
inearities required to describe the regulatory processes of the
etworks while showing linear properties in the logarithmic space.
dditionally, these models constitute a very general framework
ince any kind of metabolic network can be represented through
heir formulations (Alves et al., 2009).

GMA models only differ from S-System models in the way
n which the branching points are handled (Curto, Sorribas, &
ascante, 1995). In S-System models, all the input flows in the
ranching point are collected and modeled together as if they were
single flow. The same procedure is followed for the outputs so

hat, finally, the concentration of the metabolite being balanced is
he result of just two contributions. On the other hand, in GMA

odels each process is approximated separately so that there are
s many contributions as actual flows in the real system (Voit, 2000
nd references therein). If the metabolic network only contains
odes that result from the contribution of an input flow and an
utput flow, the S-System and GMA representation coincide.

Models based on the power-law formalism were first used in
etabolic optimization problems by Voit (1992). The choice of

n S-Systems representation allowed him to obtain a linear rep-
esentation by a simple logarithmic transformation performed on
ome variables of the model (Alvarez-Vasquez, Canovas, Iborra, &
orres, 2002; Marin-Sanguino & Torres, 2003; Marin-Sanguino et
l., 2007; Vecchietti, Sangbum, & Grossmann, 2003). However, this
s not possible in GMA models, since some equations cannot be
irectly reformulated using the logarithmic transformation. The
ptimization task then gives rise to a non-convex NLP that may
how multiple local optima in which standard commercial pack-
ges can get trapped during the search.

In the context of performing a systems biology study, global
ptimality is particularly important, as one aims to draw gen-
ral conclusions from the specific properties of the solution found.
ence, local solutions should be avoided, since they might ham-
er the entire biological analysis by providing insights that are not
eaningful at all. A literature review in the area of global optimiza-

ion of metabolic networks (Banga, 2008) reveals that this is indeed
ripe field for research. In a recent and pioneering work Polisetty

t al. (2008) addressed the global optimization of GMA models (see
lso Marin-Sanguino et al., 2007; Marin-Sanguino & Torres, 2003).
he main drawback of the strategy presented by Polisetty et al.

2008) is that it provides solutions with large optimality gaps (i.e.,
arge differences between the best solution that could be found and
he one calculated during the execution of the algorithm). More
ecently Guillén-Gosálbez and Sorribas (2009) presented a novel
lgorithm that makes use of global optimization techniques for per-
ngineering 34 (2010) 1719–1730

forming feasibility analysis in evolution studies. The tool developed
by these authors allowed characterizing the feasible space of opti-
mization problems with embedded GMA models (Sorribas et al.,
2010).

The aim of this work is to provide a systematic modeling frame-
work and solution strategy for metabolic optimization problems
arising in systems biology studies. The approach presented relies
on posing the optimization task as a NLP with an embedded
GMA model of the metabolic network under study. An outer-
approximation algorithm is presented to solve this type of models
to global optimality. We provide a theoretical analysis on some
details of the algorithm and illustrate its capabilities through two
examples, comparing our results with those produced by BARON,
nowadays regarded as the “state of the art” global optimization
package.

2. Problem statement

Given a metabolic network described by a GMA model, the opti-
mization aims to determine the appropriate changes in enzyme
activities and in the internal metabolite concentrations so that
the synthesis rate of the desired product is maximized in steady
state. Given data for the problem are: (1) the stoichiometry of the
reactions involved in the production/consumption of each inter-
nal metabolite in the metabolic network; and (2) the value of the
parameters of the power-law formalism representing the kinetics
of each of these particular reactions at the basal state.

3. Mathematical formulation

3.1. GMA representation

The GMA representation of a metabolic network containing n
internal metabolites whose concentration Xi can vary with the time
t due to the action of p flows can be expressed as follows:

dXi

dt
=

p∑
r=1

�irvr i = 1, . . . , n (1)

where �ir is the stoichiometric coefficient of the metabolite i in
the process r and indicates the number of molecules of metabolite
i involved in such a process. Hence, it is always an integer value
that is positive when process r contributes to the production of
metabolite i, negative when process r consumes metabolite i and
0 otherwise (i.e., if process r does not participate in the produc-
tion/consumption of metabolite i). The velocity vr can be described
using different representations, but, as stated previously, the so-
called power-law formalism (Savageau, 1969a,b; Voit, 2000) is an
appropriate one:

vr = �r

n+m∏
j=1

Xfrj
j r = 1, . . . , p (2)

In this representation, �r is an apparent rate constant for flow
r. frj is the kinetic order of metabolite j in process r and quantifies
its effect on the considered rate. Note that contributions of the m
(independent) external metabolites are also accounted for in this
representation.

By introducing Eq. (2) into Eq. (1) and assuming steady state

conditions for the network, one obtains a GMA model as follows:

dXi

dt
=

p∑
r=1

⎛
⎝�ir�r

n+m∏
j=1

Xfrj
j

⎞
⎠ = 0 i = 1, . . . , n (3)
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.2. NLP formulation

In order to compute the changes in the enzyme activities, we
hall rewrite the apparent rate constant �r in Eq. (3) as a product
f the basal state enzyme activity �r (constant parameter) and its
old-change Kr (continuous variable):

p

r=1

⎛
⎝�irKr�r

n+m∏
j=1

Xfrj
j

⎞
⎠ = 0 i = 1, . . . , n (4)

The final goal of the optimization task is to find the appropriate
hanges to be performed in the enzyme activities in order to opti-
ize a given biological criteria (typically a flow) described through

lgebraic equations. This requires the determination of the optimal
alues of Kr, vr and Xj that maximize/minimize the given objective
unction while fulfilling the GMA model equations in steady state. In
eneral, it will be possible to express the desired criterion in math-
matical terms using a specific mathematical function U(Kr, vr , Xj),
o that the optimization task can be posed as a non-linear program-
ing problem (NLP) of the following form:

(ONLP) min U(Kr, vr , Xj)

s.t.

p∑
r=1

�irvr = 0 i = 1, . . . , n

vr = Kr�r

n+m∏
j=1

Xfrj
j r = 1, . . . , p

Kr, vr , Xj ∈R+

ote that maximization problems can be easily reformulated into
inimization ones by changing the sign of the objective function.

he nonlinear equality constraints that define the velocity terms in
NLP give rise to a non-convex search space. Hence, to solve ONLP

o global optimality, it is necessary to resort to global optimization
echniques (see Grossmann & Bigler, 2004; Floudas & Gounaris,
009) that can provide solutions to the problem with a desired
ptimality tolerance. These methods can handle a wide variety
f non-convex formulations arising in many types of applications.
nfortunately, in practice, their numerical performance may vary
rastically depending on the specific problem being solved, leading

n some cases to prohibitive CPU times (Grossmann & Bigler, 2004).
possible way to overcome this limitation consists of devising cus-

omized algorithms that exploit the mathematical properties of the
pecific problem under study. This is indeed the underlying idea of
ur approach.

. Solution strategy

The method we propose to globally optimize ONLP is an outer-
pproximation algorithm based on the works of Bergamini, Aguirre,
nd Grossmann (2005) and Polisetty et al. (2008). Our method relies
n decomposing the original problem ONLP into two problems at
ifferent hierarchical levels: an upper level master problem CMILP
nd a lower level slave problem RNLP. The master level entails the
olution of a mixed-integer linear programming (MILP) problem

hat is a relaxation of ONLP. This implies that CMILP will predict
alid lower bounds on the solution of ONLP (the solution of the
elaxation will be, at least, as good as that of the original problem).
n the lower level, the original problem is locally optimized in a
educed search space (RNLP) providing a valid upper bound on its
lobal optimum. These two problems are solved iteratively until
he optimality gap is reduced below a given tolerance. A detailed
escription of the algorithm is given in the following sections.
Fig. 1. Natural logarithm overestimation by a 1st degree Taylor series.

4.1. Upper level master problem

To construct a valid relaxation of ONLP (i.e., CMILP), we first
reformulate the equations arising from the power-law formalism
via a logarithmic transformation:

ln vr = ln Kr + ln �r +
n+m∑
j=1

frj ln Xj r = 1, . . . , p (5)

We then introduce two new auxiliary variables, kr and xj , which
are defined as follows:

kr = ln Kr

xj = ln Xj

By replacing the original variables in Eq. (5) by the reformulated
ones, the following equality can be obtained.

ln vr = kr + ln �r +
n+m∑
j=1

frjxj r = 1, . . . , p (6)

Eq. (6) can then be expressed via the following inequalities:

ln vr ≥ kr + ln �r +
n+m∑
j=1

frjxj r = 1, . . . , p (7)

ln vr ≤ kr + ln �r +
n+m∑
j=1

frjxj r = 1, . . . , p (8)

The logarithmic terms appearing in the left-hand side of these
equations can be replaced by valid upper and lower estimators
(note that �r is a known model parameter). Specifically, in Eq.
(7), the logarithmic function can be approximated by L supporting
hyper-planes (see Fig. 1), which are first order Taylor expansions
of the natural logarithm at different points l of the domain of vr:

ln vl
r + 1

vl
r

(vr − vl
r) ≥ kr + ln �r +

n+m∑
j=1

frjxj r = 1, . . . , p

l = 1, . . . , L (9)

Since the logarithmic function is concave, these hyper-planes con-

stitute valid overestimators that do not chop off any feasible
solution of ONLP.

Furthermore, the left-hand side of Eq. (8) can be underesti-
mated by a piecewise linear approximation. For that, we consider
a partition of the original domain [vr , vr] defined by a set of grid
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equations with only two terms, the logarithmic transformation is
enough to obtain a linear constraint (note that the stoichiometric
coefficients �ir are known). Hence, in mathematical terms, we
ig. 2. Example of natural logarithm underestimation by piecewise linear functions.

oints v1
r , v2

r , . . . , vH+1
r , being v1

r = vr , vH+1
r = vr and vh+1

r ≥ vh
r for

= 1, . . . , H. The piecewise linear approximation can then be mod-
led via a disjunction with H terms as follows:

∨
=1,...,H

⎡
⎢⎢⎢⎣

Yh
r

vh
r ≤ vr ≤ vh+1

r

ah
r vr + bh

r ≤ kr + ln �r +
n+m∑
j=1

frjxj

⎤
⎥⎥⎥⎦ r = 1, . . . , p

h
r ∈ {True, False} r = 1, . . . p h = 1, . . . , H

here ah
r and bh

r are the coefficients of the straight line equation in
he hth interval and Yh

r indicates whether the hth term in the disjunc-
ion of the rth velocity is active or not. Fig. 2 shows and illustrative
xample of a piecewise function with three terms.

The disjunction can be reformulated using either the big-M or
onvex hull reformulations (see Vecchietti et al., 2003). The latter
echnique allows translating the disjunction into a set of equal-
ties and inequalities using auxiliary (disaggregated) variables as
ollows:
H

h=1

zh
r = vr r = 1, . . . , p (10)

h
r yh

r ≤ zh
r ≤ vh+1

r yh
r r = 1, . . . , p h = 1, . . . , H (11)

H

h=1

yh
r = 1 r = 1, . . . , p (12)

H

h=1

(
ah

r zh
r + bh

r yh
r

)
≤ kr + ln �r +

n+m∑
j=1

frjxj r = 1, ..., p (13)

here zh
r is the new disaggregated variable and yh

r is a new binary
ariable that takes a value of 1 if the hth interval of the rth velocity
s active and 0 otherwise. Thus, the overall master problem can be
nally expressed as follows:

(CMILP) min U(kr, xj, vr , zh
r , yh

r )
s.t. constraints 1, 9, 10 to 13

kr, xj ∈R
vr , zh

r ∈R+

yh

r ∈ {0, 1}
Model CMILP takes the form of a mixed-integer linear program-

ing (MILP) problem. These problems can be solved efficiently via
tandard branch & bound (B&B) techniques.
ngineering 34 (2010) 1719–1730

4.2. Lower level slave problem

The slave problem in the lower level of the algorithm, RNLP, is
obtained by tightening the search space of ONLP. This is accom-
plished by adding lower and upper bounds on the velocity terms
vr . The associated mathematical formulation is as follows:

(RNLP) min U(Kr, vr , Xj)

s.t.

p∑
r=1

�irvr = 0 i = 1, . . . , n

vr = Kr�r

n+m∏
j=1

Xfrj
j r = 1, . . . , p

vr ≤ vr ≤ vr r = 1, . . . , p
Kr, vr , Xj ∈R+

Hence, the search space of RNLP is tighter than that of ONLP. For
this reason, RNLP provides an upper bound on the solution of ONLP.
Note that in model RNLP, bounds on vr (third group of constraints)
can be obtained from the active intervals of the disjunctions of
CMILP. For instance, let v∗

r be the solution of the master problem.
We know that v∗

r must fall within the active interval of the term of
the disjunction defined by [vh

r , vh+1
r ]. Hence, we can set vr = vh

r and

vr = vh+1
r .

4.3. Algorithm steps

The detailed algorithmic steps of the proposed strategy are as
follows:

(1) Set iteration count it = 0, UB = ∞, LB = −∞ and tolerance error
= tol.

(2) Set it = it + 1. Solve master problem CMILP.
(a) If CMILP is infeasible, stop. ONLP is infeasible.
(b) Otherwise, update the current LB as LB = max it(LBit), where

LBit is the value of the objective function of CMILP in the itth

iteration. Set bounds on vr for the slave problem accord-
ing to the solution of the master problem (vr = vh

r and

vr = vh+1
r ).

(3) Solve the slave problem RNLP.
(a) If RNLP is infeasible update the grid (see remark 5) and go

to step 2 of the algorithm.
(b) Otherwise, update the current UB as UB = min it(UBit),

where UBit is the value of the objective function of RNLP
in the itth iteration.

(4) Calculate the optimality gap OG as OG = (|UB − LB|)/UB.
(a) If OG ≤ tol, then stop. The current UB can be regarded as

the global optimal solution of ONLP within the predefined
tolerance.

(b) Otherwise, update the grid and go to step 2 of the algorithm.

4.4. Remarks

• The reformulation of Eq. (6) into two inequalities is only required
for those velocities that are involved in balances at branching
points, that is, where Eq. (3) includes more than two terms. In
have:

�irvr = −�ir′vr′ i ∈ XT r, r′ ∈ VTi (14)

ln �ir + ln vr = ln (−�ir′ ) + ln vr′ i ∈ XT r, r′ ∈ VTi (15)
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the GMA models for the two systems can also be found in the same
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ln �ir + kr + ln �r +
n+m∑
j=1

frjxj

= ln (−�ir′ ) + kr′ + ln �r′ +
n+m∑
j=1

fr′jxj i ∈ XT r, r′ ∈ VTi (16)

where XT is the set of equations involving only two terms and VTi

is the set of velocities that appear in those equations in XT . Note
that in S-System models, all the balances include only two terms.
This allows reformulating the model into a linear equivalent form,
which greatly helps computations (Voit, 1992). Another major
advantage of the logarithmic transformation is that it gives rise
to concave univariate terms (i.e., logarithmic functions) for which
tight under and over estimators can be defined.
Supporting hyper-planes can be located following different pat-
terns. It can be shown that the one that minimizes the rectilinear
distance (i.e., L1 norm) between the hyper-planes and the actual
logarithmic function is that in which this distance is the same
at every interjection of two adjacent hyper-planes (see proof in
Appendix A). This allocation can be obtained by solving an opti-
mization problem.
Similarly, the grid points of the piecewise approximation can be
selected according to different criteria. One possible strategy con-
sists of splitting the range [vr , vr] into H intervals with the same
width. It can be shown that in order to minimize the rectilinear
distance (i.e., L1 norm) between the piecewise approximation and
the logarithmic function, one needs to define intervals of equal
width in the logarithmic space (see proof in Appendix A). Hence,
we would have:

ln vh+1
r − ln vh

r = ln vh+2
r − ln vh+1

r = . . . = ln vH+1
r − ln vH

r

r = 1, . . . , p h = 1, . . . , H (17)

Increasing the number of terms of the piecewise function and
supporting hyper-planes leads to tighter bounds and hence to less
iterations. Unfortunately, this is accomplished at the expense of
adding more variables to the original problem. This is specially
critic in the case of the piecewise approximation, which requires
the definition of binary variables that increase considerably the
computational burden of the master problem and consequently
the time required by each iteration. Hence, a compromise should
be found between the number of iterations and the time spent in
each of them.
There are different ways to update the piecewise grid of CMILP
(steps 3a and 4b in the algorithm). One possible strategy is the
division of the active interval into 2 sub-intervals with the same
width either in the Cartesian space, (vh

r + vh+1
r )/2, (see Fig. 3) or

in the logarithmic space, (ln vh
r + ln vh+1

r )/2. Another possibility
is to split the active interval by adding the point corresponding
to the solution of RNLP in the last iteration.
Additional supporting hyper-planes can be iteratively added
to CMILP in order to improve the overestimation of the loga-
rithmic function. Again, the points where the new supporting
hyper-planes will be allocated can be selected following different
criteria.

. Case studies
As benchmark problems to test the capabilities of the approach
resented, we propose to use the ethanol production in the fermen-
ation of Saccharomyces cerevisiae (case study 1) and the citric acid
roduction by Aspergillus niger (case study 2) (see Figs. 4 and 51).

1 Figures adapted from the original work by Polisetty et al. (2008).
Fig. 3. Piecewise grid update example. As the solution of the first iteration is found
in the second interval, it is split into two sub-intervals for the next iteration.

These two problems are convenient since their optimal solutions
Fig. 4. Metabolic pathway of the fermentation of Saccharomyces cerevisiae.
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itric acid production in Aspergillus niger.
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Table 1
Numerical data of the size of the models.

Ethanol production
(Saccharomyces cerevisiae)

Citric acid
production
(Aspergillus niger)
Fig. 5. Metabolic network for the c

The algorithm proposed in Section 4.3 was implemented in
AMS, using CPLEX (version 11.2.0) to solve the master MILPs and
ONOPT (version 3.14s) to locally optimize the slave NLPs on an

ntel 1.2 GHz machine. Data about the size of the models can be
ound in Table 1.
Note that henceforth the optimization problems we deal with
re maximizations. Thus, the convexified master problem CMILP
ill determine upper bounds to the solution of ONLP whereas the

ower bounds will be identified by the nonlinear slave problem
NLP.

CIMLP equations 518 4235
Continuous variables 50 439
Integer variables 53 471
RNLP equations 40 211
Variables 14 91
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Table 2
Results of the global optimization of the ethanol production in Saccharomyces cerevisiae (GMA models from Polisetty et al., 2008). Gap: optimality gap.

Polisetty et al.a BARON Proposed algorithm

Synthesis rate of ethanol (mM min−1) 157.59 157.59 157.59
UB Not available – 157.88
LB 157.59 – 157.59
Gap (%) Not available 0.20 0.18
Iterations – – 3
Time (CPU s) Not available 0.17 0.37

a Data termed as “Not available” is not shown in original work by Polisetty et al. (2008).

Table 3
Enzyme activities and metabolite concentrations (mM) in the global optimum for the ethanol synthesis rate in Saccharomyces cerevisiae.
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Kr 5.00 0.89 5.00
Xi (mM) 0.35 1.06 91.44

.1. Ethanol production in S. cerevisiae

This case study was solved using a tolerance (tol) of 0.20% and
onsidering that all the enzymes of the network are subject to mod-
fication. For comparison purposes, we solved the same problem

ith the standard global optimization package BARON. In order to
rovide the solver with a feasible starting point, the basal state solu-
ion was used. Note that this point can be easily computed before
he optimization takes place by fixing all the Kr to 1 in the original

odel and solving the resulting system of nonlinear equations.
As it can be observed in Table 2, the results produced by our

lgorithm and BARON are in consonance with those reported in
he literature by Polisetty et al. (2008): 157.59 mM/min (see Table 3
or the enzyme activities and metabolite concentrations in the solu-
ion). This is indeed a problem of small size (see Table 1 for details)
or which both algorithms are able to identify the global optimal

olution in few seconds of CPU time.

In order to further illustrate the capabilities of our algorithm, we
ave reproduced (Table 4) some of the results reported in Polisetty
t al. (2008) where only a set of reactions are allowed to be modified,
hereas the remaining enzyme activities are constrained to their

able 4
esults of the global optimization of the ethanol production in Saccharomyces cerevisiae w

n mM min−1 (solution of ONLP). Gap: optimality gap.

Polisetty et al. BARON

Case Modified
reactions r

[Kr ] LB Gap (%) Timea (CPU s) [Kr ]

1 [1, 3] [5.00, 2.85] 103.66 21.66 0.81 [5.00, 2.85]
2 [1, 4] [5.00, 5.00] 73.18 48.96 0.26 [5.00, 5.00]
3 [1, 7] [5.00, 5.00] 73.41 47.46 0.20 [5.00, 5.00]
4 [1, 6] [5.00, 0.20] 73.41 47.15 0.24 [5.00, 0.20]
5 [1, 5] [5.00, 1.65] 72.68 48.47 0.22 [5.00, 0.63]
6 [1, 8] [5.00, 5.00] 87.77 22.13 0.19 [5.00, 5.00]
7 [1, 2] [5.00, 1.97] 72.68 47.48 0.24 [5.00, 5.00]
8 [3, 7] [5.00, 5.00] 44.67 76.18 0.09 [5.00, 5.00]

a The author only reported the CPU time of the master MILP.

able 5
esults of the global optimization of the citric acid production in Aspergillus niger (GMA m

Polisetty et al.

Synthesis rate of citric acid (mM min−1) 384.23
UB 384.23
LB 384.23
Gap (%) 0.00
Iterations –
Time (CPU s) 5.68b

a Failed means that the optimality gap was higher than 100%.
b The author only reported the CPU time of the master MILP.
5 6 7 8

.20 1.25 0.20 5.00 5.00

.01 1.25 – – –

basal state (Kr = 1). These calculations provide valuable informa-
tion as the implementation of solutions requiring a large number
of genetic manipulations might be impractical due to their elevated
cost and complexity. Again, we have chosen a tolerance of 0.20% for
both, our algorithm and BARON.

As observed in Table 4, the three methods were capable of deter-
mining the global optimal solution in a similar CPU time for the
8 combinations of free reactions. BARON showed to be slightly
faster than the other two algorithms. With regard to the quality
of the solutions found, it is interesting to notice that the method
proposed by Polisetty et al. (2008) provides very loose optimality
gaps. Particularly, although the method finds the global optimum
in all the cases, the reported optimality gaps are very large (i.e.,
more than 40%). This constitutes a major limitation of this strategy.
Interestingly, we identified two cases (5 and 7) where the same
values of the objective function were obtained through three dif-

ferent enzyme activities combinations. These results suggest that
the problem possess a certain degree of degeneracy. This issue
should be carefully studied before attempting to reproduce any of
these solutions in the laboratory, as there might be some particular
features not considered in the analysis that would make the imple-

hen fixing all the enzyme activities, but two, to their basal state. LB: lower bound

Proposed method

LB Gap (%) Time (CPU s) [Kr ] LB Gap (%) Time (CPU s)

103.66 0.20 0.11 [5.00, 2.85] 103.66 0.09 0.94
73.18 0.20 0.22 [5.00, 5.00] 73.18 0.16 2.03
73.41 0.20 0.16 [5.00, 5.00] 73.41 0.11 2.17
73.41 0.20 0.12 [5.00, 0.20] 73.41 0.11 2.72
72.68 0.20 0.14 [5.00, 1.00] 72.68 0.11 2.63
87.77 0.20 0.12 [5.00, 5.00] 87.77 0.14 2.59
72.68 0.20 0.16 [5.00, 1.00] 72.68 0.11 2.49
44.67 0.20 0.2 [5.00, 5.00] 44.67 0.08 1.82

odels from Polisetty et al., 2008). Gap: optimality gap.

BARON Proposed algorithm

Faileda 384.22
– 390.66
– 384.22
– 1.68
– 4
24,000 33.37



1726 C. Pozo et al. / Computers and Chemical Engineering 34 (2010) 1719–1730

Table 6
Metabolite concentrations (mM) in the global optimum for the citric acid synthesis rate in Aspergillus Niger.

i Xi i Xi i Xi i Xi i Xi

1 0.02 7 0.20 13 5.60 19 0.04 25 1.41
2 1.00 8 1.00 × 10−4 14 0.01 20 0.85 26 0.98
3 0.12 9 21.21 15 31.26 21 0.71 27 0.30
4 0.02 10 130.00 16 0.52 22 0.35 28 0.26
5 0.71 11 0.01 17 1.70 23 0.01 29 6.00 × 10−8

6 0.01 12 0.01 18 22.55 24 0.01 30 0.21

Table 7
Enzyme activities in the global optimum for the citric acid synthesis rate in Aspergillus Niger.

r Kr r Kr r Kr r Kr r Kr

1 4.16 13 0.20 25 2.60 37 0.20 49 5.00
2 1.00 14 0.20 26 0.20 38 2.57 50 0.20
3 0.20 15 5.00 27 2.46 39 3.23 51 2.07
4 5.00 16 0.20 28 4.38 40 5.00 52 5.00
5 0.26 17 3.91 29 5.00 41 2.69 53 0.20
6 1.47 18 2.60 30 0.20 42 5.00 54 2.20
7 0.44 19 5.00 31 5.00 43 0.20 55 2.55
8 4.99 20 2.40 32 3.96 44 0.20 56 0.46
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9 5.00 21 1.03 33
10 5.00 22 1.00 34
11 5.00 23 1.72 35
12 2.60 24 2.72 36

entation of one of them advantageous when compared to the
thers.

.2. Citric acid production in A. niger

The procedure explained for the first case study has been applied
o solve the second case study with the only change of using a toler-
nce of 2.00%. The results obtained in the optimization are reported
n Table 5 (the optimal values of the metabolite concentrations and
he enzyme activities can be found in Tables 6 and 7, respectively).

This second case study considers a more complex network (4235
quations and 471 integer variables in the master problem vs 518
quations and 53 variables in the ethanol case). In this case, BARON
ailed at reducing the optimality gap below the specified tolerance

i.e., 2.00%) after 24,000 s of CPU time, whereas our algorithm was
ble to identify a solution in a relatively low computational time
i.e., less than 35 CPU seconds). In fact, after the aforementioned
PU time, BARON could only attain an optimality gap above 100%,
hich is very far away from the desired tolerance.

able 8
esults of the global optimization of the citric acid production in Aspergillus niger when fi
o be modified depends on the case: Case B: one reaction; Case C: two reactions; Case D:
NLP). Gap: optimality gap.

Polisetty et al.

Case Modified reactions r [Kr ] LB Gap (%) Timea

B [40] [5.00] 25.82 1234.12 9.11
B [59] [1.00] 12.35 871.17 30.13
C [40, 59] [5.00, 1.00] 25.78 1254.54 13.27
C [1, 40] [1.00, 5.00] 25.82 1241.75 26.4
D [1, 40, 60] [1.27, 5.00, 1.12] 40.88 765.46 30.49
D [1, 40, 59] [1.16, 5.00, 5.00] 176.8 98.63 9.75
E [1, 39, 40, 59, 60] [1.24, 0.88, 5.00, 5.00, 1.01] 347.32 3.23 231.9
E [1, 28, 40, 59, 60] [1.46, 1.01, 5.00, 5.00, 1.11] 256.59 38.81 46.22

a The author only reported the CPU time of the master MILP.
b Failed means that the optimality gap was higher than 100%.

able 9
ocal optimal solutions obtained by solving RNLP from different starting points.

Case 1 2

RNLP solution (mM min−1) 354.87 379.75
0.20 45 5.00 57 0.20
5.00 46 1.00 58 0.20
5.00 47 0.20 59 5.00
0.20 48 0.20 60 5.00

Additionally, we have applied our method to solve different
cases where only a set of reactions were allowed to be modified.
These cases have been selected from Polisetty et al. (2008). The
results of these calculations are shown in Table 8.

Again, our method was able to provide the global optimal
solution considering an optimality gap of 2.00% in few CPU sec-
onds. Here, case E1 deserves particular attention since our solution
slightly improves that obtained with Polisetty’s approach. On the
other hand, BARON could only reach an optimality gap above
100%.

Surprisingly, the method proposed by Polisetty et al. (2008) pro-
vides large optimality gaps for this case, where only a subset of
the enzymes are subject to modification. On the other hand, this
method is able to find the global optimum with a zero optimality

gap for the case in which all the enzymes can be changed (Table 5).

Note that increasing the complexity of the model (i.e., increasing
the number of reactions that can change) is not necessarily trans-
lated in bigger CPU times as one could expect. Although the CPU
time required to solve a problem is generally ruled by the number

xing some enzyme activities to their basal state. The number of reactions allowed
three reactions; Case E: five reactions. LB: Lower bound in mM min−1 (solution of

BARON Proposed method

(CPU s) Results [Kr ] LB Gap (%) Time (CPU s)

Failedb [5.00] 25.82 1.97 16.69
Failed [1.00] 12.35 1.33 45.15
Failed [5.00, 1.00] 25.78 1.41 52.53
Failed [1.00, 5.00] 25.82 1.97 17.93
Failed [1.27, 5.00, 1.12] 40.88 1.33 167.35
Failed [1.16, 5.00, 5.00] 176.79 1.82 18.07

7 Failed [1.40, 0.92, 5.00, 5.00, 1.07] 347.93 1.56 6.48
Failed [1.46, 1.01, 5.00, 5.00, 1.11] 256.59 1.84 1093.09

3 4 5

384.22 372.86 384.21
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y ∈R
vr ∈R+
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f variables and constraints and also by the quality of the relax-
tion (i.e., the difference between the lower bound obtained in the
lave problem and the upper bound predicted by the master prob-
em), there are other facts that can affect it. For instance, the way
n which the branch and bound is implemented to solve the MILPs
i.e., branching rules, order in which the nodes are explored, deriva-
ion of cutting planes, etc.) can have a major influence on the total
PU time.

Finally, it is interesting to notice that during the calculations we
onfirmed the existence of multiple local optimal solutions in the
. niger model. For that, we solved the original non-convex ONLP
ith a local optimizer (i.e., CONOPT) using five different starting
oints that were calculated by solving different master problems
MILP, each of them with a different initial number of piecewise
erms (from 1 to 5). The results obtained, which are given in Table 9,
how that different local optima can be obtained depending on the
tarting point used in the initialization of the algorithm. This obser-
ation justifies the use of global optimization tools to avoid falling in
ocal optima during the search (see Table 5 for the global optimum
btained).

. Conclusions

This paper has addressed the development of a systematic
ramework for the global optimization of metabolic networks that
an be described by the Generalized Mass Action model. The strat-
gy proposed is based on reformulating the original GMA model
ia a logarithmic transformation, which gives rise to a non-convex
LP. This model is globally optimized by an outer approximation
lgorithm that exploits its specific structure.

The capabilities of the proposed method have been illustrated
y globally optimizing the fermentation pathway of S. cerevisiae
nd the metabolic network associated with the citric acid produc-
ion in A. niger. For both cases, we have obtained the appropriate
hanges that need to be performed in the corresponding enzyme
ctivities in order to maximize the production of ethanol and citric
cid, respectively. Our algorithm has been able to reproduce the
esults previously reported by Polisetty et al. (2008), but achieving
ignificant improvements in the optimality gaps of the final solu-
ions. Besides, the method proposed has shown promising results
ven when applied to a moderately complex network (case study
), absolutely surpassing the performance of BARON, which failed
o solve that particular example within the predefined tolerance.

The generality of the optimization framework introduced in this
aper makes it very interesting for biotechnological applications.
t this point, the major drawbacks for getting practical results are:

1) the ability of obtaining appropriate models; and (2) the possi-
ility of effectively manipulating the required enzymes. The main

imitation for obtaining good mathematical models is the lack of
xperimental data that can be used for parameter estimation (Chou
Voit, 2009). Unfortunately, most of the Systems Biology effort has

ocused on gene sequences, protein structures, and so on, with rela-
ively few results on actual data on intact systems. The kind of data
equired for this task would involve measuring metabolites and
uxes in vivo, a problem that is not totally solved yet. The optimiza-
ion method presented here can yield valuable insights if and only
f the underlying model is a good approximation to reality. Besides
his problem, optimization results require experimental confirma-
ion; that is manipulation of enzymes for obtaining the desired
ptimal increment on the objective function. However, although
ene expression changes can be easily introduced in living cells,

here is no guaranty that an appropriate change in enzyme activity
s also obtained.

In conclusion, our results show that it is possible to appro-
riately analyze a highly non-linear mathematical model and
btain optimal solution for a given objective function. This should
ngineering 34 (2010) 1719–1730 1727

stimulate experimentalists for developing appropriate tools for
measuring living cells and for manipulating them so that practical
results can be obtained.
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Appendix A.

Lemma 1 shows that the maximum error between the linear
outer approximation and the logarithmic function lies in a ver-
tex. Proposition 1 uses the results of Lemma 1 to show that the
allocation of hyper-planes that minimizes the rectilinear distance
(i.e., L1 norm) between the hyper-planes and the actual logarithmic
function is that in which this distance is the same at every interjec-
tion of two adjacent hyper-planes. Lemma 2 and Proposition 2 are
similar to Lemma 1 and Proposition 1 but apply to the piece-wise
approximation. Finally, Proposition 3 complements Proposition 2
and provides a direct way of defining a piece-wise approximation
with minimum error.

Lemma 1. Consider an outer approximation of the function ln vr with
L supporting hyper-planes (see Fig. 6). The maximum error, errormax,
(defined as the linear distance, L1norm), between the hyper-planes and
the logarithmic function is attained in a vertex.

Proof. We first show that the point with the maximum error lies
in a hyperplane, and then prove that it must correspond to one
of its intersections with adjacent hyperplanes. Consider problem
PA, which seeks the maximum difference between a set of hyper-
planes and the logarithmic function:

(PA) min ln vr − y

s.t. y −
(

ln vl
r + 1

vl
r

(
vr − vl

r

))
≤ 0 l = 1, . . . , L

v − v ≤ 0
Fig. 6. Approximation of the ln vr function by L supporting hyper-planes.
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here vr ≤ vl
r ≤ vr . The Karush-Kunh-Tucker (KKT) conditions of PA

re:

1 +
L∑

l=1

ul
1 = 0 (18)

1
vr

−
L∑

l=1

ul
1

vl
r

+ u2 − u3 = 0 (19)

l
1

(
y −

(
ln vl

r + 1

vl
r

(
vr − vl

r

)))
= 0 (20)

2(vr − vr) = 0 (21)

3(vr − vr) = 0 (22)

l
1 ≥ 0 (23)

2 ≥ 0 (24)

3 ≥ 0 (25)

From Eq. (18), it follows that at least one supporting hyper-plane
SH) must be active in the optimal solution. Now, consider problem
B that seeks the maximum error along the active SHl between its
xtremes vlo

r and vup
r , which are given by the intersection of the

yper-plane with either an adjacent SHj or a limit of the interval
vr , vr].

(PB) min ln vr −
(

ln vl
r + 1

vl
r

(
vr − vl

r

))

s.t. vr − vup
r ≤ 0

vlo
r − vr ≤ 0

vr ∈R+

The KKT conditions of PB are:

1
vr

− 1

vl
r

+ u1 − u2 = 0 (26)

1(vr − vup
r ) = 0 (27)

2(vlo
r − vr) = 0 (28)

1 ≥ 0 (29)

2 ≥ 0 (30)

here are 3 possible solutions to this problem.
Case 1: u1 = u2 = 0. From Eq. (26), we have:

∗
r = vl

r

nd the resulting value of the objective function is:

F = 0

It is easy to see that this point is a maximum of PB in which the
rror is minimum. Note that this is the point in which the hyper-
lane touches the logarithmic function.

Case 2: u1 = 0, u2 /= 0. From Eqs. (26) and (28), we get:

∗
r = vlo

r ; u2 = 1

vlo
r

− 1

vl
r

≥ 0 OF = ln

(
vlo

r

vl
r

)
− vlo

r

vl
r

+ 1

ence, this point is a minimum of PB and corresponds to a vertex.
Case 3: u2 = 0, u1 /= 0. From Eqs. (26) and (27), we get:

∗ up 1 1
(

vup
r

)
vup

r

r = vr ; u1 =

vl
r

−
vup

r

≥ 0 OF = ln
vl

r

−
vl

r

+ 1

his point (again a vertex) is another minimum of PB. Hence, the
olution of PB must correspond to a vertex, and the proof is com-
lete. �
Fig. 7. Illustration of the decrease in errormax by moving SHl a distance ı towards
the vertex vl,l+1

r .

Proposition 1. The allocation of L hyper-planes that minimizes
errormax is that in which the error is the same in all the L+1 vertexes.

Proof. The proof is by contradiction. From Lemma 1, we know
that the maximum error between the hyper-planes and the loga-
rithmic function is attained in a vertex. Assume that in the optimal
allocation there is at least one vertex vl,l+1

r with a different error.
Now, identify a supporting hyperplane SHl with different errors
in its extreme vertexes (errorl−1,l in vl−1,l

r and errorl,l+1 in vl,l+1
r ).

Assume, without loosing generality, that errorl,l+1 ≥ errorl−1,l . Now,
we consider two cases:

Case 1: the maximum errormax = max l /= l′ {errorl,l′ } corresponds

to the right vertex vl,l+1
r of the selected hyperplane, that is,

errormax = errorl,l+1. Now, define errorold
l,l+1 = errorold

max and move the

hyperplane SHl a small distance ı towards vl,l+1
r , that is, make

vl,l+1new
r = vl,l+1old

r + ı, thus decreasing the slope of SHl . This move
decreases errorl,l+1 at the expense of increasing errorl−1,l . Since the
logarithmic function is continuous, it is possible to find ı such that
errorold

l−1,l
< errornew

l−1,l
= errornew

l,l+1 < errorold
l,l+1 (Fig. 7), that is, a new

solution with a smaller error in the right vertex of SHl , and hence
with a smaller errormax. This contradicts the fact that in the optimal
solution there are vertexes with different errors.

Case 2: errormax is placed in another hyper-plane SHl′ (l′ /= l, l +
1). In this case, the same procedure can be repeated recursively to
the rest of the hyper-planes until no more hyper-planes containing
different errors in their vertexes remain. It is straightforward to
see that this would lead to a solution with lower errormax, which
contradicts the assumption that the optimal allocation implies the
existence of at least one hyplerplane with different errors in its
extremes vertexes. �

Lemma 2. Consider an underestimation of the ln vr function with a

linear piecewise (PW) section (Fig. 8). The maximum error, errormax,
defined as the L1 norm (i.e., error(vr) = ln vr − avr − b) between the
ln vr and the PW linear function occurs at v∗

r = 1/a
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Fig. 8. Approximation of the ln vr function by a one interval linear function.

roof. The error is a concave function that depends on a single
ariable, hence in the optimal solution we get:

rror′ = 1
vr

− a = 0 ↔ v∗
r = 1

a
error′′ = − 1

v2
r

≤ 0

herefore, v∗
r = 1

a is a maximum of the function error. �

roposition 2. Consider a piece-wise approximation of the function
n vr with H intervals. Let errorh be the maximum error in the hth inter-
al of the PW function and errormax the maximum error among the
ifferent intervals (errormax = max h{errorh}). The piece-wise approx-

mation that minimizes errormax is that in which errorh = errorh′ ,
h,h′(h /= h′).

roof. The proof is by contradiction. From Lemma 2 we know
hat the maximum error in a piecewise section PWh is attained at
/a. Assume that the optimal distribution of the domain is that
here there is at least one section h with a different error, errorh >

rrorh+1. Consider the following cases:

Case 1: errorh = errormax. Move the grid point vh
r = vh+1

r a dis-

ance ı towards vh
r , that is, make vhnew

r = vhold
r − ı, thus increasing

h and decreasing ah+1. This decreases errorh and increases errorh+1.
ince the logarithmic function is continuous, we can define a ı such
hat errorold

h+l
< errornew

h+l
= errornew

h
< errorold

h
(Fig. 9), that is, a new

olution with a smaller errormax. This contradicts the original state-
ent that in the optimal solution there are sections with different

rrors.
Case 2: errormax = errorh′ /= errorh (h′ /= h). It is straightforward

o see that we can follow the same strategy described before until
he error in every couple of adjacent sections is the same and
maller than errorold

max. �

roposition 3. The distribution of the H intervals where errorh =
rrorh′ , ∀h,h′(h /= h′) corresponds to that where all PW sections are of
qual width Q in the logarithmic space.

roof. Consider two piecewise sections2PWh and PWh+1 defined
y grid point vh+1

r . When errorh = errorh+1 the following relation-
hip holds:

n
(

1
ah

)
− 1 − bh = ln

(
1

ah+1

)
− 1 − bh+1

→ ln
(

ah+1

ah

)
− (bh − bh+1) = 0 (31)
As the piecewise functions take the same value at the common

rid point vh
r = vh+1

r , we can rewrite Eq. (31) in terms of ah, ah+1 and

2 Note that more intervals could be considered and generality would not be lost.
Fig. 9. Illustration of the decrease in errormax by moving the grid point vh
r a distance

ı.

vh+1
r :

ln
(

ah+1

ah

)
− vrh+1 (ah+1 − ah) = 0 (32)

Now, we introduce two new variables Q and Q ′ defined as:

Q = ln vh
r − ln vh

r (33)

Q ′ = ln vh+1
r − ln vh+1

r (34)

Hence, we can express the width of each interval in the cartesian

space (i.e., vh
r − vh

r and vh+1
r − vh+1

r ) in terms of Q and Q ′:

vh
r = vh

r

exp Q
→ vh

r − vh
r = vh

r

exp Q
(exp Q − 1) (35)

vh+1
r = vh+1

r

exp Q ′ → vh+1
r − vh+1

r = vh+1
r (exp Q ′ − 1) (36)

Similarly, we can redefine the slope of each of the linear piece-
wise functions, ah and ah+1, in terms of Q, Q ′ and vh+1

r :

ah =
ln vh

r − ln vh
r

vh
r − vh

r

= Q (exp Q )

vh+1
r (exp Q − 1)

(37)

ah+1 =
ln vh+1

r − ln vh+1
r

vh+1
r − vh+1

r

= Q ′

vh+1
r (exp Q ′ − 1)

(38)

By introducing Eqs. (37) and (38) into Eq. (32), the following
equality is obtained:

ln
(

Q ′ (exp Q − 1)
(exp Q ′ − 1) Q (exp Q )

)

−
(

Q ′

(exp Q ′ − 1)
− Q (exp Q )

(exp Q − 1)

)
= 0 (39)

When Q ′ = Q (i.e., when the intervals are of equal width in the
logarithmic space) this equation is satisfied. �
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