J. theor. Biol. (1993) 162, 81-102

Metabolic Pathway Characterization from Transient Response
Data Obtained In Situ: Parameter Estimation in
S-system Models

ALBERT SORRIBAST, SALVADOR SAMITIERY, ENrIC. [. CANELAT
AND MARTA CASCANTE]§

T Departament de Ciéncies Médigues Basiques and T Departament de
Bioquimica i Eisiologia, Universitat de Barcelona, Barcelona 08028. Catalunya, Spain

{Received on 26 May 1992, Accepted on 18 September 1992)

The actual values of internal metabolites and fluxes can be measured by a number
of experimental techniques and they provide important information for evaluating
the properties of a metabolic pathway in siru. In this paper we propose a sirategy to
properly exploit this information. The suggested approach permits estimation of a
set of parameters on the whole system so that a useful model can be constructed and
used to describe its components and systemic properties and to predict its behavior
under new conditions. A simulated reference pathway is provided to validate this
method and to show its utility in metabolic studies.

Introduction

Experimental determination of levels of metabolites in situ and their rate of variation
with time is now available by a number of techniques. In experiments with permeabil-
ized cells, the response to variations in external conditions or to perturbations in
internal metabolites can be measured without significant modifications of the in vive
conditions (see examples in Jorgeson & Nordlie, 1980; Choudary, 1984; Gowda et
al., 1988 ; and references in the review by Felix, 1982). A second class of experiments
involves NMR spectroscopy, which allows for direct determination of metabolites in
vivo (den Hollander & Shulman, 1983 ; Shulman, 1983, 1988; Cerdan & Seeling 1990,
Jeffrey er al., 1991). This technique allows for a simultaneous recording of ditferent
metabolites by using a single spectrum or by combining different alternative spectra
based on *H,*'P,"*C,”Na,”K and other isotopes (Cohen, 1983; Campbelt-Burk &
Shulman, 1987; Campbell-Burk et al., 1987; O’Fallon & Wright 1987; Kuchel ef al.,
1990). Because of these properties, there are an increasing number of metabolic
questions that have been addressed by this technique either qualitatively or by using
mathematical models (Cohen, 19874, b; Hutson et al., 1988; Laughlin, 1988; Malloy
et al., 1990; Jans & Willem, 1991 ; Sugden & Fuller, 1991; see also Cerdan & Seeling,
1990; Kuchel et al., 1990; Jeffrey et al., 1991 for recent applications). All these
experimental approaches can be used to record the time course of metabolite changes
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Facultat de Quimica, Universitat de Barcelona, Marti i Franqués, 1, Barcelona 08028, Catalunya, Spain.

81
0022-5193/93/090081 +22 $08.00/0 © 1993 Academic Press Limited



82 A. SORRIBAS ET AL,

after a particular perturbation of the operating steady state (see Katz ef al., 1979;
den Hollander et al., 1979, 1981, 1986; Sillerud & Shulman, 1983; Galazzo & Bailey,
1989; Houwen et al., 1991).

The kinetic characterization of an isolate enzyme from dynamic data is possible even
when more than one substrate or inhibitor is involved. The methodology for achieving
such charactenization is well defined and can be found in the literature (Cornish-
Bowden, 1976; Canela & Franco, 1986). In contrast, when data collected in the whole
system in situ are used, the information contained in the recorded time course of the
metabolite changes after a particular perturbation is not interpreted as easily as in iso-
lated experiments. In the intact system, changes in metabolite levels should not be fitted
to an individual rate law equation. These changes are a consequence of the balance of
the different rate laws of synthesis and degradation of the involved metabolites and |
concerns different enzyme reactions. In consequence, a different strategy and an
adequate systemic approach are needed to use this information in characterizing the
appropriate set of parameters so that a mathematica! model allowing for a complete
characterization of the system in the studied conditions can be defined.

An appropriate tool that permits construction of a workable model of the system
behavior (i.e. incorporation of all the relevant interactions of the system, adequate
representation of the component properties and of the system as a whole, and suitable
analysis of the properties of the system) is based on the concepts of the power-law
formalism and has led to mathematical models in the form of S-systems (Savageau,
1969, 1972, 1974, 1975, 1976; Voit & Savageau, 1982, 1987; Cascante et al., 1991,
see also Savageau et al., 1987a, b; Cascante et al., 19894, b; Savageau & Sorribas,
1989; Sorribas & Savageau, 1989q, c; for how to relate this approach to other tech-
niques based on sensitivity coefficients). The S-system methodology provides a sys-
tematic way of building a mathematical representation of a biochemical pathway by
focusing in its systemic properiies. In this approach, individual reactions are aggre-
gated into net processes accounting for the synthesis and degradation of each internal
metabolite (Savageau, 1969, 1976; Voit & Savageau, 1982, 1987; Sorribas & Sava-
geau, 19894, ¢). After aggregation, a power-law representation of each aggregated
process gives the S-system representation (see Savageau, 1976; Voit & Savageau,
1982, 1987; Sorribas & Savageau, 19894, ¢, for discussion of the optimal strategies
for building this representation).

The S-system equations allow for a complete steady-state characterization of the
system by means of Jogarithmic gains (for example, response of an internal metabolite
to changes in an independent metabolite) and parameter sensitivities (for example,
response of an internal metabolite to change in a system parameter) (Savageau,
1971 a, b, 1972,1974,1975,1976; Savageau & Sorribas, 1989; Sorribas & Savageau,
19894, b, c). It also allows analysis of the dynamic response and the comparison
of alternative' pathway designs which results in predictions about their optimal
organization based on defined criteria for functional effectiveness (Savageau, 1972,
1974, 1975, 1979, 1985; Irvine & Savageau, 19854, b).

The S-system models are characterized by a set of parameters that include gen-
eralized kinetic orders and rate constants. Their relationship to the usual enzyme
kinetic parameters have been discussed elsewhere (Savageau, 1976; Voit & Savageau,
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1987; Savageau, 1991b). In that sense, it is important to stress that the S-system
models are not an alternative to mechanistic rate laws for studying enzyme mecha-
nisms. S-system models are an alternative to study the sysiem as a whole and they
use a novel point of view on the representation of the system components (Savageau,
19915). Following this outlook, several sirategies based on steady-state measure-
ments have been devised for estimating S-system parameters (Savageau, 1976; Sava-
geau et al., 1987b; Voit et al., 1991). Particularly, the computation of the kinetic
orders has been addressed by a number of experimental procedures that undertake
experimental modification of the system (Kacser & Burns, 1979; Groen ef al,, 1982,
1986, Wanders et al., 1983; Groen, 1984; Torres et al., 1986, 1988; Canela ef al.,
" 1990; Torres & Meléndez-Hevia, 1991)F. Several solutions have also been suggested
for the estimation problem using dynamic data (Voit & Savageau, 1982; Johnson,
1988, 1991; Torsella & Bin Razali, 1991). For these methods, rather accurate
measurements and initial guesses of the parameter values are required to obtain
good estimates (Voit & Savageau, 1982; Torsella & Bin Razali, 1991). In many
experimental situations, however, measurements are restricted to initial changes,
which results in ill-conditioned data that limits the application of the preceding
methods (Torsella & Bin Razali, 1991).

In this paper we propose a new strategy to estimate the kinetic order parameters
from experimental measurements of the initial rates of change in the intact system.
To assess the performance of the methodology suggested, we shall compare the
behavior and properties of a reference system with the predictions made by the S-
system equations with the estimated parameter set. In addition, we will briefly review
how to construct a model based on the S-system equations and how it can be used
to account for the component and system propeities and for predicting the system
behavior under new conditions.

Methods

REFERENCE SYSTEM AND SIMULATED EXPERIMENTAL DATA

As a reference system we shall use the metabolic pathway shown in Fig. 1. This is
not aimed at representing a particular metabolic situation but to provide a suitable
example to validate the recommended methodology. To simulate experimental data,
this system is modeled by using irreversible Michaelis rate-laws. The feedback
inhibition of X, on the degradation of X, and X, is represented by the following rate
law:

vy X,

(1421142
Kia i4

t These methods were devised within the Metabolic Control Theory methodology, which is closely
related with the S-system approach based in the power-law formalism (see Savageau et al, 1987a, b;
Sorribas & Savageau, 1989a, b; Savageau, 19914 for discussion). Hence, they can be considered as estima-
tion methods for the kinetic orders, since there is a clear equivalence with the elasticity coefficients defined
in Metabolic Control Theory.

Vai= i=12 ()



84 A. SORRIBAS ET AL,
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X3 ———— X4 ——fy
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Xy —— X, (-)

FiG. 1. Reference system. X, to X, are dependent metabolites. X5 and X, are source metabolites
(independent variables). Dotted lines indicate feedback inhibition on the processes of synthesis of X5,
exerted by X,. Metabolic levels and fluxes at the operating steady state considered are indicated in
Table 2.

where vy, indicates the rate of synthesis of X; from X;. The kinetic parameters
considered and the resulting steady-state values of metabolite concentrations and
fluxes are indicated in Table I. We have considered the particular case in which
Kiy»X,.

Data used in the estimation routine are generated by a numerical procedure using
the kinetic equations [eqn (1)]. Data with experimental measurement errors are
generated by adding a statistical noise with normal distribution, zero mean and a
standard deviation equal to 2-5% of the error-free computed value. This simulates a
measurement procedure with an experimental error of £5% of the true concentration
value (95% confidence), which is in agreement with the typical experimental error
reported in using NMR techniques.

TABLE 1

Kinetic parameters and steady-state values for the
reference system in Fig. 1
Reaction v K K

Xj_')X] IOU —_
Xe— X 250 —_
XX 1 —_
X4—) 2 —
X=X, 667 667
Xz—‘Xs 15 2

Lh Lh W L9 W W
L
[~ ]

Steady
Variable state

X, 2
X2 3
X 1
X 2
X; 50
Xs 50
V+1= -1 ° l
V+2:V72 0-5
V+3=V_3 1-5
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$-SYSTEM EQUATIONS

The S-system representation is used as the basis for characterizing the reference
system. Following the well-established procedure for building up this representation
(see for instance, Savageau, 1969, 1976; Voit & Savageau, 1982; and Sorribas &
Savageau, 19894, ¢, for a detailed discussion on the rationale for writing these equa-
tions), for a metabolic pathway with # dependent variables {metabolites, enzymatic
forms, etc) and m independent variables (pathway substrates and products, enzymes
that do not vary significantly with the behavior of the system, external effectors, etc),
the S-system equations are:

n+m n+m
dﬁ:/{q: Vi-Voi=a, [[ X381 Xp, i=t., n (2)
de j=1 i=1

In this representation the parameters are gy, h; (kinetic orders), a,; and f; (rate
constants). The kinetic orders are the target parameters which must be estimated from
experimenial measuremnents. These parameters correspond to the relative change of
Vi(gy) or V_,(hy) as a result of a change in X, when the other variables are kept
constant at their operating values. Once kinetic orders are obtained, rate constants
can be computed from the kinetic orders and from the operating values of fluxes and
metabolites (see Savageau, 1976 or Sorribas & Savageau, 198%a, and references
therein, for a detailed account of the meaning of these parameters).

STEADY-STATE CHARACTERIZATION

Following the usual methodology in analyzing S-system models, the operating
steady-state is characterized by means of logarithmic gains and parameter sensitivities.
Loparithmic gains are defined as the logarithmic derivatives of the dependent vari-
ables with respect to an independent variable and they measure the percentage
response in the steady-state level of a dependent variable after a change in an indepen-
dent variable. Parameter sensitivities are defined as the logarithmic derivatives of the
dependent variables with respect to a parameter and they measure the response to a
change in a parameter of the system (rate constant or kinetic order). Both logarithmic
gains and parameter sensitivities measure a systemic response, that is a property of
the system as a whole (see Savageau, 1976; Irvine & Savageau, 19854, &; Sorribas &
Savageau, 19894, ¢ for examples). To compute the logarithmic gains and the param-
eter sensitivities we need to know the steady-state values of the metabolites and
fluxes considered, and the values of the kinetic orders and rate constants (Savageau,
1971a, b, 1972, 1976, Savageau ef al., 19874, b; Savageau & Sorribas, 1989; Sorribas
& Savageau, 1989a, ¢). In practice, once these values are known the steady-state
characterization and the dynamic simulations can easily be obtained by using the
program ESSYNS, which was especially devised to analyze the S-system equations
(Voit et al., 1989; Irvine & Savageau, 1990).

1 This program is available upon request to: E, Q. Voit, Department of Biostatistics, Epidemiology and
System Science, Medical University of South Carolina, Charleston, SC 29425-2503, U.S.A.
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STATISTICAL PROCEDURES

The REGRESSION procedure in the statistical program SPSS/PC* v.4.0 was
used to fit the polynomials in estimating the initial rates of change in each of the

simulated conditions studied. Statistical noise, when needed, was generated by using
the SPSS/PC" built in algorithms.

Results

ESTIMATING S-SYSTEM PARAMETERS FROM DYNAMIC DATA

In this section, we develop a procedure for estimating the S-system parameters
from the initial change in metabolite concentration after a perturbation is produced .
experimentally. First, we show how S-system parameters are related with the dynamic
response after a perturbation. Second, we set up a procedure for computing these
parameters from experimental data.

Relating dynamic responses to S-system parameters

In a particular steady state, indicated by the subscript ,, the time derivatives are
equal to zero, that is, for each dependent metabolite X, the rate of synthesis (V) is
equal to the rate of degradation (Vg):

Xo=Va—Vao=0, i=1,,n E))

After a perturbation is introduced in any of the variables of the system, say Xy, a
change in the steady-state values will be observed. For any dependent variable X; in
which X, appears as a variable affecting its synthesis or its degradation (that is, either
g o hy is different from zero), the change in the net flux through X, evaluated at
the operating point can be written as:

X\ Xuo (6( Vi— V~i)) Xio
- ,— = ————— L= i —hi = dy- 4
(6Xk)0 Ve o, ) Vio Eix x = ik 4)

Hence, the differences between kinetic orders (g — hz) can be evaluated if a suit-
able measurement of the change in the time derivative is provided. If we consider a
small perturbation in X, we can write:

(a,{’) AX; _ Xp—Xo )

X, AXe Xip—Xio

where the subindex , refers to the perturbed values. If we take into account eqn (3),
then eqn (5) reduces to:
(BX) X, ©

X)) Xip—Xeo
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According to this result, we must evaluate the initial rate of change in X; after a
perturbation in X, in order to estimate ;..

Evaluation of the initial rate of change of a dependent metabolite

The slope of the time course of X; after a perturbation of X, evaluated at the time
in which we perturb the system (#=0), will give us the initial rate of change in X;.
The graphical meaning of the initial slope is shown in Fig. 2. To evaluate this quantity
in experimental data a statistical procedure is needed. A second order polynomial

TABLE 2

Estimation of the initial rate of change (c,) in the concentration
of each dependent metabolite [cf. egn (7))

Estimated
Perturbed Observed initial rate
variable Yo variable {e1)

X, 100 X —0-685
25 —-0-193

15 -0-118

X 100 X3 0-663
25 0-188

15 0-115

X 100 Xz ~0-419
25 ~G-112

15 —0:068

. X 100 X5 0-407
25 0-108

15 0-065

X; 100 X3 _0' 508
25 —0-169

15 —0-106

X, 100 X4 0-499
25 0-165

15 0103

X 100 X 0-159
25 0-046

15 0-028

X, 100 X, 0-157
25 0-051

15 4032

Xa 100 X —-0-309
25 —-0-094

15 —0-058

X 100 X —( 509
25 {171

i5 —=0-107

X5 100 X 0-499
25 0-154

15 0-096

Xs 100 X2 0-357
25 0-100

15 0-061
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F1G. 2. Initial rate of change on X; after a perturbation in X,. From the dynamic response of X, after
a perturbation in X, we can obtain the vatue of the initial rate of change by measuring the slope of this
dynamic response at the time of perturbation.

regression leads to results that are accurate enough for practical purposes§. For a
set of data collected at different times after the perturbation, the observed response
can be aproximated by:

b AGED CE R ‘ )

Once eqn (7) has been fitted to the observed data set, the initial rate of change at
t=0, can be obtained as:

3 _ er'(t)) —a
Xip (—dt i . (8)

To obtain a good estimation of this slope, it is not necessary to follow the dynamics
over a large interval of time. This interval can be quite narrow if we can measure
metabolite levels at time points close enough to the perturbation time.

§ We use second order polynomial tegression because it is appropriate according to the shape of the
observed response at times close to 1 =0, A higher order polynomial did not add accuracy to the estimated
parameters. In some cases, and specially when the experimental data are collected over a large time range,
the use of a third order polynomial could be necessary. Alternatively, the initial slope can be obtained by
other techniques such as non-parametrical procedures, especially if the polynomial fit does not mimic the
observed response.
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Computing the S-system parameters

According to eqns (4), (6) and (8), an estimation of the difference (gs—hs) can
be obtained as:

é; Xko

dye= (g’fk_l;fk) =, o - .
Xip— X Va

(9

Individual values for g4 and Ay can be obtained from aq; if X, affects only the
synthesis (h;=0) or the degradation (g, =0) of X;. In the case in which X, affects
both processes, it is necessary to look at the precursor-product relationships in order

to identify an appropriate set of a; so that the individual kinetic orders could be
computed,

Application: A Simulation Study on the Performance of the Estimation Procedure

In the preceding section, we have developed a method for estimating the S-system
parameters from experimental data. In order to validate the suggested methodology,
and to show the potential utility of this approach, we investigate a reference system
with simulated experiments. The reference system and the simulation procedure have
been defined in the Methods section (Fig. 1). After showing the performance of the
method, we shall discuss some of the properties of this system that can be elucidated
with the S-system methodology.

S-system representation of the reference system

The S-system representation of the reference system can be directly derived from
the scheme in Fig. 1. Rules for setting up the equations have been presented several
times (see, for example, Savageau, 1969, 1976; Voit & Savageau, 1982; Sorribas &
Savagean, 19894, c). However, we will briefly indicate how to proceed in our reference
system so that the forthcoming sections can be understood properly. In this example,
the process of synthesis of X is the reaction producing this metabolite from Xs. As
appears in the scheme, the only metabolite affecting this reaction is Xs5. Hence, the
representation of this process includes a rate constant (&,) and a term in X5 raised
to g5 [see eqn (12)]. This parameter corresponds to the relative response of this
process to a change in X5. Similarly, the degradation of X; depends both on X, (the
substrate of the reaction} and X, (an inhibitor). Hence, the representation of this
process includes a rate constant (f,) and two terms (one for each variable affecting
the considered process): one for X, raised to k), and another for X, raised to hy,.
The kinetic orders Ay, and k4 are parameters that relate the response of this process
to a change in the variables considered. To build the other equations we follow the
same technique. We note that the synthesis of X5 results from two different processes:
one producing X; from X, and another producing X5 from X,. In this case, we
define an aggregate rate of synthesis of X; that is affected by X, X, and X,. The
representation of this process includes a rate constant (a3) and three terms, one for
each of the variables involved, raised to their corresponding kinetic orders (g,
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g3 and gi). The aggregation procedure results in the following product-precursor
relationship:

a}X%legszX%u=ﬁlellquu_i_ﬂngszgu' (10)

The parameters involved are not independent because of the aggregation pro-
cedure, they are related in the following way:

V_

831=h|1 ?;
V.

332=h22732 (11
V. V_

gua=hu 7;‘*‘}124 7:

Similarly, &5 is not-an independent rate constant, it is related to §, and 8,. On
the other hand, the precursor-product relationships determine that V_; = ¥, so that
g4 is equivalent to hsy; and a, is equal to ff;. The S-system representation of the
reference system in Fig. 1 is thus: ‘

Xi=a X35~ puXinxe
Xo= @ X5 — B XimXi
X3= 0 XPXPXG— B X5
Xo=BoX'—BuXm.

(12

Values for the S-system parameters in the reference system

The value of the S-system parameters for the example system are computed from
the kinetic description (see Table 3). In cach case, we identify the appropriate flux (¥
or ¥_,) with its kinetic rate-law and we obtain the kinetic orders by derivation and
evaluation at the operating state of interest (Voit & Savageau, 1987; Sorribas &
Savageau, 1989a). These values provide an appropriate reference for evaluating the
suggested estimation procedure.

Estimation of S-system parameters from simulated experiments

As stated above, to estimate the difference (g, — ..} we measure the initial change
in X; after a perturbation in X,. The number of perturbation experiments required
is determined by the system structure through the non-zero kinetic orders that need
to be estimated. In Table 2 we present the estimated initial rates of change in each
dependent metabolite after a 15%, 25% and 100% perturbation in the appropriate
steady-state values. As an example, the set of simulated data used for computing the
initial rate of change in X, after a perturbation in X, is shown in Fig. 3. The value
of ¢, corresponding to each condition is computed using polynomial regression [egns
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TABLE 3
Parameters estimated from simulated experiments

Estimated
Reference
Parameter value 15% 25% 100%
£ 0-542 0-525 0-515 0-457
(0-511) (0-501) (0-442)
g2 0-303 0-302 0-299 0-279
(0-289) (0-288) (0-271)
£34 —-0-276 —0-267 —{-259 —-0-211
(—0-258) (—0-251) (—0-206)
Ba3 0-500 0-471 0-451 0-0339
(0-458) (0-440) (0-333)
gis 0-670 0-640 0-580 0-499
g6 0833 0-813 0-800 0-750
hiy 0-813 0-787 0-772 0-685
hie —0-187 —0-187 ~0-184 —0-159
ha; 0-909 0-907 0-896 0-838
haq —0-455 -0-427 -0-408 —0-314
h33 (-500 0-471 0-451 0-339
haa (-500 0-476 0-456 0-339
a, 0-0737 0-08t3 0-103 0-142
a; 0-0192 0-0208 0-0219 0-0266
s 0-0895 0-900 0-905 0-931
{0-916) (0:919) (0-946)
4 1-50 1-50 1-50 150
B 0-648 0-660 0-665 0-694
B2 0-252 0-248 0-248 0-248
B 1-50 1-50 1-50 1-50
Ba 1-06 i-08 1-09 1-1%

For g31, £33, 834 and g, the values without parentheses are computed from
product-precursor relationships. The values in parentheses are computed from
perturbation experiments.

(7} and (8)]. Once these rates are computed, the parameter values are estimated by
using eqn (9) (Table 3).

Influence of experimental error

Figure 4 shows how the experimental error in determining the actual concentration
at each time point affects the estimation of the kinetic orders of synthesis and degra-
dation of X;. As expected, the introduction of experimental error results in inferior
precision in the estimated parameter values. This is particularly significant when the
initial rate of change (the slope of the time course at 1=0) is low. In this case,
measurement errors can lead to unrealistic values of the slope at £=0, especially for
small perturbations. An example is the response of X; to a change in X, (Fig. 3). As
shown in Fig. 4(c), the estimated value of &, ranges from negative to positive with
a mean far from its actual value when a 15% perturbation in X, is considered. In
this case, the accuracy of the estimates is highly compromised by the fact that a low
value of A, implies a poor initial response when considering a small perturbation.
In consequence, a slightly better result can be obtained if we use a 25% perturbation
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FiG. 3. Response of X, to a perturbation in X,. The change in concentration of X, after a percent
perturbation in X, [(O)+ 15%; (O} +25% and (A)+100%)] is computed by using the kinetic equations
presented in the Methods. These data are error free. The value of the initial rate of change in X,
corresponding to each perturbation is obtained from a polynomial fit to each data set as presented in the
Theory section.

to compute the initial rate of change [Fig. 4(d)]. However, the accuracy in estimating
the actual value of Ay, is still poor.

To overcome this problem, we shall consider repeated measurements for each time
point. 1t is expected that such a procedure leads to a more precise estimation of the
target parameters if the method has a consistent behavior. In Fig. 5 we show the
results from simulated experiments with the same error structure and three measure-
ments at each point. The improvement in the estimated values of 4, is evident both
in experiments with a 15% perturbed value of X, [Fig. 4(b)] and in experiments with
a 25% perturbed value of X, [Fig. 4(d)]. Hence, for practical purposes, repeated
measurements should be considered in order to improve accuracy, especially when
the obtained values are close to zero.

Characterization of the reference system using the estimated parameters
Logarithmic gains

In Table 4, the logarithmic gains of dependent concentrations are shown. We
obtain a similar characterization when we use the actual values of the S-system
parameters, the values obtained in a 15% perturbation experiment, and the param-
eters obtained from a 25% perturbation experiment (see values in Table 3). Although
the estimated parameters are not exactly equal to the true values, the characterization
of the response of the system to a change in an independent variable appears to be
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FiG. 4. Influence of experimental error on the estimation procedure. The parameters concerning the
synthesis and degradation of X, are estimated from a set of 50 simulated experiments in which the data
are modified by adding statistical noise with zero mean and standard deviation equal to 2-5% of the actual
value of the corresponding metabolite. Perturbation conditions: (a) 15% increase in Xs; (b) 15% increase
in Xy; (¢} 15% increase in X,; (d) 25% increase in X,. The mean and the standard error of the mean of
the 50 estimated values are: (&) £: 0-756, sEM: 0-066; (b) X: 0-782, sEm: 0-070; {c) X: 0-003, sem: 0-061 ;
(d) x: —0-235, sem: 0-063. The reference values of the parameters, indicated by an arrow, are: (a) gis:
0-670; (b} 1y: 0-813; (¢) and {(d) s14: —0-187 (Table 3).

accurate enough for practical purposes. This accuracy is an indication that the steady-
state characterization is remarkably robust to fluctuations in the values of the kinetic
order set.

Rate-constant sensitivities

Table 5 shows the computed rate-constant sensitivities for the set of independent
parameters. The computed sensitivities are quite similar, both for the estimated
kinetic-orders and for the actual set of parameters. As in the case of the logarithmic
gains, the steady-state characterization is accurate enough using the estimated param-
eter set.

Kinetic-order sensitivities
Table 6 shows the kinetic-order sensitivities for the dependent metabolites. The
set of independent parameters is determined after considering the aggregation
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35 35
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—-0-76 —0-45 —0-16 015 045
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Fi. 5. Improvement of the estimation by using repeated measurements. The effect of using repeated

measurements on the estimation of A, is investigated. In each case, we represent the estimated parameter
value of 50 simulated experiments. {a) 15% perturbation in X, with a unique measurement; (b) 15%
perturbation in X, with three measurements at each time point; (¢} 25% perturbation in X, with a unique
measurement; (d) 25% perturbation in X, with three measurements at each time point. The mean and
the standard error of the mean of the 50 estimated values are: (a) ¥: 0-003, sem: 0-061; (b) x: —0-235,
seM: 0-063; (¢} x: —0-197, sEM: 0-026; (d) X: —0-126, sem: 0-025. The reference value of h,4, indicated
by an arrow, ts —0-187 (Table 3).

TABLE 4

Steady-state characterization of the reference system

Dependent variable

Independent
vatiable X 1 X. 2 X k] X Vi Vz [ Vs

Xs Refer. 1-03 0-444 0-889 0-889 0-667 0-00 0-444 0-444
15% 1-03 0-422 0-906 0-897 0-640 0-00 0-427 0-427
25% 0-953 0386 (-858 0-848 0-580 0-00 0-387 0-387

Xs Refer. 0-128 1-19 0-555 0-555 0-00 0-833 0278 0-278
15% 0-135 1-16 6575 0-569 0-00 0-813 02711 0-271
25% 0-140 1-16 0-592 0-585 0-00 0-800 0-267 0-267

Logarithmic gains computed from the estimated parameter values in Table 3 (when necessary, pre-
cursor-product derived values are considered). :
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TABLE 5
Steady-state characterization of the reference system

Inder;:tr;dent Dependent variables
constant X, X, X Xa
oy Refer. 1-53 0-659 133 1-33
15% 1-60 0659 1-42 1-40
25% 1-64 0-666 1-48 1-46
[+ ) Refer, 0-152 1:43 0-666 0-666
15% 0-166 1-43 0-708 3-700
25% 0174 1-45 0-739 0¢-739
as=pf; Refer 0-000 0-000 -2-00 0-000
15% 0-000 0-000 -2-12 0-000
25% 0-000 0-000 -2:22 0-000
iR Refer. -123 0-000 0-000 0:000
15% -1-27 0-000 0-600 0-000
25% ~1:30 0-000 0-000 0-000
B2 Refer. 0-000 -1-10 0-000 0-000
15% 0-000 -1-10 0-000 0-000
25% 0-000 -1-12 0-000 0-000
Ba Refer. —0-456 —0-988 0-000 -2-00
15% —0-499 —0-989 0-000 ~2:10
25% —0-523 —(-999 0-000¢ -2:19

Rate-constants sensitivities of dependent concentrations computed from
the estimated parameter values in Table 3 (when necessary, precursor-product
derived values are considered).

proéedures and the precursor—product relationships [eqn (10)]. As in the preceding
cases, the system characterization is remarkably robust to fluctvations in the set of
parameters.

Dynamic behavior :

An important advantage of using the S-system representation is its capability of
representing the dynamic behavior of the target system. To show this feature, we com-
pare the {ime response after a perturbation in the operating value of X (Fig. 6). For
each set of parameter values, there is good agreement between the behavior obtained
from the kinetic equations and the estimated S-system equations. Again, although the
estimated parameter values are not exactly equal to the reference values, the picture of
the systemic behavior is remarkably close to the one we would obtain for a represen-
tation based on kinetic equations.

A brief insight into the properties of the reference system

In studying a real metabolic problem, the ultimate goal is to reach understanding on
the properties of the target pathway. However, understanding means different things to
different scientists. For some of them, understanding means being able to predict the
future behavior of the system; for others, devising strategies that lead to the formulation
of general rules in biochemistry; for yet another group, understanding means obtaining
some numbers that characterize the regulatory properties of the system studied; finally,
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TABLE 6
Steady-state characterization of the reference system

Ind;}:]zrtlgcnl Dependent variables
orders X X X Xa
P Refer. 4-01 1-72 349 349
15% 4-01 1-65 354 3-50
25% 372 1-51 335 3-31
£26 Refer. 0-494 4-65 2:16 2-16
15% 0-529 4-55 2:25 2-22
25% 0-545 4.53 2:31 2-28
I Refer. —0-691 0-00 0-00 0:00
15% —0-692 0-00 -00 0-00
25% —0-689 0-00 0-00 0-00
fa Refer. 0158 000 0-00° 0-00
15% 0164 0-00 0-00 0-00
25% 0-165 0-00 0-00 0-00
haz Refer. 0-00 -1-09 0-00 0-00
15% 0-00 -1-09 0-00 0-00
25% - 0-00 -1-10 0-00 0-00
hay Refer. 0-00 0-341 0-00 0-00
15% 0-00 0-325 0-00 0-00
25% 0-00 0-317 0-00 0-00
his Refer. 0-00 0-00 0-002 0-00
15% 0-00 0-00 0-003 0-00
25% 0-00 0-00 0-004 00
fras Refer. —0-158 —0-341 0-00 —0-692
15% —0-164 —0-325 0-00 —0-690
25% -0-165 -0-317 0-00 —0-696

Kinetic-order sensitivities of dependent concentrations computed from the
estimated parameter values in Table 3 (when necessary, precursor-product
derived values are considered).

for the least demanding group, it means just having a broad picture of the processes
involved.

As an example in providing answers to these kind of questions in a specific situ-
ation, we highlight several features that may be of interest for evaluating the perform-
ance of our reference system at the conditions considered. This evaluation may
provide valuable insight, for instance, in suggesting which kind of manipulation
would lead to an improvement of the system performance (for example, optimization
of X4 production by manipulating the substrates or by modifying the underlying
processes by means of biotechnological methods).

From the numerical characterization of this system (Tables 4-6), we emphasize
the following features:

(i) The increase in X, after a change in X is greater than after a change in X,
{Table 4). Hence, if we are interested in manipulating this system to raise the
production of X, we should focus our attention in Xs.

(ii) The production of X; from X, is a good candidate for trying to modify the
rate-constant in order to produce an increase in the steady-state level of X,
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Fi1G. 6. Comparison of the dynamic response after a change in an independent variable. The predicted
dynamic responses are compared with different parameter sets. (B) kinelic equations; (@) reference 8-

system parameters; {A) estimated S-system in 15% perturbation experiments; (A) estimated S-system
parameters in 25% perturbation experiments.

{Table 5). A change in this rate-constant is equivalent to changing the amount
of enzyme catalyzing this reaction if its rate is proportional to the enzyme
concentration. However, a change in @, results in an important increase in
the concentration of all the dependent metabolites, which could be considered
as an undesirable side effect. Thus, although an increase in a, produces a lower
increment i X4 (Table 5), the corresponding increase in the other metabolites
is also low, especially in X,. It is important 1o be able to evaluate these
comparative responses in order to suggest the best decision.

(iii) The system is sensitive to changes in the kinetic-order parameters (Table 4).
Clearly, the most influential parameters are g5 and g,5. This was expected
because the system is essentially irreversible and the flux is fully determined
by the processes of synthesis of X, and X;,. An increase in the demand of X,,
which can be viewed as an increase in fh44, has a negative influence on the
logarithmic gain of this metabolite in response to an increase of the system
substrates, although this effect is the same in both logarithmic gains. This
effect is computed after obtaining the logarithmic gains algebraically from
the steady-state equations (results not shown; see Savageau, 1976).

A PRACTICAL RECIPE FOR CHARACTERIZING A METABOLIC PATHWAY BY USING
THE ESTIMATION PROCEDURE DEVELOPED IN THIS PAPER

The approach developed in this paper allows the characterization of a metabolic
pathway from measurements in vivo. As a practical recipe for its application to a
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specific problem, we recommend the following steps, which may provide guidelines
for using the S-system methodology in characterizing a specific metabolic pathway:

(i) Draw a scheme of the target system. Include all the regulatory signals and
define which variables are considered to be independent.

(i) Write the S-system representation following the scheme and according to
the rationale indicated in this paper (see Results).

(iii) Examine, for each dependent variable, how many variables affect its synthe-
sis and/or degradation. This gives the clue for planning the perturbation
experiments,

(iv) Measure the steady-state values of the system variables. This is the operating
steady-state at which the system will be characterized.

{v) Measure the appropriate time courses needed to characterize the a; param-
eters according to point (iv). Use repeated measurements to increase
accuracy.

(vi) Compute the values of gz and Ay from az. Use the precursor—product
relationships when needed. Once these parameters are obtained, compute
the appropriate rate-constants from the steady-state values of the variables
of the system.

(vii} Use the program ESSYNS (or perform the appropriate algebraic operations)
to obtain the characterization of the system (logarithmic-gains and param-
eter sensitivities). ‘

(viii} Perform simulated experiments by using the S-system. equations and the
estimated parameters. _

{ix} With the information obtained from points {vii) and (viii), the properties of
the considered operating steady-state can be discussed. '

(x) If we are interested in a more general result, a theoretical analysis of the
properties of the system can be performed. This is achieved by symbolic
algebra and may include considerations of optimization after defining cri-
teria for functional effectiveness (see Savageau, 1976; Irvine & Savageau,
19854, b; Irvine, 1991, for examples).

Discussion

Among the experimental procedures devised for characterizing a biochemical path-
way through the use of the power-law formalism, there is no single estimation method
that can account for the needed parameter set in any condition. Most of the available
technigues focus on measuring some steady-state properties upon manipulating the
system by adding external elements. Some of these methods include genetic manipula-
tion and the use of irreversible inhibitors which must be specific for a single enzyme
in the pathway. Although these approaches provide valuable results in specific cases,
often the requirements for their application limit their practical usefulness. Other
methods are based on measurements of the isolated components in vitro. These must
be considered with caution because the original structure and relationships present
in the intact system may not be preserved. Yet, other possibilities include enzyme
titration, multiple steady-state measurements and so on. However, in considering
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these alternative procedures almost no effort has been dedicated to exploit the infor-
mation included in the dynamic response of the system.

In this situation, an estimation method able of utilizing the dynamic data can
help in properly characterizing a given metabolic pathway if the required data are
obtainable. The estimation procedure presented in this paper provides such a tool
through the use of an appropriate analytical approach: the S-system representation.
The required measurements, transient responses after metabolite perturbation, are
now widely available with a number of techniques and they are accurate enough for
the required parameters to be properly identified. Qur results show that the perform-
ance of the suggested estimation method, validated through the analysis of a reference
system in simulated experiments, is good enough to be used in experimental studies.
As a limitation, we shall consider the fact that in a given situation it could not be
easy to properly manipulate the involved metabolites. Although this limitation can
be overcome with new experimental devices, it can be an important obstacle for
obtaining the complete set of parameters. In such a case, we should consider the use
of alternative methods based in steady-state measurements.

In any case, an important advantage of using the approach developed in this
paper is that the experimental effort needed to provide the appropriate data can be
considerably less than the effort needed if we approach the problem in a more
classical way, say by means of kinetic experiments. In this case, a large set of kinetic
experiments would be necessary to identify both the mechanism and each kinetic
parameter of each isolated enzyme. In contrast, if we approach the problem from an
integrative point of view, as is the case with the S-system representation, direct
measurements on the intact system can be performed and the parameters can be
determined with much less experimental effort. As has been stated before, the S-
system equations are not an alternative to the mechanistic rate laws for isolated
enzymes, they are an alternative to the description of the whole system. Hence, the
S-system parameters refer to the global description of the target system and the
estimation procedure suggested in this paper is aimed at this systemic goal. Previous
experience in using the S-system approach and our present results demonstrate that
S-systems provide representations that often are sufficiently accurate in comparison
with the more elaborate kinetic approach. Hence, the S-systems can be considered
appropriate standard representations for intact biochemical systems, both in terms
of simplicity and accuracy. The results shown in this paper also reveal how some of
the goals in understanding a metabolic systern can be reached when we analyze a
specific pathway within the framework of S-systems. Although some of the conclu-
sions on the properties of the reference system could be seen as quite intuitive,
none of these can be reached without an appropriate analytical tool allowing for
numerically evaluating the system’s characteristics. Although we have concentrated
on three specific points, the results in Tables 4-6 and the dynamic example (Fig. 6)
display the ability of the S-system methodology to lead to a complete characterization
of the target system.

The S-system approach is a well-defined framework for analyzing intact metabolic
pathways. Its application to different problems has led to important conclusions
based on considerations on design principles and metabolic effectiveness. However,
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its application to specific metabolic situations has been limited, and this has resulted
in a restricted spread of this technique among biochemists. We hope that the method
suggested in this paper can help in bridging the gap between the theoretical results
and the experimental measurements.

Albert Sorribas and Marta Cascante are funded by a Grant from the Comissio Interdeparta-
mental de Recerca i Innovacid Tecnoldgica of the Generalitat de Catalunya (CAYCIT CIRIT,
1991, QFN91-4203).
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