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SUMMARY

Microorganisms evolved adaptive responses to sur-
vive stressful challenges in ever-changing environ-
ments. Understanding the relationships between
the physiological/metabolic adjustments allowing
cellular stress adaptation and gene expression
changes being used by organisms to achieve such
adjustments may significantly impact our ability to
understand and/or guide evolution. Here, we studied
those relationships during adaptation to various
stress challenges in Saccharomyces cerevisiae,
focusing on heat stress responses. We combined
dozens of independent experiments measuring
whole-genome gene expression changes during
stress responses with a simplified kinetic model of
central metabolism. We identified alternative quanti-
tative ranges for a set of physiological variables in the
model (production of ATP, trehalose, NADH, etc.)
that are specific for adaptation to either heat stress
or desiccation/rehydration. Our approach is scalable
to other adaptive responses and could assist in
developing biotechnological applications to manipu-
late cells for medical, biotechnological, or synthetic
biology purposes.

INTRODUCTION

Microorganisms evolved adaptive responses that enable them

to survive stressful challenges in ever changing environments

(Darwin, 1859; Bidle, 2015; Cushman and Bohnert, 2000;

Jayaraman, 2011; Nevo, 2001; Reusch and Wood, 2007; Seo

et al., 2011; Vilaprinyo et al., 2010). Adaptation to those chal-

lenges is achieved by adjusting metabolism to new conditions,

through the modulation of gene expression, protein levels and

activity, and the flow of metabolites (Chen et al., 2015; Gasch,

2007; Jenkins et al., 1997; Seo et al., 2011; Vilaprinyo et al.,

2010). Such adjustments integrate and balance the effects of

stress with the physiological needs of the cell, ensuring that

critical physiological parameters are fine tuned to guarantee sur-

vival (Curto et al., 1995; Nikerel et al., 2012; Sorribas et al., 1995;

Vilaprinyo et al., 2006; Voit and Radivoyevitch, 2000). The ranges
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within which those parameters may fall to guarantee survival can

be considered as quantitative operating principles for the

response. Understanding those principles and the molecular

determinants of successful stress responses (successful pheno-

types) may have a significant impact in our ability to interpret

evolution, treat diseases, and manipulate microorganisms for

medical, biotechnological, or synthetic biology purposes.

Saccharomyces cerevisiae is well characterized at the

genomic, proteomic, and metabolomic levels in a variety of envi-

ronmental and physiological conditions making it an important

model to study stress adaptation (Castells-Roca et al., 2011;

Diezmann and Dietrich, 2011; Gibney et al., 2013; Malinovska

et al., 2012; Molina-Navarro et al., 2008; Tirosh et al., 2011)

The sets of yeast genes whose expression is modulated during

adaptive responses to different types of stress only partially

overlap (Berry and Gasch, 2008; Serra-Cardona et al., 2015). In

addition, the changes in expression for ubiquitous stress respon-

sive genes quantitatively depend on the type and intensity of the

stress challenge, as can be seen by comparing various pub-

lished experiments (Causton et al., 2001; Eisen et al., 1998;

Gasch et al., 2000). These quantitative dependencies suggest

the existence of specific ranges for those changes (operating

ranges or feasibility regions) that lead to successful phenotypes,

enabling cell survival (Curto et al., 1995; Nikerel et al., 2012; Sor-

ribas et al., 1995; Vilaprinyo et al., 2006; Voit and Radivoyevitch,

2000). Investigating if such feasibility regions for gene expres-

sion changes exist and how and why they came about could

allow us to understand their causal relationship with the physio-

logical and metabolic requirements that are needed for cellular

adaptation and survival. That understanding would identify

quantitative operating principles for adaptation and enable the

creation of genotype-to-phenotype mapping of stress adapta-

tion at the molecular level (Coelho et al., 2010; Curto et al.,

1995; Gjuvsland et al., 2011, 2013; Guillén-Gosálbez and Sorri-

bas, 2009; Savageau et al., 2009; Sorribas et al., 1995, 2010; Vi-

laprinyo et al., 2006; Voit and Radivoyevitch, 2000; Wang et al.,

2012; Zackrisson et al., 2016).

Here, we establish a systematic methodology that identifies

quantitative operating principles underlying metabolic adapta-

tion based on gene expression profiles and apply it to the anal-

ysis of stress responses in S. cerevisiae. We adapt a minimal

model of yeast central metabolism previously used to study

heat stress adaptation (Curto et al., 1995; Sorribas et al., 1995,

2010; Vilaprinyo et al., 2006; Voit and Radivoyevitch, 2000) and
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Table 1. Physiological Variables Used to Identify Possible Operating Principles in the Adaptive Responses of Yeast to Heat Stress

Variable Acronym Rationale for Using This Variablea
Basal

Condition

Quantitative Boundaries

for Heat Stress Survival

V1 VATP Changes in gene expression need to accommodate an increase in the

rate of ATP production.

60 123.349 < V1 < 339.19

V2 VTre Changes in gene expression need to accommodate an increase in the

rate of trehalose synthesis.

0.0012 0.0076 < V2 < 0.094

V3 VNADPH Changes in gene expression need to accommodate an increase in

reducing equivalents; the flux of NADPH production is used as a proxy

for this increase.

1.77 4.31 < V3 < 11.21

V4 GLC Changes in gene expression should allow cells to avoid needless

increases in the concentration of intermediates, thus minimizing possible

toxic effects and the taxing of the solvent capabilities of the cell.

0.035 0.0094 < V4 < 0.080

V5 G6P Increases in the production/uptake of Glucose-6P are needed for the

upregulation of energy production.

1.01 2.48 < V5 < 19.91

V6 F16P Depletion of Fructose-1,6,BisP needs to be tightly regulated and

minimized, as this metabolite is an important bifurcation point in

glycolysis that provides flux for the production of glycerol.

9.10 0.111 < V6 < 20.58

V7 PEP Changes in gene expression should allow cells to avoid needless

increases in the concentration of intermediates, thus minimizing possible

toxic effects and the taxing of the solvent capabilities of the cell

0.0094 0.00019 < V7 < 0.014

V8 ATP ATP concentration should increase to meet energy demands. 1.12 2.39 < V8 < 6.73

V9 Cost Adaptation should be economic. We use changes in gene expression as

a proxy for this variable; GEP (gene expression profiles that allow

adaptation with minimal changes in gene expression should be favored.

0 8.10 < V9 < 14.09

V10 VGlyce Glycerol has a protective role in heat stress adaptation, and its production

should either increase or not decrease by much.

1.93 0.18 < V10 < 2.07

V11 c Changes in the activity of the enzymes TPS and PFK should be

coordinately balanced after heat stress, in order to appropriately regulate

the branching point in the glycolytic flux that divides material between

glycolysis and trehalose production.

52.06 5.34 < V11 < 34.48

See Data S1 for a description of the dynamic behavior of these variables.
aSee Pozo et al. (2011), Sorribas et al. (2010), Vilaprinyo et al. (2006, 2010), Voit (2003a), Voit and Radivoyevitch (2000), and references therein.
combine that model with dozens of independent experimental

measurements to estimate the quantitative feasibility regions

for changes in gene expression and the quantitative physiolog-

ical requirements that functionally constrain those regions. We

identify physiological requirements that define three distinct

feasibility regions, specific for adaptation to heat stress, desic-

cation/rehydration, and pH, respectively. Our results also show

that alternative models that focus on other parts of metabolism

are required to identify physiological constraints and feasibility

regions for adaptive responses to other types of stress.

RESULTS

A Feasibility Space for Physiological Adaptation of Yeast
to Heat Stress
First, we focus on the adaptive response to heat stress.

S. cerevisiae copes with this stress bymounting a transcriptional

response that modulates and adapts its physiology to the tem-

perature increase. The adaptation requires that production of en-

ergy, reducing equivalents, and protective metabolites (such as

glycerol and trehalose) is upregulated, while themetabolic fluxes

through glycolysis must remain balanced and coordinated.

In addition, concentration of glycolytic intermediates should
2422 Cell Reports 22, 2421–2430, February 27, 2018
remain as low as possible, changes in regulatory metabolites

such as F16P should be fine-tuned, and changes in gene expres-

sion should lead to an adaptive response that is as economical

as possible. There are 11 specific metabolic variables defined

in Table 1 that can be used as a proxy for quantifying these gen-

eral physiological criteria (Sorribas et al., 2010; Vilaprinyo et al.,

2006, 2010; Voit, 2003a; Voit andRadivoyevitch, 2000). More de-

tails are given in Data S1.

By using an appropriate mathematical model of metabolism,

one can estimate how experimentally determined changes in

gene expression during response to heat stress propagate and

change the physiological variables identified in Table 1. The

model we use is described in more detail in the Experimental

Procedures below and in the Supplemental Experimental Pro-

cedures. The basal values for the 11 variables in Table 1 are

calculated using the model, thus characterizing the basal steady

state of pre-stressed yeast.

In order to characterize the boundaries within which the genes

considered in the model change their expression under HS (heat

stress), we selected the 9 datasets pertaining to this response

and referenced in the tables of data file Data S1 and in the

Supplemental Experimental Procedures. The transcriptional

changes of all the genes coding for enzymes in the model (see



Figure 1. Spider Plot Representation of the

Feasibility Range of Adaptation of the 11

Physiological Variables from Table 1 during

Heat Stress Response

Each axis represents the logarithm of one of the

variables. Variables in red grow toward the center

of the axis. Variables in blue grow toward the

outside of the axis. The gray area in all panels in-

dicates the range of values that the eleven vari-

ables can assume in yeasts that adapt well to heat

stress. The black line in all panels indicates the

basal steady-state values for each variable.

(A) Determination of the feasibility range using the

heat stress experiments from Data S1. Each

dashed curve represents one of the databases.

(B) Validation of the feasibility range with inde-

pendent experiments. The red and green curves

represent the median and average (respectively)

responses of our macro array experiment used to

validate the feasibility range of the variables with a

new yeast strain. The red area represents quan-

tiles 0.25–0.75 around the median determined

using bootstrap. The blue line represents the

values for the RefSeq experiment GSE58319

used to validate the feasibility range of the vari-

ables for a newer, more accurate, measurement

technique.

(C) The red line represents the values for the 11

variables from Table 1 in response to a tempe-

rature shift from 29�C–33�C (GDS36). The dashed

lines represent the values for the 1 variables from

Table 1 for preadapted yeast that are subjected

to a stronger heat stress (GDS15, 33�C–37�C
black line; GDS112, 30�C–37�C magenta line;

GDS2910, 30�C–37�C green line). See Figure S1

for details about the dynamic behavior of these

variables during adaptive responses. The ranges for each axis are the following: V1˛[123.35, 339.19]; V2˛[0.0076, 0.094]; V3˛[4.31, 11.21]; V4˛[0.0094, 0.080];
V5˛[2.48, 19.91]; V6˛[0.11, 20.58]; V7˛[0.00019, 0.013]; V8˛[2.39, 6.73]; V9˛[8.10, 14.09]; V10˛[0.18, 2.07]; and V11˛[5.34, 34.48].
Data S1) are then extracted from the resulting datasets and used

to estimate the changes in protein activities, as described in the

Experimental Procedures. Those changes in protein activity

were plugged into the model, and the corresponding metabolic

state under those new activities was calculated independently

for each of the HS datasets. This allowed us to assess the

approximate quantitative boundaries between which each of

the variables from Table 1 can change to enable heat stress

adaptation and survival (Figure 1A). That figure identifies a

well-defined region, marked in gray, within which the physiolog-

ical adaptation of yeast to heat stress occurs, according to the

11 variables being estimated from the experimental results.

This region is a proxy for the feasibility space of phenotypical

adaptation of yeast to heat stress. We note that the smaller the

fraction of the axis within the gray region, the smaller the range

within which the corresponding variable falls during the adaptive

response.

The quantitative feasibility space identified in Figure 1A could

be dependent on biological-environmental factors and on mea-

surement techniques. To investigate if that space is robust to

changes in biological-environmental factors we performed addi-

tional heat stress experiments with a strain of S. cerevisiae that

is different from those used to generate the feasibility space of

Figure 1A. The new experiments are described in the Experi-
mental procedures section. The results from these experiments

fall within the feasibility region defined in Figure 1A (Figure 1B).

To further investigate if the feasibility region is robust to chang-

ing experimental techniques, we searched for whole transcrip-

tome RNA sequencing (RNA-seq) experiments in GEO that

measured changes in gene expression during heat stress adap-

tation (GEO: GSE58319) (Swamy et al., 2014). According to our

model, the changes in gene expression for these experiments

lead to changes in variables V1–V3, V5–V6, and V8–V11 that

fall within the feasibility region identified using array techniques

(Figure 1C). Only variables V4 (glucose concentration) and V7

(phosphoenolpyruvate concentration) fall slightly outside of their

feasibility ranges. These results suggest that feasibility regions

could be a feature of adaptive responses that is robust to the

measurement technique.

If the feasibility region from Figure 1A is a biological design

principle, one should expect that the adaptive response of cells

pre-adapted with a mild heat stress (phase 1 of the response)

and then subjected to stronger temperature increases (phase

2) should, overall, fall within the feasibility space defined in Fig-

ure 1A for the 11 physiological variables. To test this hypothesis

we used the datasets for gene expression changes under mild

heat stress to calculate how the values for the eleven variables

changed (phase 1). Then, we took this preadapted steady state
Cell Reports 22, 2421–2430, February 27, 2018 2423



Figure 2. Specificity of Feasibility Space for

Adaptation to Heat Stress, Desiccation/

Rehydration, and pH Shifts

Each row represents a type of stress and each

column represents one of the physiological vari-

ables. Green (red) entries indicate that the value

of the variable falls within (outside of) the feasi-

bility range for adaptation. More intense colors

are further away from the feasibility boundaries.

White indicates that the criteria are about the

boundary value. Stresses: HS, heat stress;

HSadapt, preadapted yeast subjected to stron-

ger heat stress; CS, cold shock; OxS, oxidative;

RS, reductive; Osm, osmotic; NS, nutrient; Tox,

toxic; pH, pH stress; Des, desiccation; OsmHS,

yeast subjected to osmotic stress followed by

heat stress; OxHS, oxidative combined with heat

stress.

(A) Feasibility space for heat stress. See Fig-

ure S2A for details.

(B) Feasibility space for desiccation/rehydration.

See Figure S2B for details.

(C) Feasibility space for pH shifts. See Figure S2C

for details.
and used other, independent, datasets for gene expression

changes of preadapted yeasts subsequently subjected to stron-

ger heat stresses (phase 2) to estimate the physiological vari-

ables of Table 1 (Figure 1C). We see that most of the 11 variables

fall within the feasibility regions identified in Figure 1A. We

emphasize that the consistency of the results from this two-step

experiment with the feasibility space calculated in Figure 1A is

remarkable, taking into account the approximations that come

as a consequence of combining independent experiments

from different labs. Further details about the results from Figure 1

are presented and contextualized in Data S1.

Is the Feasibility Space Specific for Physiological
Adaptation to Heat Stress?
We wanted to understand if the feasibility space identified in

Figure 1A is also valid for adaptive responses to other types of

stress. To answer this question, we downloaded GEO

gene expression datasets from experiments that exposed

S. cerevisiae to various types of stress (seeData S1). These data-

sets measured changes in whole-genome gene expression dur-

ing yeast adaptation to desiccation, rehydration, osmotic, oxida-

tive, reductive, and nutrient stresses. As before, transcriptional

changes of genes coding for enzymes in the model were ex-

tracted from each dataset and the mathematical model was

used to calculate how those transcriptional changes affected

the eleven variables. Figure 2A shows that only heat stress re-

sponses fall within the feasibility region for all 11 variables from

Table 1. Figures 2B and 2C also show that none of the curves

that represent the changes in gene expression during the adap-

tive responses to other stress conditions fall fully within the feasi-

bility space defined in Figure 1A. Thus, the feasibility space of

adaptation in Figure 1A is specific for heat stress. They also sug-

gest that variables V1–V3 are important in separating the adap-
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tive response of yeast to heat stress from other adaptive re-

sponses. Overall, the results indicate that the variables from

Table 1 are sufficient to identify unique and specific quantitative

requirements imposed on yeast by adaptation to heat stress,

although they are not a complete molecular description of that

adaptation.

Can the Same Physiological Variables Be Biologically
Relevant in Defining Specific Feasibility Spaces for
Other Adaptive Responses?
Although the feasibility space in Figure 1A is specific for HS

response, fine-tuning of the same physiological variables might

also be important for the natural selection of adaptive responses

to other types of stress. If this is so, they could be used to identify

quantitatively different feasibility spaces that are specific for the

adaptive responses to each type of stress.

To investigate this possibility, for each type of stress, we es-

tablished the quantitative boundaries of the physiological

changes observed for the 11 physiological variables defined in

Table 1, in the same way as we did for HS adaptive responses.

This revealed that those variables can be used to identify two in-

dependent feasibility spaces that are specific for the adaptive re-

sponses to desiccation/rehydration, and (to a lesser extent) pH

stresses, respectively (Figures 2B, 2C, S2B, and S2C). This

was not true for adaptive responses to other stress types.

Thus, other metabolic variables need to be identified and used

in a modified mathematical model to identify feasibility spaces

for the adaptive responses to the remaining types of stress

(more details are given in Data S1).

Mapping Phenotype to Genotype
The feasibility space of metabolic adaptation shown in Fig-

ure 1A is obtained by mapping the changes in gene expression



Figure 3. Evolution Can Find Different Combinations of Changes in Gene Expression and Enzyme Activities that Are Equivalent with Respect

to the Changes They Cause in Variables V1–V11

Graphical representation of this situation for hexose transport activity S1. Each plane represents one of the heat stress response databases used to calculate the

feasibility region shown in Figure 1A.

(A)ActivityS1asa functionof activitiesS6andS7.Eachplane representsall possible setsof values forS1,S6,andS7 thatwouldgenerate thesamevalues forV1–V11

for the same heat stress database. The dot that falls in each plane represents the actual activity estimated from the experimental changes in gene expression data.

(B) Activity S1 as a function of two high-affinity transporters (HTX6 and HXT7) for the same heat stress responses we use as an example in (A). Each plane

corresponds to one of the databases. All points falling on a plane are formally equivalent, leading to the same S1 activity. The dots in each plane represent the

actual measurement for the adaptive response. See Figure S3 for details.
(‘‘genotype’’) to the changes in metabolism (‘‘phenotype’’) us-

ing a mathematical model. This ‘‘Genotype’’-to-‘‘Phenotype’’

mapping is a surjective mapping, as a set of changes in

gene expression uniquely generates a set of changes in the

physiological variables.

The same mathematical model can be used to create an

inverse mapping of the feasibility space for physiological

changes to a corresponding feasibility space for changes in

gene expression. This ‘‘Phenotype’’-to-‘‘Genotype’’ mapping

is degenerate, in the sense that a set of changes in phy-

siological variables can map to more than one set of

changes in gene expression. Taking the steady state for the

dependent variables, we used the ODE system to calculate

the required changes in five enzyme activities as functions

of that steady state and of the remaining enzyme activities

(details in Data S1). The feasibility range for enzyme activities

S1–S5 falls on a plane and depends on the exact value for

S6 and S7 (see Figures 3 and S3). This shows that cells can

function at different values for the independent enzyme activ-

ities and still survive heat stress, if the differences between the

activities of the various enzymes are coordinated in such a

way that the values for the physiological variables remain

within their own feasibility range for survival, which is consis-

tent with previous results from other groups (Chen et al.,

2013).

A similar analysis can be done for the changes in gene expres-

sion. The enzyme activities represented by S1–S7 depend line-

arly on subsets of a total of 22 genes. The mapping of the

changes in enzyme activity to the changes in gene expression

is defined in the Experimental Procedures. Figure 3A shows an

example of the gene expression change to enzyme activity

change mappings for the same examples represented in Fig-

ure 3B. Again, we show that cells can use a wide range of coor-

dinated changes in gene expression to adapt metabolism and

make the value of physiological variables move to their feasibility

region of adaptation.
Dynamic Physiological Adaptation of S. cerevisiae to
Heat Stress
The transient dimension of adaptive responses is very important.

In order to understand how the feasibility space of physiological

variables changes over time we take all databases from Data S1

that contain time series information for gene expression changes

(heat stress, osmotic stress, oxidative and reductive stress, and

desiccation).

We used these databases to create interpolated time series for

relevant gene expression changes. These interpolated functions

were used as input for the model to simulate the transient

response of the physiological variables during stress adaptation

(see theExperimental Procedures for details). Snapshots of these

simulations are shown at 2, 10, 20, and 60min after stress in Data

S1 and in Figure S1. During heat stress response, production of

energy (ATP) reducing equivalents (NADPH) and protective mol-

ecules (trehalose plus glycerol) sharply increases until 20 min af-

ter the heat stress and tends to stabilize afterward. The resources

invested by the cell in adapting metabolism to the new situation

increase sharply for the first 10 min of the response, remaining

approximately constant afterward. Similarly, at 10 min, the cell

reaches a new balance for resources allocated to the various

glycolytic flux branches. The timing atwhich the various variables

fromTable 1 reach the newsteady statewassimilar for all typesof

stress we analyzed. However, the quantitative changes in energy

production, NAD(P)H production, and trehalose production are

always different from those observed during heat stress. In addi-

tion, the way that the glycolytic material is distributed between

production of glycerol and ATP is also different between heat

stress and the other stresses (details in Data S1).

DISCUSSION

Biological Design Principles in Adaptive Responses
Evolution is fundamentally constrained by basal metabolism. In

spite of this, the quasi modularity of many biological circuits
Cell Reports 22, 2421–2430, February 27, 2018 2425



enables evolution to almost independently select and optimize

each functional module that performs a specific task within the

network of metabolism (Afek et al., 2011; Friedlander et al.,

2013; Kashtan and Alon, 2005; Kashtan et al., 2009; Ryan

et al., 2012; Thompson et al., 2013). That selection may eventu-

ally find biological design principles, identifying specific circuit

topologies as optimal for the function they perform and fixing

them in the population (Davidson et al., 2012; Lim et al., 2013;

Poyatos, 2012; Salvado et al., 2011; Savageau, 1971a, 1975,

2013; Steinacher and Soyer, 2012). Fine tuning the parameters,

concentrations, and fluxes of those circuits allows evolution to

further identify, select, and fix quantitative operating principles

for their adaptive responses (Guillén-Gosálbez and Sorribas,

2009; Nikerel et al., 2012; Sorribas et al., 2010; Vilaprinyo,

2007; Vilaprinyo et al., 2006; Voit, 2003a, 2003b; Voit and Radi-

voyevitch, 2000).

Stressful and frequent environmental changes make cells

evolve increasingly efficient adaptive responses that ensure an

appropriate reallocation of cellular resources in order to deal

with and survive the insult (Dhar et al., 2011; Kutyna et al.,

2012; Lopes et al., 2008; Sulmon et al., 2015). Long-term evolu-

tionary experiments (Dhar et al., 2011, 2013; Sucena et al., 2014;

Teotónio and Rose, 2000; Teotónio et al., 2009) show that many

different gene expression programs might produce equivalent

adaptive phenotypes. Our results emphasize this aspect and

show that evolution explores a multidimensional space of gene

expression to find solutions that are equivalent with respect to

the metabolic variables that yeast must modulate to survive

heat stress.

Quantitative Adaptation of Yeast to Heat Stress
There is a multi-level molecular adaptation of yeast cells to tem-

perature increases. At the genomic level, there is modulation of

gene expression that induces the production of chaperones,

heat shock proteins, metabolic enzymes, and antioxidant de-

fense proteins (Boy-Marcotte et al., 1999; Vilaprinyo et al.,

2006). At the proteome level, the activity of pre-existing and

newly made proteins is regulated, both by temperature and by

other metabolic events associated with the temperature in-

crease (Nickells and Browder, 1988; Voit and Radivoyevitch,

2000). Finally, at the metabolomic level, the production of small

molecules and metabolites is adjusted in order to allow yeast

to meet the new physiological demands imposed on the cell by

the temperature increase (Berovic and Herga, 2007; Berovi�c

et al., 2007; Gibney et al., 2015; Voit, 2003a). Taken together,

these events protect proteins and cellular structures, enabling

recovery of the cell after stress adaptation.

Themetabolic variables in Table 1 provide a set of possible de-

scriptors to measure how yeast changes its metabolism as it

adapts to the various physiological demands imposed by heat

stress (Guillén-Gosálbez and Sorribas, 2009; Sorribas et al.,

2010; Vilaprinyo et al., 2006; Voit and Radivoyevitch, 2000).

The current study establishes the boundaries for the feasibility

regions within which the physiological variables can change to

create a successful phenotype of adaptation in a data driven

way, by integrating information from a large number of gene

expression experiments done in independent labs. These re-

gions can be viewed as operating principles that evolution found
2426 Cell Reports 22, 2421–2430, February 27, 2018
to enable heat stress adaptation. The feasibility regions for the

physiological variables map onto feasibility regions for change

its gene expression and protein activities. We find that the feasi-

bility regions are valid for a large variety of S. cerevisiae strains

(we compared 11 different strains). Furthermore, adapting

the model to compare the heat stress response between

S. cerevisiae, S. pombe, C. albicans, and C. glabrata cautiously

suggests that the feasibility regions for the metabolic variables

might also be at least partially generalizable to other unicellular

yeasts with a similar lifestyle and metabolism (details in Data

S1). Our time course analysis emphasized that the bulk part of

the adaptive response occurred at most 20 min after the heat

stress, both at the genetic and biochemical level, which is

consistent with decades of research on the subject (Morano

et al., 2012; Verghese et al., 2012).
Quantitative Adaptation of Yeast to Other Stresses
We also ask if the same physiological variables can be used to

define feasibility regions that are specific for other types of stress

response. We find that these variables define feasibility regions

specific for responses to desiccation/rehydration and pH shifts,

but not to other types of stress responses.

The work presented here is a proof of principle that one can

develop methodologies to identify multi-level feasibility spaces

for adaptive responses. This methodology can be summarized

as follows. First, the metabolites, fluxes, and other metabolic

variables that are important for the response should be tenta-

tively identified. If detailed experimental information about meta-

bolic adaption is not available, one could for example identify

which metabolic pathways globally change their expression in

whole-genome gene expression measurements. Second, a

model for the pathways that contribute to the changes in those

variables is needed. Third, estimates of how the various activities

in the model change in response to stress are required. Fourth,

these estimates are used to predict how the metabolic variables

change in response to stress and the metabolic changes are

used to identify the feasibility space of the metabolic changes.

This feasibility space for physiological adaptation can then be

used, together with the model, to estimate the feasibility space

for the changes in protein activity and in gene expression, thus

allowing us to establish a multilevel (metabolic, proteomic, and

genomic) set of feasibility spaces for adaptation to stress. In

principle, with enough available data, this methodology can be

applied to any organism and stress response.
EXPERIMENTAL PROCEDURES

Mathematical Model

In order to understand how the eleven variables constrain changes in gene

expression during heat stress response, we created a minimal mathematical

model of the parts of metabolism that affect those variables. We used the

GMA (generalized mass action) mathematical formalism (see the Supple-

mental Experimental Procedures for details.). This model includes a simplified

version of glycolysis that can be used to calculate how a specific change in a

given gene will affect the physiological requirement that was identified in Table

1. The mathematical model we use is given in full detail in the Supplemental

Experimental Procedures (Equations SE1–SE7).

We note that all calculations, simulations, and figures can be reproduced us-

ing Notebooks EV1–EV9, which are provided in Data S1.



Organizing Gene Expression Data According to Type of Stress

Experiments that exposed S. cerevisiae to stress andmeasured how the yeast

adapts its gene expression were identified by first searching GEO (National

Center for Biotechnology Information) for ‘‘stress’’ and ‘‘cerevisiae’’ and then

manually going through the list and identifying all experiments where classical

stress challenges where given to any strain of S. cerevisiae. All such databases

of micro array data were downloaded and stored locally. 38 databases, con-

taining 81 different independent experiments (see Data S1) were analyzed

and organized into 13 classes of stressful challenges (Section 1.5 in the Sup-

plemental Experimental Procedures).

Estimating Changes in Gene Expression

All entries for the 22 different genes considered in the model were extracted

from each database. For each database, we eliminated missing values for

the relevant gene and then used the average of the remaining entries as the

representative measure for the change in gene expression. Details regarding

how this was done are given at the end of Section 1.5 in the Supplemental

Experimental Procedures.

Estimating Changes in Enzyme Activity

All genes coding for proteins directly involved in the enzyme activities of the

model were considered. These were: S1 – hexose transporters (HXT) genes:

HXT1, HXT2, HXT3, HXT4, HXT6, HXT8; S2 – glucokinase/hexokinase (GLK)

genes: GLK1, HXK1, HXK2; S3 – phosphofructokinase (PFK) genes: PFK1,

PFK2; S4 – glyceraldehyde-3-phosphate dehydrogenase (TDH) genes: TDH1,

TDH2, TDH3; S4 – pyruvate kinase (PYK) genes: PYK1, PYK2; S6 – trehalose

synthase complex (TPS) genes: TPS1, TPS2, TPS3; and S7 – glucose-6-phos-

phate dehydrogenase (GD6PDH) gene: ZWF1 (Voit and Radivoyevitch, 2000).

We could not find direct measurements for the changes in all enzyme activ-

ities of the model under heat stress. Nevertheless, it is well-documented that

changes in enzyme activity and gene expression are highly correlated in

glycolysis (Ihmels et al., 2004). Because of this we assumed that the fold-

change in gene expression directly translates into a similar fold-change in

the activity of the corresponding enzymes, whenever a single gene coded

for that enzyme activity. This fold change was further weighted considering

the basal abundance of the protein, its specific activity, and whether or not

more than one isoform contribute to the activity (details in Section 1.6 of the

Supplemental Experimental Procedures and Data S1).

Finding Orthologs in Other Yeast Species

Orthologs for the 22 S. cerevisiae genes in Schizosaccharomyces pombe,

Kluyveromyces lactis, Candida glabrata, and Candida albicans were identified

using UniProt (The UniProt Consortium), searching for the species name com-

bined with the words: heat shock. These orthologs are given in Data S1.

Microarray Experiments

S. cerevisiae wild-type strain W303-1A was employed for the determination of

mRNA levels upon heat stress. Cells were grown exponentially in YPDmedium

at 25�C, at time 0 they were quickly shifted to 37�C by dilution with 3 vol of pre-

warmed fresh medium at 41�C and then maintained in a 37�C water bath for

subsequent recovery of samples at different time points. Four independent ex-

periments were carried out, and for each experiment two samples were pro-

cessed for each time point (eight replicates per time point). Total RNA isolation

and labeling, and determination of mRNA levels were done as described in

Molina-Navarro et al. (2008) at 0, 3, 6, 9, 12, 15, 18, 21, 25, 30, 45, and

60 min after heat stress. Values at each time point after the beginning of the

experiment were normalized by those at time 0.

Bootstrapping was used to determine confidence intervals for the changes

in gene expression at each time point in the following way. Four replicateswere

randomly selected from the eight experiments 100 times. The average time se-

ries for each set of replicates was estimated. Then, we calculated quantiles

0.025 and 0.975 of the bootstrapped datasets to estimate the 95% confidence

interval for the changes in gene expression at each time point.

Model Calculations

The steady state for each database was calculated by setting Equations

SE1–SE5 (see the Supplemental Experimental Procedures) to 0 and numeri-
cally calculating their roots using Mathematica’s (Wolfram, 1996) FindRoot

function. Using 1,000 random initial conditions for the dependent variables fol-

lowed by numerically calculation of the adapted steady state always led to the

same steady-state values for the same set of gene expression changes. Time

course simulations were done using the NDSolve function and using the basal

concentrations for initial values.

Steady-State Robustness

Biological systems must be able to adapt to and survive in an ever-changing

environment, without being overly sensitive to small changes that are spurious.

To achieve this, most biological systems have low sensitivity to fluctuation in

parameters (e.g., enzyme activity or Km) and such fluctuation will not greatly

affect its steady state or homeostasis (Kitano, 2002; Konopka, 2006; Sav-

ageau, 1969). This is called robustness of the steady state and it can be

measured using sensitivity analysis (Heinrich and Rapoport, 1974; Kacser

and Burns, 1973; Kitano, 2002; Konopka, 2006; Savageau, 1969, 1971b). In

this work we evaluated the local robustness of the model by analyzing the dif-

ferential relative sensitivities of each variable with respect to each parameter

(see Section 1.3 of the Supplemental Experimental Procedures for details).

In approximate terms, if SenðVi ;SjÞ= 0:5 (or �0.5), this means that when the

value of Sj changes by 100%, the value of Vi is expected to increase (or

decrease) by �50%.

Steady-State Stability

Return to homeostasis after a perturbation is an important property of biolog-

ical systems whose mathematical equivalent is steady-state stability. We per-

formed stability analysis of each steady state as described in Section 1.4 of the

Supplemental Experimental Procedures.

Principal Component Analysis

Principal component analysis (PCA) is a method to reduce the dimensionality

of a dataset and identify which orthogonal linear combinations of variables

contribute more strongly to the quantitative variation in the data. Varimax

PCA of the correlation matrix containing the eleven metabolic variables for

each stress experiments was done by calculating the eigenvalues and eigen-

vectors of the matrix (Glenn and Myatt, 2009).

Feature Analysis

While PCA provides a way to determine how many dimensions one needs to

describe the variability in the data at various degrees of accuracy, often the

PC themselves are difficult to interpret. Because of that we also performed

feature analysis. Feature analysis was done using two methods: relief-based

feature selection (RFS) and correlation-based feature selection (CFS) RFS

works by randomly sampling an instance from the data and then locating its

nearest neighbor from the same and opposite class. The values of the attri-

butes of the nearest neighbors are compared to the sampled instance and

used to update relevance scores for each attribute (Lee et al., 2011). CFS

works by evaluating the subsets of attributes rather than individual attributes,

and takes into account the usefulness of individual features for predicting the

class along with the level of inter-correlation among them (Hall and Holmes,

2003).

Analysis of the Transient Response

The temporal dynamics of themodel was studied in all cases where time series

were available for the gene expression data (databases GDS16, GDS20,

GDS30, GDS31, GDS34, GDS36, GDS108, GDS112, GDS113, GDS2712,

GDS2713, GDS2715, GDS2910, GDS3030, GDS3035 and GSE38478 from

Data S1). We simulated the adaptation of yeast to stresses from 0 to 60 min

after stress as described in Section 1.7 of the Supplemental Experimental

Procedures.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the data used in this work are GEO: GDS15,

GDS16, GDS17, GDS18, GDS19, GDS20, GDS21, GDS30, GDS31, GDS34,

GDS35, GDS36, GDS108, GDS111, GDS112, GDS113, GDS115, GDS1711,
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GDS2196, GDS2338, GDS2343, GDS2522, GDS2712, GDS2713, GDS2715,

GDS2716, GDS2910, GDS2925, GDS3030, GDS3035, GDS3137, GDS3438,

GDS3591, GDS3332, GDS3866, GSE58319, and GSE38478. All new acces-

sion numbers are provided in Data S1. Additional information and quantitative

data are also provided in the additional data notebooks EV1–EV9.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and one data file and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.02.020.
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Sorribas, A. (2011). Steady-state global optimization of metabolic non-linear

dynamic models through recasting into power-law canonical models. BMC

Syst. Biol. 5, 137.

Reusch, T.B.H., and Wood, T.E. (2007). Molecular ecology of global change.

Mol. Ecol. 16, 3973–3992.

Ryan, C.J., Roguev, A., Patrick, K., Xu, J., Jahari, H., Tong, Z., Beltrao, P.,

Shales, M., Qu, H., Collins, S.R., et al. (2012). Hierarchical modularity and

the evolution of genetic interactomes across species. Mol. Cell 46, 691–704.

Salvado, B., Karathia, H., Chimenos, A.U., Vilaprinyo, E., Omholt, S., Sorribas,

A., and Alves, R. (2011). Methods for and results from the study of design prin-

ciples in molecular systems. Math. Biosci. 231, 3–18.

Savageau, M.A. (1969). Biochemical systems analysis. II. The steady-state so-

lutions for an n-pool system using a power-law approximation. J. Theor. Biol.

25, 370–379.

Savageau, M.A. (1971a). Concepts relating the behavior of biochemical sys-

tems to their underlying molecular properties. Arch. Biochem. Biophys. 145,

612–621.

Savageau, M.A. (1971b). Parameter sensitivity as a criterion for evaluating and

comparing the performance of biochemical systems. Nature 229, 542–544.

Savageau, M.A. (1975). Optimal design of feedback control by inhibition: dy-

namic considerations. J. Mol. Evol. 5, 199–222.

Savageau,M.A. (2013). Systemdesign principles. In Quantitative Biology, M.E.

Wall, ed. (CRC Press), pp. 23–50.

Savageau, M.A., Coelho, P.M.B.M., Fasani, R.A., Tolla, D.A., and Salvador, A.

(2009). Phenotypes and tolerances in the design space of biochemical sys-

tems. Proc. Natl. Acad. Sci. USA 106, 6435–6440.

Seo, Y.-S., Chern, M., Bartley, L.E., Han, M., Jung, K.-H., Lee, I., Walia, H.,

Richter, T., Xu, X., Cao, P., et al. (2011). Towards establishment of a rice stress

response interactome. PLoS Genet. 7, e1002020.

Serra-Cardona, A., Canadell, D., and Ariño, J. (2015). Coordinate responses to

alkaline pH stress in budding yeast. Microb. Cell 2, 182–196.

Sorribas, A., Curto, R., and Cascante, M. (1995). Comparative characterization

of the fermentation pathway of Saccharomyces cerevisiae using biochemical

systems theory and metabolic control analysis: model validation and dynamic

behavior. Math. Biosci. 130, 71–84.

Sorribas, A., Pozo, C., Vilaprinyo, E., Guillén-Gosálbez, G., Jiménez, L., and

Alves, R. (2010). Optimization and evolution in metabolic pathways: global

optimization techniques in Generalized Mass Action models. J. Biotechnol.

149, 141–153.

Steinacher, A., and Soyer, O.S. (2012). Evolutionary principles underlying

structure and response dynamics of cellular networks. Adv. Exp. Med. Biol.

751, 225–247.
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