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SUMMARY

Plant synthetic biology is still in its infancy. However, synthetic biology approaches have been used to

manipulate and improve the nutritional and health value of staple food crops such as rice, potato and maize.

With current technologies, production yields of the synthetic nutrients are a result of trial and error, and

systematic rational strategies to optimize those yields are still lacking. Here, we present a workflow that

combines gene expression and quantitative metabolomics with mathematical modeling to identify strate-

gies for increasing production yields of nutritionally important carotenoids in the seed endosperm synthe-

sized through alternative biosynthetic pathways in synthetic lines of white maize, which is normally devoid

of carotenoids. Quantitative metabolomics and gene expression data are used to create and fit parameters

of mathematical models that are specific to four independent maize lines. Sensitivity analysis and simula-

tion of each model is used to predict which gene activities should be further engineered in order to increase

production yields for carotenoid accumulation in each line. Some of these predictions (e.g. increasing

Zmlycb/Gllycb will increase accumulated b-carotenes) are valid across the four maize lines and consistent

with experimental observations in other systems. Other predictions are line specific. The workflow is adapt-

able to any other biological system for which appropriate quantitative information is available. Furthermore,

we validate some of the predictions using experimental data from additional synthetic maize lines for which

no models were developed.

Keywords: Zea mays, synthetic biology, systems biology, mathematical modeling, computational biology,

metabolomics.

INTRODUCTION

Synthetic biology utilizes known molecular components

and genes, modifying and/or combining them in new

ways, with the aim of implementing different molecular

circuits displaying novel functions and dynamic behavior

that does not occur naturally (Balagadd�e et al., 2008; Bac-

chus et al., 2013; Nielsen and Voigt, 2014; Way et al.,

2014). This discipline also provides the means to modify

organisms and make them produce useful chemicals that

are not present in their normal metabolism (e.g. DeLoache

et al., 2015).

Arguably, the most spectacular applications of synthetic

biology for production purposes use microbes as the
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substrate for organism modification. For example, Saccha-

romyces cerevisiae has been engineered to produce anti-

malarial drugs (Paddon et al., 2013) or narcotics (DeLoache

et al., 2015), and Escherichia coli has been engineered to

produce biofuels (Rahmana et al., 2014). Other applications

of synthetic biology that are likely to have a substantial

impact in the short to medium term involve engineering

new lines of nutritionally improved and widely used food

staples. Examples include Golden Rice (Ye et al., 2000),

multivitamin corn (Zhu et al., 2008) or other plants (Farr�e

et al., 2014) that constitute the basis of human diets across

the globe.

There is ongoing debate on the regulatory and ethical

aspects of organisms modified through synthetic biology

(LaVan and Marmon, 2010; Adam et al., 2011; Masip et al.,

2013). In addition, and given the complexity of genomes

and gene regulation in plants, the basic scientific aspects

of rational plant engineering are still less well developed

than those of microbe engineering (Farr�e et al., 2014). For

example, understanding how pathways are systemically

driven by and interact with the native metabolism after

they have been engineered into their hosts is challenging,

as is identifying the production bottlenecks in these path-

ways. If one can understand these aspects of new and/or

engineered pathways, one can rationally further improve

their production yields and the nutritional value of the sta-

ple crops. Mathematical modeling and analyses are impor-

tant tools for achieving that understanding, because they

can be used to predict how further modification of the

pathways will affect pathway behavior (Atkinson et al.,

2003; Brophy and Voigt, 2014; Uzkudun et al., 2015).

South African (SA) white maize is one of the staple crops

that have been engineered to improve its nutritional value.

This plant was engineered to produce carotenoid vitamins,

which are almost absent in wild-type maize (Zhu et al.,

2008). Carotenoids are a broad group of organic tetrater-

penoid pigments synthesized by plants, bacteria and fungi

(Li et al., 2010; Bai et al., 2011; Berman et al., 2014). The

biosynthetic pathway responsible for their production is

summarized in Figure 1. This pathway is described in more

detail in the Background section of Appendix S1 in the

Supporting Information. Animals obtain these carotenoids

from their diets. In herbivores and omnivores (including

humans), carotenoids act as metabolic precursors and

antioxidants, some of which have specific health benefits.

For example, pro-vitamin A carotenoids, the most impor-

tant of which is b-carotene, act as precursors of vitamin A

which is essential for developing and maintaining healthy

vision in mammals (Zhu et al., 2008; Bai et al., 2011),

among other health benefits (e.g. protection against vari-

ous cancers; Basu and Imrhan, 2007).

Here, we focused on how the engineered biosynthesis of

carotenoids is systemically driven at the molecular level in

four synthetic lines derived from SA white maize (Zhu

et al., 2008). We also investigated if accumulation of caro-

tenoids in the maize endosperm (the edible part of the

Figure 1. The general carotenoid biosynthetic path-

way, starting with phytoene as its substrate.

Several intermediates are known to be synthesized

between phytoene and lycopene. However, none of

these intermediates is produced in sufficiently high

amounts to be detected in our experiments.

Because of this we omitted those steps in our rep-

resentation. Lycopene can be used to produce

either a- or b-carotenoids. b-Carotenoids can also

be used to synthesize ketocarotenoids, the right-

most vertical branch in the figure. The genes that

code for enzymes involved in catalyzing each of the

steps are shown in boxes next to the relevant reac-

tion. HYDB represents a b-carotene hydroxylase

activity that can be catalyzed by enzymes encoded

by genes Zmbch1, Zmbch2, ZmCYP97A or

ZmCYP97B. White boxes encircle the genes that are

expressed in the endosperm of the wild-type white

maize. Red boxes encircle transgenes expressed in

the endosperm of Lines 1–4. Blue boxes encircle

transgenes expressed in Lines 2–4. Green boxes

encircle transgenes expressed in Lines 3 and 4. Yel-

low boxes encircle transgenes expressed only in

Line 4.
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plant) may be increased further. To answer these ques-

tions, we employed a systems biology approach combin-

ing gene expression and metabolomics with data-driven

mathematical modeling. The workflow is summarized in

Figure 2. We used the experimental data to generate four

models that were independently analyzed to understand

the dynamics of carotenogenesis in the transgenic maize

lines. As a final step in the analysis we identified which

steps in the pathways should be targeted to more effec-

tively control the production of individual and total carote-

noids in transgenic maize. Finally, we validated some of

these predictions using experimental data for four addi-

tional synthetic maize lines for which no models were

developed.

RESULTS

Generating time series for gene expression and metabolite

accumulation

Four lines of transgenic maize containing different combi-

nations of carotenogenic genes were chosen for this study.

The carotenoid biosynthesis pathways for the four lines

are summarized in Figure S1 and the lines are further

described in Zhu et al. (2008). The transcript levels of each

of the 12 most relevant endogenous carotenogenic genes

together with five carotenogenic transgenes were quanti-

fied using real-time quantitative (q)RT-PCR in the endo-

sperm (the edible part of the maize kernel) of each maize

line at 15, 20, 25 and 30 days after pollination (DAP). The

amounts of RNA in the endosperm were below detection

levels outside this time window because of the temporal

expression of the promoters used to drive expression of

the transgenes. The amounts of individual carotenoids pro-

duced in each line were measured at 15, 20, 25, 30, 40, 50

and 60 DAP.

The gene expression and metabolomics time series were

interpolated to calculate the levels of metabolites and tran-

scripts at time points between measurements (see Experi-

mental Procedures). This is an approach that can be used

whenever the variation between consecutive observed data

points is sufficiently smooth and the error in experimental

determination is low (Baud et al., 1991; Buzzi-Ferraris and

Manenti, 2010; Farr�e et al., 2013).

Overall, this approach allowed us to obtain sufficiently

populated time series that permitted the use of model opti-

mization and fitting tools to create data-driven ordinary

Figure 2. Workflow for data-driven modeling of carotenoid biosynthesis in modified maize lines.

For each line, experimental data were collected and used to interpolate dense time series of gene expression and metabolite concentrations. These time series

were used to estimate the parameter values for an optimized mathematical model that best fits the experimental results for that line. A sensitivity analysis of

the optimized model identified the genes whose overexpression was most likely to increase the accumulation of each metabolite. The expression of these genes

was doubled and simulations were run to determine the effects of that doubling on metabolite concentration.
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differential equation (ODE) models of carotenoid biosyn-

thesis in each of the four maize lines.

Multilevel models of the four synthetic maize lines

We used the gene expression and metabolite level time

series to build a model in which changes in gene expres-

sion drive changes in metabolite levels, but not vice versa.

Because of how the transgenes were designed for the syn-

thetic maize lines it is justified to assume that transgene

expression is not driven by carotenoid levels to a signifi-

cant extent. This is because the transgenes were inserted

under the control of the endosperm-specific low-molecular

weight glutenin or barley D-hordein promoters (Naqvi

et al., 2009; Farr�e et al., 2013). It is very difficult to measure

carotenoid enzymatic activity and protein levels because

the proteins are located in the membrane and thus difficult

to solubilize. However, there is evidence to show that the

transcript level is directly correlated with the level of accu-

mulated carotenoids in a number of flowers from various

plant systems, as reviewed in Zhu et al. (2010). In the

absence of further data specific to maize endosperm, this

observation is consistent with assuming that the transcript

level is positively correlated with enzyme activity; this is

what we do in order to link the gene expression and

metabolite levels. Additional work in Medicago truncatula

seeds found that at least 50% of all genes have a strong

positive correlation (R2 > 0.9) between transcript levels and

protein levels (Gallardo et al., 2007). This number

increases to 72% if we accept a positive correlation and an

R2 > 0.5, as can be calculated from Table S4 of Gallardo

et al. (2007).

At 30 DAP gene expression levels go below detection

limits. This means that we need to make a further assump-

tion about how the enzyme activity changes between 30

and 60 DAP. Figure 2 in M�echin et al. (2007) shows that

between 30 and 40 DAP, on average, enzyme activity in

secondary metabolism in maize endosperm undergoes a

linear decay of 1% per day. A similar dynamic behavior

occurs in M. trunculata seeds (see, for example, Figure 1B

of Gallardo et al., 2007) Because all genes in the model

code for metabolic enzymes from secondary metabolism,

we assumed that transcript abundance undergo a 30% lin-

ear decay between 30 and 60 DAP.

To model the gene expression level we further assumed

that the transcriptional rate (TR) of a given carotenogenic

gene G is constant at any given developmental stage in

the endosperm. This assumption is consistent with whole-

transcriptome analysis that finds gene expression activity

to be well correlated with the developmental stage of the

maize endosperm (Chen et al., 2014; Li et al., 2014). Specif-

ically the literature states that there is strong transcrip-

tomic reprogramming in developing endosperm, which is

mainly attributable to drastic changes in the early and late

stages. This could explain why a piecewise approximation

with one breakpoint is sufficient to model gene expression

in our case (see Methods in Appendix S1). In addition we

assume that the mRNA degradation rate follows first-order

kinetics (Equation 1), as reported for higher plants (Green,

1993; Lambein, 2003). Initially we also created alternative

models using other formalisms with more parameters

(Alves et al., 2008). However, a statistical analysis using

the Bayesian information criterion (BIC) metric indicated

that such models were not superior to the linear model

described by Equation 1 (see Methods in Appendix S1):

dG

dt
¼ TR � k �G (1)

Here TR represents the transcription rate for the gene

and is assumed to be constant. The rate constant k is also

constant, except where noted (see ‘Model Building and

Optimization’ in Experimental Procedures). Given that we

had no information about the regulation of expression for

the various genes, we used Equation 1 to represent the

overall gene expression dynamics of any given gene as a

piecewise defined function (see Experimental Procedures).

This approach allowed us to phenomenologically account

for the various shifts in gene expression levels that are

known to occur as endosperm goes through its various

developmental stages in maize and other plants (Fraser

et al., 1994; Ghassemi-Golezani et al., 2011).

To model the carotenoid accumulation level we used a

generalized mass action (GMA) representation (Equation 2;

Sorribas and Savageau, 1989). Again, we note that initially

we also created alternative models using other formalisms

with more parameters (Alves et al., 2008). However, a sta-

tistical analysis using the BIC metric indicated that such

models were no better than the power-law model

described by Equation 2 (see Methods in Appendix S1 for

details).

dXi

dt
¼

Xp

k¼1

aik
Yn

j¼1

X
gijk

j

Xq

k¼1

bik
Yn

j¼1

X
hijk

j (2)

where Xi represents the metabolite of interest, Xj repre-

sents all individual metabolites or genes involved in the

production or consumption of Xi, aik represents apparent

production rate constants, bik represents apparent con-

sumption rate constants, gijk represents apparent kinetic

orders in production reactions and hijk represents apparent

kinetic orders in consumption reactions. Apparent rate con-

stants and apparent kinetic orders are the parameters that

can be estimated from fitting the model to the experimen-

tal data.

Although this representation is simple it is still capable

of capturing non-linearities in the dynamic behavior of the

system being modeled. In addition, the number of parame-

ters (a, b, g and h) to be estimated is typically lower than

that for other non-linear models that can be created for the

same system (Voit, 2013).
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The full version of the carotenogenic pathway we used

to anchor our model is depicted in Figure 1. This general

pathway is then adapted to describe the dynamics of gene

expression and metabolite levels in each maize line. The

line-specific pathways are shown in Figure S1. Tables S1

and S2 indicate which genes in each line encode for

enzymes that catalyze each of the reactions. We then cre-

ated four independent mathematical models to describe

the dynamic behavior of each pathway, using systems of

ODEs in GMA format (see Experimental Procedures and

the Methods in Appendix S1). Each model is then opti-

mized to infer the parameters that best fit the experimental

data, as described in Experimental Procedures.

At the gene expression level, the optimized models fit

the experimental data very well (adjusted R2 ≥ 0.8). This

indicates that our assumptions are consistent with the

experimental data for transcript abundance. Good fits

between modeling predictions and metabolite profiles

were only possible after incorporating additional biological

processes and reactions into the models (see Table 1).

These processes and reactions are biologically plausible,

as indicated by the cited literature in Table 1. Their inclu-

sion improved the way in which our models fitted the data.

Thus, the modeling workflow helped to identify molecular

processes that make a significant contribution to shaping

the dynamics of carotenoid accumulation in a line-specific

manner. These processes were previously unaccounted for

in our understanding of the system.

The model’s explanation of the metabolite experimental

data in Line 1 (see Table 1) improves if one assumes that

the parameters for the enzyme activities that produce and

consume antheraxanthin are different before and after 22.5

DAP. For Line 2, in addition to antheraxanthin, we

assumed a similar situation for phytoene, b-carotene,
b-cryptoxanthin and zeaxanthin. For Line 3, we considered

that the parameters for the rate of degradation of astaxan-

thin changed after 25 DAP. The time boundaries for the

various piecewise equations come about as a consequence

of abrupt changes in the slopes of the metabolic accumula-

tion rate and are automatically determined by the optimiza-

tion algorithm. The timing is consistent with a change in

the developmental stage of maize endosperm that takes

place between 20 and 25 DAP. Moreover, additional sink

processes for adonixanthin, echinenone, 3-OH-echinenone

and b-cryptoxanthin were considered. For Line 4, the

parameters for the rate of production and degradation of

adonixanthin, 3-OH-echinenone, antheraxanthin and zeax-

anthin were allowed to change after 25 DAP. Additionally,

we added an extra degradation term for echinenone, 3-OH-

echinenone and b-cryptoxanthin.
Additional discussion of the modeling process, together

with a visual description of the modeling workflow, is

given in the Experimental Procedures. The detailed sys-

tems of ODEs for each maize line are given in the Results

section of Appendix S1. Graphical representations of how

well the models fit the experimental time series for

metabolites and transcript levels in each maize line are

shown in Figures S2–S18.
We note that the worst fitted metabolite was always the

least abundant (a-cryptoxanthin in Line 1, b-cryptoxanthin
in Line 2 and 3-OH-echinenone in Line 3). This was

because every attempt we made to improve the fit to the

dynamics of these lower-abundance metabolites intro-

duced larger errors to the fitting of more abundant

metabolites. As a consequence, larger global errors would

be introduced in the model. Overall, the final models

explained the experimental data for their respective maize

lines with high adjusted R2 values (0.93 for Line 1, 0.79 for

Line 2, 0.91 for Line 3 and 0.92 for Line 4). The coefficient

of determination, R2, is a measure for quantifying the

goodness of fit of a model. It is defined as the proportion

of variability of the data that is explained by the model as

a predictor. In linear models it is the popular r2 (Spiess and

Neumeyer, 2010).

Table 1 List of additional biological processes that were tested to
improve the fitting of the models to experimental results

Modification (Type)
Line
1

Line
2

Line
3

Line
4

Inhibition of antheraxanthin by lutein
(1)

9 9 – 9

Phytoene piecewise defined (2) 9 U 9 9

b-Carotene piecewise defined (2) 9 U 9 9

b-Cryptoxanthin piecewise defined (2) 9 U 9 U

Zeaxanthin piecewise defined (2) U U 9 U

Antheraxanthin piecewise defined (2) U U – U

3-OH-echinenone piecewise defined (2) – – 9 U

Adonixanthin piecewise defined (2) – – 9 U

Astaxanthin piecewise defined (2) – – U 9

b-Carotene extra degradation (3) – – 9 U

b-Cryptoxanthin extra degradation (3) – – U 9

Echinenone extra degradation (3) – – U U

3-OH-echinenone extra degradation (3) – – U 9

Adonixanthin extra degradation (3) – – U 9

A dash (–) indicates modifications that were not attempted in the
corresponding model because either the genes that code for the
relevant reactions are not present in the lines or the relevant
metabolites are below detection limits. A cross (9) indicates modi-
fications that failed to improve the fitting. A check mark (U) indi-
cates modifications that improve model fitting to experimental
results.
The references that support their plausible existence of the
attempted modifications are the following: (i) lutein may be a sub-
strate of zeaxanthin epoxidase (Garc�ıa-Plazaola et al., 2007); (ii)
carotenoid biosynthesis may undergo shifts in regulation through-
out various developmental stages of the plant (Fraser et al., 1994),
and our baseline models may fail to capture said shifts; (iii) light
exposure may also contribute to carotene degradation (Boon
et al., 2010).
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Strategies for improving carotenoid production

Given how well the optimized models described the exper-

imental data for each of the maize lines, we assume that

they provide a good explanation for the carotenoid meta-

bolism in each lines. Hence, we could use dynamic sensi-

tivity analysis (see Experimental Procedures) to identify

strategies for further modulation of gene expression that

are expected to lead to improvements in the accumulation

of the various metabolites. The dynamic sensitivity of a

given metabolic concentration Xi to a specific parameter pj

estimates the change in concentration Xi at time t, if pj

changed its value at the beginning of the simulation. We

use relative sensitivities in our analysis. Briefly, positive

(negative) sensitivities with a value of s(t) at time t indicate

that a change of 1% in the parameter at the initial time will

lead to a change of approximately plus (minus) s(t) times

in the corresponding metabolite at time t with respect to

its value at time t in the original simulation.

In all maize line models, the production of the a-branch
of carotenoids (a-cryptoxanthin and lutein) could be best

improved by increasing the expression of the Zmlyce gene.

Increasing the expression of either the Zmlycb or the

Gllycb genes was predicted to improve the accumulation

of b-branch carotenoids (b-carotene and b-cryptoxanthin).
Accumulation of ketocarotenoids (echinenone, 3-OH-echi-

nenone, adonixanthin and antheraxanthin) was predicted

to improve by increasing the expression of the PacrtW and

Gllycb genes. In addition, increasing the expression of

Zmpsy1 in Line 2 was predicted to lead to large increases

in accumulated b-carotene. An increase was also predicted

in Line 1. However, this increase was too small to be repre-

sented in Figure 3. In most cases, the values for the maxi-

mum sensitivities indicate that gene expression would

need to be raised at least two-fold to achieve a two-fold

accumulation of the relevant metabolites. The results of

the sensitivity analysis (t = 60 DAP) are summarized in Fig-

ure S2 and given in detail in Figures S15–S18 and

Tables S3–S10.

Testing non-linear effects of changing expression for

single genes

In the previous subsection we presented a differential first-

order sensitivity analysis. Such an analysis is accurate for

predicting sensitivities to infinitesimal perturbations. We

wanted to understand how well these predictions might

hold up under realistic finite changes that could propagate

non-linearly across the system. This led us to perform in

silico experiments that implemented finite changes in the

expression of relevant genes and measure the effect of

those changes in the accumulation of the various carote-

noids.

We implemented independent single-gene manipulation

experiments in each maize line by using the mathematical

model representing that line and individually increasing by

two-fold the expression of Zmpsy1, Zmlyce, Zmlycb,

Gllycb and PacrtW. These genes were chosen because

Figure 3. Effect of doubling basal gene expression in Line 1.

The effect of doubling the basal level of gene expression for Zmpsy1, Zmlyce and Zmlycb and the effect of simultaneously doubling the basal level of gene

expression for Zmpsy1 and Zmlyce (Zmpsy1–Zmlyce) and Zmpsy1 and Zmlycb (Zmpsy1–Zmlycb). The x-axis in each plot represents time, while the y-axis repre-

sents the normalized accumulation of carotenoids. Normalization was done by dividing the amount of accumulated metabolite at each time point by the amount

of that metabolite which accumulated at 50 days after pollination (DAP) in Line 1. If the curve goes above 1, the metabolite accumulates with respect to Line 1; if

it stays below 1, the metabolite is less abundant after changing basal gene expression than it was in Line 1.
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sensitivity analysis identified them as coding for the

enzymes that are more likely to affect metabolic concentra-

tions upon changing their expression. These experiments

identify possible non-linear effects of changing gene

expression in the maize lines that our sensitivity analysis

might have missed.

The simulations for Line 1 showed that sensitivity analy-

sis predicted quantitatively the finite changes in metabolite

concentrations resulting from a two-fold increase in Zmp-

sy1 expression (Figure 3). This was also true for Zmlycb

and Zmlyce.

The simulations for Line 2 showed that sensitivity analy-

sis predicted quantitatively the changes caused by a two-

fold increase in the expression of either Zmlycb or Gllycb

(Figure 4). Sensitivity analysis also correctly predicted the

quantitative changes in metabolite accumulation caused

by a two-fold increase in the expression of Zmpsy1, except

for b-carotene. The accumulation of this metabolite was

about three-fold less than predicted by the sensitivity anal-

ysis. Similarly, a two-fold increase in the expression of

Zmlyce caused an accumulation of a-cryptoxanthin that

was about three-fold less than expected from the

sensitivity analysis. This identified the presence of non-lin-

ear effects that cause larger changes than those predicted

by the differential sensitivity analysis when doubling the

expression of Zmpsy1 or Zmlyce.

The simulations for Lines 3 (Figure 5) and 4 (Figure 6)

showed that sensitivity analysis quantitatively predicted

most of the changes in metabolite accumulation caused by

a two-fold increase in each of the tested genes. One excep-

tion is observed when increasing the expression of Zmlycb

by two-fold in Line 3, which led to a significant decrease in

b-carotene, while sensitivity analysis predicted that an

increase of between one- and two-fold would occur.

Another exception is observed when increasing the expres-

sion of PacrtW by two-fold in Line 4, which led to a signifi-

cant decrease in adonixanthin, while sensitivity analysis

predicted that only a very slight decrease would occur.

Testing the effects of simultaneous changes in the

expression of two genes

To test the effect of simultaneously changing the expres-

sion of two genes in the accumulation of b-carotenoids, we

performed several double-gene manipulation experiments.

Figure 4. Effect of doubling basal gene expression in Line 2.

The effect of doubling the basal level of gene expression for Zmpsy1, Zmlyce, Zmlycb and Gllycb and the effect of simultaneously doubling the basal level of

gene expression for Zmpsy1 and Zmlyce (Zmpsy1–Zmlyce), Zmpsy1 and Zmlycb (Zmpsy1–Zmlycb) and Zmpsy1 and Gllycb (Zmpsy1–Gllycb). The x-axis in each

plot represents time, while the y-axis represents the normalized accumulation of carotenoids. Normalization was done by dividing the amount of accumulated

metabolite at each time point by the amount of that metabolite which accumulated at 60 days after pollination (DAP) in Line 2. If the curve goes above 1, the

metabolite accumulates with respect to Line 2; if it stays below 1, the metabolite is less abundant after changing basal gene expression than it was in Line 2.

© 2016 The Authors
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We independently increased by two-fold the expression of

the gene pairs Zmpsy1–Zmlyce, Zmpsy1–Zmlycb, Zmpsy1–
Gllycb and Zmpsy1–PacrtW in all lines where the relevant

pair was present. The genes chosen for these experiments

were those that have a stronger effect in changing meta-

bolic accumulation in each line, when their expression was

independently changed.

First, we independently doubled the expression of either

Zmpsy1–Zmlyce or Zmpsy1–Zmlycb in Line 1 (Figure 3).

We observed that these coordinated changes had effects

that were approximately additive (in normalized or log-

space). For example, accumulation of phytoene increased

by three-fold in the Zmpsy1 single-gene experiment, was

not affected in the Zmlyce single-gene experiment and

decreased by half in the Zmlycb single-gene experiment.

This led to a three-fold increase in phytoene in the Zmp-

sy1–Zmlyce double-gene experiment and to a 2.5-fold

increase in the Zmpsy1–Zmlycb double-gene experiment.

Figure 5. Effect of doubling basal gene expression in Line 3.

The effect of doubling the basal level of gene expression for Zmpsy1, Zmlyce, Zmlycb, Gllycb and PacrtW and the effect of simultaneously doubling the basal

level of gene expression for Zmpsy1 and Zmlyce (Zmpsy1–Zmlyce), Zmpsy1 and Zmlycb (Zmpsy1–Zmlycb), Zmpsy1 and Gllycb (Zmpsy1–Gllycb), and Zmpsy1

and PacrtW (Zmpsy1–PacrtW). The x-axis in each plot represents time, while the y-axis represents the normalized accumulation of carotenoids. Normalization

was done by dividing the amount of accumulated metabolite at each time point by the amount of that metabolite which accumulated at 60 days after pollination

(DAP) in Line 3. If the curve goes above 1, the metabolite accumulates with respect to Line 3; if it stays below 1, the metabolite is less abundant after changing

basal gene expression than it was in Line 3.
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In Line 2, most experiments also showed an approxi-

mately additive effect between the two genes of each

pair (Figure 4). Some non-linearities were observed in

the Zmpsy1–Zmlyce double-gene experiment. This

experiment identified an increase in the amounts of

accumulated a-cryptoxanthin and a decrease in the accu-

mulation of b-carotene with respect to what one would

expect from the independent effects of Zmpsy1 and

Zmlyce. The Zmpsy1–Zmlycb and Zmpsy1–Gllycb dou-

ble-gene experiments also showed similar non-linearities

regarding the production of b-carotene, resulting in the

accumulation of unexpectedly high amounts of the

metabolite.

Double-gene experiments in Lines 3 (Figure 5) and 4

(Figure 6) showed an approximately additive effect

between the two genes of each pair (Figure 5).

Figure 6. Effect of doubling basal gene expression in Line 4.

The effect of doubling the basal level of gene expression for Zmpsy1, Zmlyce, Zmlycb, Gllycb and PacrtW and the effect of simultaneously doubling the basal

level of gene expression for Zmpsy1 and Zmlyce (Zmpsy1–Zmlyce), Zmpsy1 and Zmlycb (Zmpsy1–Zmlycb), Zmpsy1 and Gllycb (Zmpsy1–Gllycb), and Zmpsy1

and PacrtW (Zmpsy1–PacrtW). The x-axis in each plot represents time, while the y-axis represents the normalized accumulation of carotenoids. Normalization

was done by dividing the amount of accumulated metabolite at each time point by the amount of that metabolite which accumulated at 60 days after pollination

(DAP) in line 4. If the curve goes above 1, the metabolite accumulates with respect to Line 4; if it stays below 1, the metabolite is less abundant after changing

basal gene expression than it was in Line 4.
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Experimental validation of predictions

We hoped to validate two qualitative predictions resulting

from our analysis. First, the prediction that an increase in

Zmpsy1 transcript levels (which correlates to protein activ-

ity), would lead to increased levels of accumulated phy-

toene 60 DAP. Second, that an increase in Zmpsy1

transcript levels does not generally correlate to accumu-

lated levels of b-carotene 60 DAP.

We therefore measured Zmpsy1 transcript levels in the

endosperm of four additional synthetic maize lines (CARO2,

KETO2, OR9CARO2 and OR9KETO2) 30 DAP: CARO2

expressed Zmpsy1, PacrtI and Gllycb; KETO2 expressed

Zmpsy1, sCrbkt and sBrcrtZ; OR9CARO2 expressed the

same transgenes as CARO2 in addition to AtOr; OR9KETO2

expressed the same transgenes as KETO2 in addition to

AtOr. Additionally, we also measured the accumulated

levels of phytoene and b-carotene in those lines 60 DAP.

The results are shown in Table 2.

To measure how changing the levels of Zmpsy1 tran-

script affect end-point accumulation of phytoene at 60 DAP

we compared line CARO2 with line OR9CARO2 and line

KETO2 with line OR9KETO2. This pairing permits a more

controlled comparison, because the two lines in each pair-

wise comparison only differ in one gene (AtOR). We calcu-

lated the finite relative sensitivity of phytoene to Zmpsy1

transcript levels (FS(phyt,psy1), defined in the Experimen-

tal Procedures). If our prediction that increasing Zmpsy1

activity increases phytoene accumulation is qualitatively

correct, then FS(phyt,psy1) should be larger than zero.

Table 3 shows that this is the case.

Similarly, to measure how modified levels of Zmpsy1

transcript affect end-point accumulation of b-carotene at 60

DAP we also calculated the finite relative sensitivity of b-
carotene to Zmpsy1 transcript levels (FS(b-car,psy1),
defined in Experimental Procedures). Our predictions

emphasize that increasing Zmpsy1 transcript levels only

leads to increases in b-carotene accumulation in specific

situations (e.g. for Line 2) and not as a general rule. If these

predictions are qualitatively correct, then FS(b-car, psy1)

should vary greatly between positive and negative num-

bers, depending on the maize line. Table 3 shows that this

is the case.

DISCUSSION

Mathematical models are frequently used in synthetic biol-

ogy to aid in the design and implementation of novel bio-

logical circuits with precise behavior (Benner and Sismour,

2005). Although less common, it is also possible to use

such models to study a posteriori how to improve a novel

biological circuit that has been introduced into an organ-

ism. Both methods rely on available quantitative informa-

tion on the behavior of the parts used in the circuits.

Having this information to hand is crucial for accurate

mathematical modeling. Initiatives like BioBricks (Shetty

et al., 2008) or BIOFAB (Mutalik et al., 2013) strive to create

a repository of well-standardized biological parts that can

be used for circuit design in synthetic biology. Quantitative

information on biological parts is often limited to

microbes, and knowledge of mechanisms and parameters

is still absent for most plant and/or animal systems. In

addition, it is often difficult to estimate a priori which inter-

actions the synthetic pathway will have with the metabo-

lism of the host organism. This leads to situations in which

traditional model building is hindered by a lack of informa-

tion about mechanisms, parameter values and identifica-

tion of additional biological processes that influence the

behavior of the synthetic circuit (Liu and Stewart, 2015).

Consequently, using such models to efficiently identify

minimal changes in the circuit that could improve its func-

tion becomes almost impossible. In this work we imple-

mented a workflow that effectively sidesteps some of

these challenges. The workflow is summarized in Figure 2

and combines experimental measurement of gene expres-

sion and metabolite concentrations (Farr�e et al., 2013) with

mathematical modeling.

First, we avoided the need for additional measurements

to obtain quantitative information about the system. We

did this by using mathematical interpolation to obtain a

dense time series from the levels of gene expression and

metabolites. This method is valid when the changes

between experimentally measured points are smooth, as

seems to be the case for our systems.

Second, we sidestepped the lack of knowledge about the

mechanism of individual steps in the pathways. We did

this by using the GMA representation, a mathematical for-

malism based on approximation theory (Voit and

Table 2 Experimental measurements from lines CARO2, KETO2,
OR9CARO2 and OR9KETO2

Line
Zmpsy1 mRNA
levels 30 DAP

b-Carotene
levels 60 DAP

Phytoene
levels 60 DAP

CARO2 1.6 8.2 117.5
KETO2 0.15 11.8 53.7
OR9CARO2 1 5.9 102.2
OR9KETO2 0.16 5.2 61.3

DAP, days after pollination.
mRNA transcript levels were normalized to the levels of actin
mRNA. Carotenoid levels are measured in lg g�1 dry weight.

Table 3 Finite relative sensitivities of end-point accumulation of
carotenoids to changes in Zmpsy1 transcript levels

Comparison
FS(phytonene,
Zmpsy1)

FS(b-carotene,
Zmpsy1)

CARO2 versus OR9CARO2 0.3 0.8
KETO2 versus OR9KETO2 2.1 �8.4
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Savageau, 1982; Voit, 2013), and allowing for the parame-

ter optimization process to identify time points at which

basal metabolic and gene expression activities could

change, resulting in piecewise differential equations. This

provided a heuristic way to capture changes in promoter

activities that are well known to occur during the develop-

ment of maize endosperm (Fraser et al., 1994; Ghassemi-

Golezani et al., 2011).

Third, the fitting process revealed critical points in our

understanding of how the pathway operates within the

host and interacts with native cell metabolism, suggesting

additional biological processes that must be considered if

one is to quantitatively understand the dynamic behavior

in the four maize lines. Those processes were sink reac-

tions for some carotenoids that could result either from

light-induced degradation that is known to occur (Boon

et al., 2010) or from non-specific utilization of those carote-

noids by other aspects of endosperm metabolism.

Why are these processes not equally important in shap-

ing the accumulation dynamics of carotenoids in all lines?

The parameter values for the various models help us

explain this. For example, consider b-carotene. In all lines,

the rate parameter for production of b-carotene (a8) is of

the order of magnitude of 10 DAP�1. In Line 4, the order

of magnitude of the rate parameter that determines usage

of b-carotene to produce other carotenoids (a9) is of the

order of magnitude 1 DAP�1, which is also the order of

magnitude of the rate parameter that governs degradation

of b-carotene by other means (e.g. light). This means that

the flux of b-carotene degradation through both channels

(generic and synthesis of other carotenoids) is comparable

in Line 4. In contrast, in Lines 1–3 the order of magnitude

of the rate parameter that determines usage of b-carotene
to produce other carotenoids (a9) is also of the order of

magnitude of 10 DAP�1. This means that adding an addi-

tional b-carotene degradation process, which we allowed

for in the optimization process, will have little impact on

the quality of model fitting and this little effect will not

improve the fitting in a statistically significant way.

Because of that, the rate constant for this process was not

significantly different from zero and the process was not

explicitly considered in the model. Therefore this process

is negligible for Lines 1–3. Similar reasoning can be used

to explain the other cases in Table 1.

The experimental measurements of gene expression

and metabolite abundance in the four maize lines demon-

strated the non-linearity in the dynamic behavior of the

maize lines. Although modeling the non-linear nature of

biochemical systems is not a trivial task, our models accu-

rately capture these non-linearities in the four plant lines.

That the models described the data well suggests that the

application of sensitivity analysis to those models would

predict how variations in transcriptional rates might affect

final metabolite accumulation in the maize endosperm.

Importantly, we identified those specific transcriptional

rates in which changes would more effectively increase the

accumulation of each specific carotenoid in the endo-

sperm. This information permits rational planning of which

genes to target for further engineering in order to improve

metabolic yields in the pathways. We have experimentally

validated some of the predictions by analyzing how chang-

ing levels of Zmpsy1 affect the accumulation of phytoene

and b-carotene at 60 DAP in four additional synthetic lines

that are independent of those for which we created the

models. We found that increasing levels of Zmpsy1 were

positively correlated with the accumulation of phytoene 60

DAP, as predicted. We also found that, as predicted, levels

of Zmpsy1 are not necessarily positively correlated with

accumulated levels of b-carotene 60 DAP.

Moreover, we performed further in silico experiments to

analyze the effect of such perturbations. Results from these

experiments were quantitatively consistent with most of

our predictions from sensitivity analysis. Discrepancies are

a consequence of non-linear effects of changes in gene

expression propagating through the system. The in silico

experiments also identified various potentially useful syn-

ergistic effects. For example, simultaneous upregulating of

the expression of Zmpsy1 and Gllycb was predicted to lead

to an accumulation of b-carotene superior to what one

might expect from summing the effects of the individual

gene perturbation experiments. A more accurate and

systematic synergism analysis could be carried out using

second-order modeling formalisms (Salvador, 2000). How-

ever, using such formalisms significantly increases the

number of parameters that need to be optimized in the

model, which would require increasing the size of the data-

set used for model optimization.

There are several limitations in this work that should be

taken into consideration. First, using an approximate for-

malism means that predictions derived from the model

analyses have a range of validity that is model dependent.

However, the validity of GMA models such as the ones we

built tend to range over several orders of magnitude for

the values of the concentrations (Sorribas and Savageau,

1989; Voit, 2013). Secondly, the limited number of experi-

mental data necessitated interpolations (and to a lesser

extent extrapolation) to estimate additional data points. As

a result, if the changes in gene expression are not smooth

between interpolators, these estimations and the parame-

ter values of the models will be skewed. However, our data

with synthetic maize suggests that changes in gene expres-

sion are smooth over time (Zhu et al., 2008; Naqvi et al.,

2009, 2011; Li et al., 2010; Bai et al., 2011; Farr�e et al.,

2013). Thirdly, the lack of data on direct protein amounts

and/or activity introduces an additional layer of uncertainty

in the modeling, by having to assume that changes in gene

expression are directly proportional with, or correlate to

changes in protein levels. Published data suggest that this
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assumption is reasonable for metabolic enzymes in plant

systems, particularly in carotenoid metabolism (Fraser

et al., 1994). Nevertheless, the fact that the models explain

the experimental data very well suggests that these limita-

tions may not be critical for the systems we investigated in

this work.

There is a final noteworthy limitation to our work. Plant

synthetic biology still lacks the means to control the

expression of genes as proposed here, making it impossi-

ble at this point to devise an experimental method to regu-

late gene expression in a controlled way and implement

our in silico experiments other than by trial and error. Our

approach could provide further motivation for the develop-

ment of more quantitative methods for manipulation of

gene expression in plants, for example by developing pro-

moters with well-calibrated expression levels.

Overall, our analyses have revealed which genes should

be further engineered to increase the accumulation of

specific carotenoid metabolites. Our results showed that

many of these genes are the same in the various maize

lines, suggesting that there are common strategies for

qualitatively increasing the yields of the four pathways.

Some of the strategies identified here correlate well with

the genetic manipulations that an expert would use to

attempt to improve accumulation of various carotenoids.

For example, an expert in carotenoid biosynthesis would

be likely to try to increase the activity of the first enzyme in

each branch of the pathway in order to increase the accu-

mulation of carotenoids from that branch. This strategy is

also identified by our models. This partially validates the

models and suggests that they could be trusted to identify

at least some of the less obvious strategies that could

improve carotenoid accumulation. For example, increasing

Zmpsy1 expression in Line 2 is predicted to increase the

accumulation of b-carotene, a result that is consistent with

other experimental observations in various plant systems

(Shewmaker et al., 1999; Lindgren et al., 2003; Ravanello

et al., 2003; Diretto et al., 2007; Maass et al., 2009; Kim

et al., 2012; Luo et al., 2013; da Silva Messias et al., 2014).

The models can also be used to pinpoint the quantitative

modulation of gene expression that one might require in

order to reach specific carotenoid production targets. For

example, our analysis reveals that if one has a specific

quantitative goal for improving the yields the required

changes in gene expression are specific for each pathway.

Several examples can be used to illustrate this point.

Increasing the expression of Zmpsy1 is predicted to

increase the accumulation of phytoene in all maize lines.

However, depending on the specific line, doubling the

basal level of Zmpsy1 expression will cause phytoene

accumulation to increase between 2 and 20 times. Increas-

ing the expression of Zmlyce is predicted to increase the

accumulation of a-carotenoids in all maize lines. However,

depending on the specific line, doubling the basal level of

Zmlyce expression will cause a-carotene accumulation to

increase between 3 and 15 times. As a final example,

increasing the expression of either Zmlycb or Gllycb is pre-

dicted to increase the accumulation of b-carotene in all

maize lines that have the gene. However, depending on

the specific line, doubling the basal level of Gllycb expres-

sion will cause accumulation of b-carotenes to increase

between 1.5 and 5 times.

Our results also identified those lines whose further engi-

neering is more likely to lead to higher yields for the vari-

ous carotenoids. For example, if one wants to increase b-
carotene accumulation by as much as possible, one should

focus on further engineering Line 2. Doubling the basal

gene expression levels of Zmpsy1 and Gllycb is predicted

to lead to a 200-fold increase in b-carotene accumulation in

this line. If a single genetic manipulation is to be used, then

doubling Zmlycb basal gene expression in this line is pre-

dicted to lead to a seven-fold increase in b-carotene.
Finally, the analysis also indicated that changing the

expression of a gene may have pleiotropic effects, leading

to the accumulation of some carotenoid(s) at the cost of

depleting the metabolic pools of other pathway intermedi-

ates. For example, doubling the expression of Zmlyce in

Line 2 is predicted to increase a-carotene by 15-fold while

decreasing the accumulated amount of b-carotene by the

same relative amount.

EXPERIMENTAL PROCEDURES

Transgenic plants, gene expression measurements and

metabolomics data

The experimental data were generated from four transgenic plant
lines carrying various combinations of carotenogenic transgenes,
as described in Zhu et al. (2008) and Farr�e et al. (2016). Endo-
sperm samples were taken from immature seeds at 15, 20, 25, 30,
40, 50 and 60 DAP, frozen in liquid nitrogen and stored at �80°C.
Quantitative RT-PCR of the relevant genes and metabolomics
measurements were performed as described in Farr�e et al. (2013).
Three replicates of all measurements were made and averaged.

The experimental data to validate the predictions were gener-
ated from four other transgenic plant lines carrying various com-
binations of carotenogenic transgenes. Line CARO2 contains
Zmpsy1, PacrtI and Gllycb. Line KETO2 contains Zmpsy1, sCrbkt
and sBrcrtZ. Line OR9CARO2 was obtained by crossing CARO2
with a maize line containing the Arabidopsis thaliana Orange gene
(AtOR). Line OR9KETO2 was obtained by crossing KETO2 with a
maize line containing AtOR. Endosperm samples were taken from
immature seeds at 30 and 60 DAP, frozen in liquid nitrogen and
stored at �80°C. Quantitative RT-PCR of Zmpsy1 and metabolo-
mics measurements of phytoene and b-carotene were performed
as described in (Farr�e et al., 2013).

Software

All calculations, including implementation and analysis of the
mathematical models, were done using Mathematica (Wolfram,
2003). All notebooks are provided as supporting files (Notebook
files S1–S4).
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Obtaining data for model optimization

The transcripts of 12 endogenous carotenogenic genes, together
with five carotenogenic transgenes, were measured. The accumu-
lation of total and individual carotenoids was also measured. The
measurements for the four transgenic maize lines were taken over
a period of 2 months, providing molecular snapshots of carote-
noid biosynthesis in maize endosperm at several developmental
stages.

The temporal profiles of the transcripts only cover the period
between 15 and 30 DAP, while the temporal profiles of carote-
noids cover the period between 15 and 60 DAP. This is because
RNA can only be isolated from immature endosperm tissue, as
seed maturation leads to the degradation of RNA. In contrast, car-
otenoids can be extracted even if the seed is mature. As a result,
we used linear extrapolation to estimate transcript abundance
between 30 and 60 DAP in all lines. To do this, we assumed that
transcript abundances undergo a 30% decay between 30 and 60
DAP, as suggested by published transcript measurements of
endogenous secondary metabolism genes in maize endosperm
(M�echin et al., 2007).

In all cases, our time series dataset was too small to allow for a
statistically significant optimization of the models for each line. To
obtain additional (pseudo-)experimental data we interpolated the
time series. This is an approach commonly used whenever the
variation between consecutive observed data points is sufficiently
smooth and the experimental error is suitably small (Baud et al.,
1991; Buzzi-Ferraris and Manenti, 2010; Farr�e et al., 2013).

Several interpolation functions are available. We employed an
Akima interpolation function, thus guaranteeing smooth curves
that are continuous and have continuous first derivatives (Akima,
1974). These two aspects are important for model optimization
(see below). The interpolated functions were then used to gener-
ate dense time series of extended experimental measurements
that we employed for model optimization.

Model building and optimization

To model the gene expression layer we assumed that the tran-
scriptional rate (TR) of a gene G at any given developmental stage
is constant. We also assumed that mRNA degradation follows
first-order kinetics (Equation 1). Both these assumptions have
been validated for many genes in higher plants (Green, 1993; Lam-
bein, 2003). Furthermore, we assumed the overall gene expression
dynamics of any given gene may be approximated as a piecewise
defined function. This is a phenomenological way of taking into
account possible changes in gene expression occurring between
the various developmental stages that maize endosperm under-
goes after pollination (Ghassemi-Golezani et al., 2011). In addition,
it is well known that the metabolic activity of the maize endo-
sperm decays when reaching its mature developmental stages
(M�echin et al., 2007). To account for this we assume that the
degradation rate constant k depends linearly on time as follows: k
(t) = bt, where b is a positive number. Overall, the rate equa-
tion that governs the gene expression dynamics for each gene is
given by Equation 1.

To model the carotenoid accumulation layer we used the power-
law formalism and the GMA representation (Equation 2). The
properties of this mathematical and computational framework
have been recently reviewed at length (Savageau, 1969a,b, 1971;
Voit, 2013). This was an appropriate modeling framework under
our experimental conditions, for four reasons. First, it allowed us
to build models when no detailed information was available about
the mechanisms of the processes being modeled. Second, the

framework allowed for automated creation of a model from a con-
ceptual diagram of the pathways in each line. Third, the mathemat-
ical representation is simple, yet non-linear, thus permitting the
capture of some of the non-linearities in the dynamic behavior of
the system being modeled. Finally, the number of parameters (as,
bs, gs and hs) to be estimated was lower than that for other non-
linear models that can be created for the same system (Voit, 2013).

The GMA representation is canonical. This means that model
construction, diagnosis and analysis follow strict rules (Voit,
2013). The starting point of model construction is identifying
which variables are important and should be explicitly included in
the model (Voit, 1991). Therefore, we included as variables all the
carotenoids and transcripts involved in the carotenogenic pathway
of the engineered maize lines whose corresponding abundance
was measured previously (Farr�e et al., 2013).

Subsequently, we enumerated the relationships among these
variables. We did this by deciding whether or not variable Xj

directly influences accumulation or clearance of variable Xi (Voit,
1991). We searched for such relationships in the literature and
those we found are listed in Tables S1 and S2, next to the transge-
nes or endogenous genes that code for the corresponding enzy-
matic activity. A version of the full carotenogenic pathway in
plants is depicted in Figure 1. This initial conceptual model was
then individually adapted to each of the four maize lines as shown
in Figure S1. The model for a specific line considered only those
genes that are present in that line and the metabolites that are
consistently above detection limits. This is because no variable for
which quantitative data are absent may be included in the mathe-
matical models.

Next, we formulated the independent GMA representations cor-
responding to each of the conceptual diagrams in Figure S1. That
is, the instantaneous change Ẋi of each metabolite/dependent vari-
able Xi was defined as a combination of the rates of the different
reactions acting on Xi, either producing or degrading it. Each term
is a product of power-law functions containing every relevant vari-
able that directly affects the process, as described in Equation 2.
We used the GMA representation to write the system of ODEs for
each maize line. These ODE systems allowed for numerical simu-
lation and analysis of the temporal dynamics of the pathways,
and facilitated the prediction of pathway responses to changes in
any of the model parameters (Voit, 1991).

The next step is to decide on the method for model optimiza-
tion that will assign adequate numerical values to the parameters
in the GMA models. This is arguably one of the most difficult
steps in the analysis of biological systems (Voit, 2013). We used
the slope-substitution method (Voit and Savageau, 1982; Voit
et al., 2009; Lee et al., 2011). This method requires a numerical
estimation of the rates of change for each metabolite at a suffi-
ciently large number of time points. These estimations are given
by the numerical first derivative of the Akima interpolation func-
tions. Here, we sampled the time series at 1-day intervals. For
each time, the left-hand side of the equations is replaced with
numerical rates for that time point. As a result the ODE system
becomes a system of n 9 m algebraic equations, where n is the
number of equations in the original ODE system and m is the
number of time points we sampled (Voit, 2013). This procedure is
statistically valid (Brunel, 2008) and has an important advantage:
it avoids all numerical integrations of the differential equations,
which significantly speeds up the process (Voit, 2013). We note
that the power-law formalism imposes constraints on the possible
values of the parameters. Apparent rate constants are always lar-
ger than zero, while positive kinetic orders are known to have val-
ues that are lower than small integers, typically five (Sorribas and
Savageau, 1989). Here we allowed six to be the upper bound for
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those kinetic orders. The constrained optimizations were per-
formed by the NonlinearModelFit function of Mathematica, using
an interior point method to minimize the least squares of the
residuals.

Next, we estimated the optimal parameter values of the tran-
script time series. Due to the way in which the transgenes were
inserted in the four maize lines, their expression is probably not
regulated by either the amount of carotenoid or the expression
levels of the other genes. This enabled us to estimate the kinetic
parameters for each gene expression independently, using Equa-
tion 1. In some cases we did this with two piecewise functions as
described by Machina et al. (2010), because Equation 1 does not
always capture the non-monotonic behaviors of some of the tran-
script time series. These piecewise equations provide an implicit
way to account for any major changes in basal gene expression
throughout maize endosperm development.

Subsequently, we estimated the parameter values of the GMA
models for the metabolites, through multi-objective non-linear
optimization of the set of algebraic equations obtained using the
slope-substitution method. Whenever a single GMA equa-
tion could not possibly capture the non-monotonic behaviors of
the time series for the relevant metabolite, we allowed that equa-
tion to be described by a piecewise function with one breakpoint
as described by Machina et al. (2010) and as mentioned above for
gene expression.

Assessment of model quality

In order to assess the quality of the optimized parameters we
computed their 95% confidence intervals (see Tables S11–S14). To

do this we used a jackknife approach, adapted from Alper and
Gelb (1990). We randomly extracted 10% of the points in the data
sets used in the optimization. We locked the value of all parame-
ters but one at their best estimated value. We then optimized the
remaining parameter and repeated this step up to 100 times, each
time with a new set of data. In this way we were able to compute
the confidence interval of all the estimated parameters without
any assumption regarding their distribution. We note that confi-
dence intervals computed for parameters whose value is close to
the boundary imposed by our constrained optimization are only
indicative and may be significantly biased. We remind the reader
that the constraints imposed on parameter values are that 0 ≤ ki-
netic orders ≤6 and 0 ≤ rate constants.

Sensitivity analysis

We performed a sensitivity analysis on our optimized models. By
definition, sensitivity measures how much a feature changes if
one of the parameters in the system is varied by a certain amount
(Voit, 2013). This analysis allowed us to understand how the vari-
ables of the system depended on its parameters, therefore provid-
ing information about potentially useful and relevant regulatory
targets.

Sensitivity analysis also separates situations where small inac-
curacies in parameter values are almost irrelevant from those

where noise or error in the estimates can lead to almost
unpredictable results. Consequently, this analysis also allowed
us to identify components of the model that may be problematic
due to unusually high sensitivity values (Savageau, 1975; Voit,
2013).

Relative steady-state parameter sensitivities are defined as ‘the
relative change in a system component (X) that is caused by a rel-
ative change in a parameter value (p)’, (Voit, 1991):

�SðX ;pÞ ¼ @X=X

@p=p
¼ @ logX

@ logp
: (3)

The Methods section in Appendix S1 shows how we can extend
this definition out of steady state for a dynamic system with multi-
ple variables and parameters. That extension is used to compute
the relative dynamic sensitivity of each dependent variable to the
estimated rate constant parameters in our models. Those sensitiv-
ities are presented in Tables S3–S10.

Given that we were interested in how changing the expression
of specific genes would affect the accumulation of the various car-
otenoid metabolites, we analyzed the sensitivities of each metabo-
lite to changes in the estimated transcriptional rate of each gene.
These sensitivities allowed us to predict how to further engineer
the transgenic maize lines by revealing which genes should be
over- or underexpressed, in order to increase accumulation of
specific carotenoids.

In order to validate some of the predictions of the sensitivity
analysis we calculated a finite relative sensitivity of end-point
accumulation of a metabolite M to changes in the activity of a
gene G using Equation 4:

Here, [G] and [M] represent the levels of G transcript and M accu-
mulation, respectively. The subscript ‘final’ indicates that we con-
sider the latest DAP for which metabolite measurements are
available in the relevant line (50 DAP in Line 1, 60 DAP in Lines 2–
4). FS provides a finite estimation of the relative change in M with
respect to a relative change in G. As is the case with differential
sensitivities, FS(M,G) > 0 (<0) means that an increase in the activ-
ity of G will lead to an increase (decrease) in M.
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Figure S1. Line-specific carotenoid biosynthetic pathways.

FSðM;GÞ ¼D logðMÞ
D logðGÞ

¼
½G�line with highest activity of G

ð½M�line with highest activity of G
� ½M�line with lowest activity of G

Þfinal
½M�line with highest activity of G

ð½G�line with highest activity of G
� ½M�line with lowest activity of G

Þ
(4)
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Figure S2. Relative sensitivities of metabolites to changes in the
basal transcription rate of each gene.

Figure S3. Experimental data, Akima interpolation and simulation
results for Line 1.

Figure S4. Standardized residuals of the optimized model for Line
1.

Figure S5. Experimental data, Akima interpolation and simulation
results for Line 2.

Figure S6. Standardized residuals of the optimized model for Line
2.

Figure S7. Experimental data, Akima interpolation and simulation
results for Line 3.

Figure S8. Standardized residuals of the optimized model for Line
3.

Figure S9. Experimental data, Akima interpolation and simulation
results for Line 4.

Figure S10. Standardized residuals of the optimized model for
Line 4.

Figure S11. Analysis of goodness of fit for the gene expression of
Line 1.

Figure S12. Analysis of goodness of fit for the gene expression of
Line 2.

Figure S13. Analysis of goodness of fit for the gene expression of
Line 3.

Figure S14. Analysis of goodness of fit for the gene expression of
Line 4.

Figure S15. Dynamic relative sensitivities of the various metabo-
lites in Line 1 to changes in the rate constants for gene expres-
sion.

Figure S16. Dynamic relative sensitivities of the various metabo-
lites in Line 2 to changes in the rate constants for gene expres-
sion.

Figure S17. Dynamic relative sensitivities of the various metabo-
lites in Line 3 to changes in the rate constants for gene expres-
sion.

Figure S18. Dynamic relative sensitivities of the various metabo-
lites in Line 4 to changes in the rate constants for gene expres-
sion.

Table S1. List of transgenes used to create the four synthetic
maize lines.

Table S2. List of endogenous genes active in the endosperm and
relevant for carotenoid biosynthesis.

Table S3. Relative sensitivity of each metabolite to changes in the
apparent rate constant of each reaction in Line 1, 50 days after
pollination.

Table S4. Relative sensitivity of each metabolite to changes in the
apparent rate constant of each reaction in Line 2, 60 days after
pollination.

Table S5. Relative sensitivity of each metabolite to changes in the
apparent rate constant of each reaction in Line 3, 60 days after
pollination.

Table S6. Relative sensitivity of each metabolite to changes in the
apparent rate constant of each reaction in Line 4, 60 days after
pollination.

Table S7. Relative sensitivity of each metabolite to changes in the
rate constant for transcription of each gene considered in Line 1,
50 days after pollination.

Table S8. Relative sensitivity of each metabolite to changes in the
rate constant for transcription of each gene considered in Line 2,
60 days after pollination.

Table S9. Relative sensitivity of each metabolite to changes in the
rate constant for transcription of each gene considered in Line 3,
60 days after pollination.

Table S10. Relative sensitivity of each metabolite to changes in
the rate constant for transcription of each gene considered in Line
4, 60 days after pollination.

Table S11. Parameter values for the mathematical model for Line
1.

Table S12. Parameter values for the mathematical model for Line
2.

Table S13. Parameter values for the mathematical model for Line
3.

Table S14. Parameter values for the mathematical model for Line
4.

Appendix S1. Supporting background, methods, results and refer-
ences.

Notebook file S1. Mathematica notebook containing all the code
for the simulation and analysis of Line 1.

Notebook file S2. Mathematica notebook containing all the code
for the simulation and analysis of Line 2.

Notebook file S3. Mathematica notebook containing all the code
for the simulation and analysis of Line 3.

Notebook file S4. Mathematica notebook containing all the code
for the simulation and analysis of Line 4.
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