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An important step in understanding a metabolic pathway is to
identify its structure, in terms of the flow of material and
information. In pursuing this goal, the available information for
a given system is usually obtained from experiments in vitro and
comes from different sources. Frequently, the final set of regu-
latory signals acting in the system in vivo is unclear, and some
kind of test is needed on the intact system. Besides defining an
appropriate experimental approach, identification of the regu-
latory pattern needs a theoretical framework in which the
different experimental measurements can be evaluated and a final
picture can be agreed on. Mathematical approaches based on

sensitivity coefficients provide a useful tool for addressing this
problem. Within this framework, the appropriate parameters are
related to both the structure of the reaction network and the
signals that regulate the target system. Thus the identification of
the regulatory structure can be related to the estimation of the
appropriate set of parameters. In pursuing this goal, we will
show the limitations of using steady-state measurements and the
usefulness of using dynamic data. We suggest a way to test the
regulatory pattern in a given metabolic pathway by combining
both kinds of data, and we show, by using a reference system, the
potential of the method suggested.

INTRODUCTION

Metabolic pathways are characterized by components with non-
linear behaviour (enzyme reactions and transport systems),
interconnected by a high number of regulatory signals, which are
ultimately responsible for the co-ordinated behaviour of the
system. In considering the structure of a metabolic pathway, we
can separate two factors contributing to an observable behaviour
in a given condition: (1) the flow of material and (2) the flow of
information. In many cases, although the diagram of the reactions
responsible for the flow of material through the system is well
established, the regulatory pattern, which corresponds to the set
of different signals responsible for the flow of information, offers
several alternatives that need to be tested. These alternatives, in
general, come after considering the data obtained from experi-
ments in vitro and from measurements in different conditions.
Although this information is valuable, it is now evident that
extrapolation of these data to conditions in vivo can lead to an
inaccurate description of the system [see for instance Shiraishi
and Savageau (1992a,b,c,d)]. Hence, a systematic approach is
needed so that the system structure can be properly tested from
measurements on the intact system.

The complexity shown by a metabolic pathway requires the
use of tools specifically devised for investigating the properties of
such systems. Here, mathematical models have a decisive role.
The mathematical models based on the S-system equations
within the Biochemical Systems Theory (BST) specifically rep-
resent a given metabolic pathway and can be used to investigate
its regulatory structure and properties (Irvine and Savageau,
1985a,b; Savageau, 1972, 1975, 1976, 1979, 1991, 1992; Sorribas
and Savageau, 1989a,b; Voit and Savageau, 1982, 1987). A
recent review of S-system-related methods can be found in Voit
(1991) and references therein. Alternatively, the tools furnished
by the Metabolic Control Analysis (MCA) also provide a way of
addressing these kinds of problems [see for instance Delgado and
Liao (1992a,b) and Sen (1991)].

In a given metabolic system, the existence of regulatory signals

determines modulation of the affected reactions. Consequently,
the local properties of these reactions will be dependent on these
regulatory influences. In both BST and MCA, the local properties
of a given process are indicated by appropriate parameters.
Within BST, these parameters are g,; and 4, and they are called
kinetic orders:
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where ¥} and V; represent the net processes of synthesis and
degradation of X, [see Sorribas and Savageau (1989a,b,c) and
Voit and Savageau (1987) for examples)]. The subscript , indicates
evaluation at a given operating point that corresponds to the
steady state of interest (Savageau, 1972, 1976; Savageau et al.,
1987a,b; Sorribas and Savageau, 1989a,b). In MCA, these
parameters are known as elasticity coefficients. It should be
stressed that kinetic orders are conceptually equivalent to the
elasticity coefficients. The only difference is that kinetic ordets
are defined for aggregated fluxes and elasticity coefficients are
defined for individual fluxes through a given reaction. Translation
from one definition to the other requires that the aggregation
procedure and the steady-state values of the considered fluxes
be taken into account (Savageau et al., 1987a,b; Sorribas and
Savageau, 1989a,b). '

The kinetic-order parameters (elasticity coefficients) relate to
both the structure of the reaction network and the regulatory
signals in such a network. For instance, when a reaction is almost
saturated by its substrate, the corresponding kinetic order is low.
Further, if, in a given pathway, X is an inhibitor of the synthesis
of X,, then g, < 0. According to this interpretation, whenever

we use BST or MCA, a primary goal for characterizing a given
metabolic pathway will be to estimate these parameters from the
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observed behaviour of the target system. An important point is
to identify the set of parameters that is different from zero, i.e. to
identify the meaningful influences within the system.

Several procedures based on steady-state measurements have
been devised for estimating these kinds of parameter either by
direct measurements on the intact system (Savageau, 1976;
Savageau et al., 1987a,b; Voit et al., 1991) or, in the case of
elasticities and control coefficients, by different experimental
procedures that involve experimental modification of the system
(Groen, 1984; Groen et al., 1982a,b; Kacser and Burns, 1979;
Torres and Meléndez-Hevia, 1991; Torres et al., 1986, 1988;
Wanders et al., 1983). Furthermore, different solutions have
been suggested for the estimation problem using dynamic data
(Johnson, 1988, 1991; Torsella and Bin Razali, 1991; Voit
and Savageau, 1982), although rather accurate measurements
and initial guesses of the parameter values are required to obtain
good estimates (Torsella and Bin Razali, 1991; Voit and
Savageau, 1982). In many experimental situations, however,
measurements are restricted to initial changes, which may lead to
ill-conditioned data and limit the application of the preceding
methods (Torsella and Bin Razali, 1991).

All these approaches apply only when both the flow of material
and information is well established, that is when the set of g, and
h,, different from zero is known. No strategy has been devised for
identifying the structure of the system when it is unknown. In
this paper we develop a general approach for addressing this
problem. In doing so, we have the following starting points: (1)
the flow of material is known; (2) the steady-state fluxes and
metabolite concentrations can be measured; (3) the steady state
can be manipulated by changing external variables; (4) the
transient behaviour of the internal metabolites (or at least of
some of them) can be measured after perturbation.

These kinds of measurement can be performed nowadays by a
number of techniques and provide valuable information for
solving the regulatory structure of the target system. However,
we know of no real system in which these kinds of data have been
measured. The lack of a theoretical framework for investigating
the utility of these data is probably the reason for this. The
method developed in this paper will provide a rationale for
considering these experiments recommendable.

THEORETICAL RESULTS

Steady-state measurements and identifiability of the regulatory
pattern

The steady-state behaviour of a system can be characterized by
measuring the changes in the internal variables (i.e. dependent
variables) after a change in any of the external variables (i.e.
independent variables) and parameters of the system. These
measurements correspond to Logarithmic Gains and parameter
sensitivities in BST, and to Control and Response Coefficients in
MCA. Again, as in the case of the local parameters, translation
is immediate from one nomenclature to the other because
conceptually they are referring to the same idea. A Logarithmic
Gain (Response Coefficient in MCA if the perturbed variable is
an external modifier, Control Coefficient if the perturbed variable
is an enzyme) is defined as (Savageau, 1972, 1976; Savageau et
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Figure 1. Determination of a Logarithmic Gain from different steady-state
measurements

The Logarithmic Gain can be obtained by measuring different steady-state levels of the
dependent variable X; at different values of the independent variable X,. The slope of the steady-
state curve (in logarithmic co-ordinates) at the operating point gives us the value of L(X;, X,).

al., 1987a,b; Sorribas and Savageau, 1989a; Kacser and Burns,
1973; Burns et al., 1985):
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where X, is a dependent variable (i=1,...,n) and X, is an
independent variable [k = (n+1), ...,(n+m)]. Similarly, we de-
fine the Logarithmic Gain of a given flux as L(¥}, X,). Logarithmic
Gains (control and response coefficients) can be obtained from
experiments in which an external variable is perturbed and the
system is forced to attain a new steady state (Figure 1). Alternative
methods have been described for Logarithmic-Gain (Control
and Response Coefficients) measurement in biochemical systems
by either direct measurement or appropriate modifications to the
pathway [see for instance Groen (1984) and Torres and Meléndez-
Hevia. (1991) and references therein]. Recently, alternative
procedures have been defined for computing some of these Gains
from transient data (Delgado and Liao, 1992a,b).

The set of Logarithmic Gains (i.e. all the Flux Control and
Response and all the Concentration Control and Response
coefficients) are related to the local parameters (kinetic orders/
elasticity coefficients), by the following matrix equation
(Savageau and Sorribas, 1989):

L(Vp, X)) = G+ Gp L(Xp, X,) 3)

in which D refers to dependent variables and I refers to
independent variables. A similar equation can be written for the
MCA approach [see Cascante et al (1989a,b) for details). This
equation has a unique solution if the matrices G and G, have a
definite structure of non-zero elements. Otherwise, for a given set
of Logarithmic Gains measured, we can find different G, and G,
matrices that are solution of eqn. (3). Each of those matrices will
have a different structure of zero elements. This fact has important
implications for the problem of identifying the actual structure of
the regulatory signals in our target system.

To appreciate more fully the meaning of eqn. (3), let us
consider the case in which » =35 and m = 3. Introducing the
notation L(X,,X,) = L, and L(V},X,) = LV,, eqn. (3) is:
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Clearly, when all the kinetic orders are different from zero, the
number of unknowns exceeds the available information, and no
unique solution can be derived. In order to be able to estimate a
set of parameters, particular subcases of eqn. (4) should be
considered, i.e. some of the potential g should be set to zero.
However, there are different ways of selecting such a collection of
zero kinetic orders, which imply different regulatory structures
for the system. To simplify the interpretation, consider the
process of synthesis of X, (V7). Selecting the appropriate elements
of eqn. (4) and defining a single parameter vector, we can
express:
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There is no unique solution for the set of kinetic orders in eqn.
(5). This is always the case, because n+m > m for any given
system. However, in this equation it is assumed that all the
variables in the system affect V], which is unlikely to be true. In
general, not all the possible interrelations are meaningful, which
implies that some of the potential kinetic orders are zero. Hence,
realistic assumptions lead to the consideration of special subcases
of eqn. (5). As a general rule, with m independent variables, we
can solve for subcases having p variables in ¥, with p <m.
Hence, for n = 5 and m = 3, we can solve for subcases of eqn. (5)
with a maximum of three different variables (p = 3) affecting a
given process. For example:
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Given a measured set of Logarithmic Gains, the two cases
considered above lead to two different sets of kinetic orders.
Each set corresponds to a different interpretation of the regu-
latory structure for the considered flux. In each case, we will call
the resulting sets of kinetic orders compatible patterns. Hence, in
general, there will be no unique compatible solution for the
kinetic-order (elasticity coefficients) set. The minimum set of
compatible patterns for a given ¥, can be obtained by solving for
all the possible p subsets (p < m).

However, it should be pointed out that not all the possible p
subsets (p < m) are realistic. A necessary condition to obtain a
meaningful solution is that Det [L,] must be different from zero,
[L,] being the square matrix of coefficients that multiplies the
vector of p unknown kinetic orders in eqn. (6). A determinant
equal to zero identifies an impossible combination of parameters
given the structure of the Logarithmic-Gain matrices. Appli-
cation of this rule will permit a first screening of spurious results
in investigating the regulatory structure of the system.

The experimental error in the determination of L(X;, X,) and

L(V,, X)) can influence the estimation of the different kinetic
orders in each compatible pattern. This affects the identification
of subcases with Det [Lp] = 0. In practice, we will consider values
of Det[L,] <107 to be zero. As we will see in detail in the
example, the determination of kinetic orders compatible with a
set of Logarithmic Gains is consistent in spite of an experimental
error of Logarithmic Gains as large as a +20 9% of the true value.

Finally, no unique solution exists if p > m. For example, if we
consider the simultaneous effect of X, X,, X, and X, on V73, the
corresponding set of equations is:
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In this case, a solution space can be obtained for three of the
kinetic orders involved as a function of the fourth. Hence,
complementary information is required to solve these cases. For
instance, data from studies in vitro could suggest a value for g,,.
Then, a particular solution corresponding to that assumption
can be obtained from eqn. (7). Additionally, we will find other
compatible schemes, which are different p subsets (p = 4) of eqn.
(5), and will contain a particular solution with this value for g,,.

In any case, no further discrimination, other than identifying
the set of compatible regulatory patterns, is possible by using the
steady-state information contained in the Logarithmic-Gains
measurements. This emphasizes the limitations of the steady-
state data in identifying the regulatory structure without using
additional information. Alternative methods based on dynamic
data can provide valuable information for discriminating between
the different admissible hypotheses in order to identify the true
pattern.

Parameter estimation from measurements of transient data
obtained in perturbation experiments

S-system parameters can be estimated from experiments in which
the initial change in a dependent variable is measured after a
given variable has been perturbed from its reference value
(Sorribas et al., 1993). In short, if we consider the steady state of
the system, we have, for a given X, (i=1,...,n):

X,=0 ®)
Then, after a perturbation in X,, we can write:
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Hence, a,, can be estimated from the steady-state values of the
corresponding metabolites and fluxes, and from the initial rate of
change of X, after a perturbation in X [see Sorribas et al. (1993)
for details]. That is:
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This method can be useful from two different points of view.
First, we can directly estimate a,, from a perturbation experiment.
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Second, we can check the values estimated from the steady-state
measurements in order to discriminate between the several
possible patterns. This can be achieved by computing the expected
X,, for a given a,, in eqn. (11) and by comparing the predicted
slope with the behaviour observed in a perturbation experiment
(see below). This last possibility will allow us to define a suitable
strategy to discriminate between the alternative patterns that
have been identified from the steady-state characterization.

Strategies for identifying the regulatory structure of a given
metabolic pathway

Although the problem of identifying the regulatory pattern of a
metabolic pathway can be addressed on the basis of the in-
formation accruing from experiments in vitro, it is now clear that
there is a need for measurements on the intact system that can
provide a more reliable image of the structure in situ. First, the
information in vitro may not correspond to the real properties of
the integrated system. Second, the information provided by
isolated experiments may lead to alternative possibilities that
need to be tested on the intact system.

With this in mind, in the previous sections we showed that
measurements of the Logarithmic Gain in the intact system do
not suffice to identify the regulatory structure underlying the
observed behaviour, and that time-course data are required.
Hence, a combination of different experimental approaches is
needed.

As a general scheme, we suggest the following steps:

1. Draw the scheme accounting for the flow of material
through the system. If there are several possibilities, then
perform steps 46 for each one.

2. Collect information on the possible regulatory signals.
Consider both information in vitro and hypothetical signals
that might be involved in the target system. If possible,
compute tentative values for the kinetic orders implicated
[for instance using in vitro rate laws, or from values of K,
and mass action ratio (Groen, 1984)].

3. Measure the Logarithmic-Gain characteristics of the system
in situ, for both fluxes and metabolites.

4. If the system has m independent variables, define the
corresponding m subset equations of the general eqn. (3)
for all fluxes. Solve for all possible cases and tabulate the
compatible patterns.

5. Evaluate each compatible pattern with respect to point 2.
Discard all the patterns leading to unrealistic possibilities.

6. Design perturbation experiments leading to the discrimi-
nation of alternative patterns. Compute the expected re-
sponse of the system according to the different alternatives.
Perform the perturbation experiments and measure the
corresponding dynamic response. Discard the patterns that
do not fit the results observed.

Of course, in suggesting this rationale we consider that the
appropriate measurements can be performed. In some cases,
these measurements may be difficult to complete. In other cases,
the number of independent variables available for experimental
manipulation may be too limited for the effective identification
of the regulatory pattern. However, the possibility of using this
approach should encourage the search for appropriate ways of
performing the required experiments.

Example

The application of the suggested methodology to a given problem
requires measurement -of Logarithmic Gains, steady-state levels

Xq Xs Xg

Figure 2. Flow of material through the reference system

X; to X; are internal metabolites (dependent variables). X; to X, are external metabolites
(independent variables). This system has three independent subsystems that do not interchange
material.

and transient data. As stated in the Introduction, these measure-
ments, although possible, are not routine in experimental papers,
and we know of no single example in which all the required
information is available. Hence, we will define a hypothetical
system and will discuss the utility of the method with simulated
data.

As an example, we will consider a hypothetical metabolic
pathway with n = 6 dependent variables and m = 3 independent
variables. The scheme for the reference system used and the set
of kinetic-order parameters considered are presented in the
Appendix. The Logarithmic Gains are computed in the usual
way using this hypothetical set of parameters (Sorribas and
Savageau, 1989a,b; Cascante et al., 1989a,b). The transient
response data in perturbation experiments are obtained by an
appropriate numerical procedure using the kinetic equations
detailed in the Appendix. Experimental error in measuring the
Logarithmic Gains is considered in order to show the robustness
of the estimation approach. The influence of this error in
estimating a,, in the perturbation experiments is largely discussed
in Sorribas et al. (1993).

In the following, we will consider the simulated data as if they
had been obtained in a real experiment. These data include a set
of Logarithmic Gains for this system and the basic scheme for
the flow of material. Furthermore, we consider a set of hypotheses
on possible signals in the system. With this information, we will
apply the suggested method for identifying the regulatory scheme.

Scheme for the flow of material

The scheme for the flow of material in this example is shown in
Figure 2. We can appreciate that, considering the flow of material,
we are dealing with three independent pathways.

Available information on possible regulatory signals

The second step is to collect the available information concerning
the system. For our example, let us consider this information to
be as follows. (1) There is evidence of a positive effect of X, on
the synthesis of X,. Besides, X, can activate the same reaction in
vitro. (2) It is suggested that X, acts as a feedback inhibitor of the
synthesis of X,. However, no direct evidence has been obtained.
(3) There is experimental evidence that an increase in X, correlates
with an increase in the output flux in the first pathway and a
decrease in the third pathway. (4) Although some of the individual
enzymes have been isolated, no clear kinetic data are available
for computing hypothetic values for the kinetic orders. (5) X, is
an inhibitor of synthesis of X, as has been shown in vitro. From
available data, a value of g,, = —0.2 is suggested.
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Measurement of the Logarithmic Gains

Our test system produces the following set of Logarithmic Gains:

1.11 0.074  0.027 0.61 0.040 0.015
0.73 —034 —0.13 0.61 0.040 0.015
0.23 1.34 0.50 0.12 0.67 025
— = 12
Lo, X)) 0.15 0.84 0.31 LVp, X 0.12 0.67 025 (12
—0.11 —0.66 1.11 —-0.075 -—043 072
—0.086 —0.49 0.83 —0.075 —043 072

In order to understand these data, recall that the rows indicate
a dependent variable (either a metabolite or a flux) and that
columns refer to independent variables, i.e. for instance,
L(X,,X,) = —0.13 and I(V},X;) = —0.075. These values do not
take into account experimental error. In order to consider more
realistic values, a random noise with Normal distribution was
added to the error-free Gains (see below) to test the robustness
of the estimation procedure.

From the structure of the data in eqn. (12), it is clear that the
three subpathways are interconnected by regulatory signals. This
can be concluded because the Logarithmic Gains are all different
from zero, indicating a response to changes in independent
variables which are not connected by the flow of material
through the subsystems.

Compatible patterns

The complete set of compatible patterns with a maximum of
three variables for the system considered can be computed by
systematically selecting the appropriate subcases of eqn. (3) for
each flux. In each case, a different subset of parameter values can
be obtained for each subset of parameters considered. Only those
subsystems that agree with the flow of material should be
considered. This means, for instance, that X, must be included in
V3, X, must be included in ¥}, and so on. These constraints are
evident from the scheme in Figure 2. Additionally, as indicated
previously only those subsets leading to a Det[L,] different from
zero will be considered.

Evaluation of the compatible patterns

Direct inspection of the resulting parameter values shows that
some of the potential solutions have no physical meaning. For
example, in the process of synthesis of X, the subset [g,;, 8¢, 8;,]
yields g, = —6899.9, g,, = 9235.4 and g,, = 1.177. These values
are clearly unrealistic, and should be rejected. Further, in many
cases, there is only one significant parameter in a subset of three.
This is the case, for instance, of the subcases for V; which
reduces to the simpler case 4, = 0.55.

Besides eliminating these spurious results, the set of compatible
subsystems must be checked taking into account the metabolic
scheme and the existing evidence on possible signals (see above).
Table 1 shows the possible compatible patterns that are physically
meaningful for each rate law of synthesis (V}) or degradation
(V;) in the exemplary pathway of Figure 2. Further simplification
of the alternative patterns will require measurement of the
response of the system after a perturbation in an independent
variable.

Alternatively, it is possible to consider more than three
variables. However, in this case, the resulting equations are not
uniquety determined because m = 3, and we would have infinite
solutions for the parameter set. In such a case, all we can obtain
is some of the involved kinetic orders as a function of the others.

However, to facilitate the discussion we will not consider this
possibility here.

Influence of experimental error

To know how the experimental error on the determination of
Logarithmic Gains can affect the evaluation of the compatible
patterns, we have performed a simulation study by adding a
statistical noise to each of the error-free Logarithmic Gains. The
error considered follows a normal distribution with zero mean
and o = true value/10 of the error-free value. This simulates a
measurement procedure with an experimental error of +20 9%, of
the true value (95 %, confidence).

Table 1 Set of compatible regulatory patterns after consideration of the
steady-state characterization (see the text)

Variables Kinetic orders
24 2 7 —0.12 0.70
3 7 0.03 0.61
4 7 0.05 0.61
5 7 8 0.01 0.61 0.05
5 7 9 —0.06 0.61 0.08
6 7 8 0.02 0.61 0.05
6 7 9 —0.08 0.61 0.08
7 8 9 0.61 0.05 0.02
viivy 1 0.55
vy 2 3 0.77 0.23
2 4 0.77 0.36
2 5 8 0.86 0.1 0.40
2 5 9 0.77 —0.46 0.62
2 6 8 0.86 0.15 0.40
2 6 9 0.77 —0.61 0.62
2 8 9 0.84 0.33 0.12
Vi 1 5 8 013 0.22 0.81
1 6 8 0.13 0.29 0.81
1 8 9 0.10 0.66 0.25
2 5 8 0.20 0.25 0.90
2 6 8 0.20 0.33 0.90
2 8 9 0.16 0.72 0.27
5 7 8 0.22 0.14 0.82
6 7 8 0.23 0.14 0.82
7 8 9 0.12 0.67 0.25
viIve 3 0.50
vy 4 0.80
Vi 3 9 —0.32 0.88
4 9 —0.51 0.88
1 8 9 —0.07 —0.42 0.72
2 7 9 1.26 —1.00 0.88
2 8 9 —0.10 —0.46 0.7
7 8 9 —0.07 —043 0.72
VaNg 5 0.65
Ve 6 0.87
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In Table 2 we show the result of investigating the compatible
patterns for V; using 50 simulated experiments. These results
show a good agreement between the mean value of these
experiments and the error-free value obtained in Table 1. The
estimated standard deviation shown in Table 2 also indicates
that the estimation of the corresponding kinetic order has a
precision comparable with the experimental error of the
Logarithmic-Gain determinations. Similar results were obtained
for the other fluxes.

To reproduce more closely a real situation, we have simulated
experiments with five and three replicates for each Logarithmic-
Gain measurement. In Table 3, we show the results for the subset
{h,5,h,,}. In both experiments, the values of the kinetic orders
obtained are realistic in spite of the experimental error introduced
in the Logarithmic Gains.

Perturbation experiments

In Figures 3-5, we show the transient response of the dependent
metabolites after a perturbation in an independent variable. In
each case, we estimate the value of a, using eqn. (11). These data
are generated by a numerical procedure using the kinetic equa-
tions detailed in the Appendix. In Figure 3(a) we show the
computation of the initial slope (X,,) [see Sorribas et al. (1993)
for details]. From the response observed, we can evaluate the
competing patterns shown in Table 1.

V1 and V7. No independent variable appears in the patterns
of V7. Hence, in this case, a,, reduces to g,.. From Figure 3(a),

Table 2 Performance of the estimation procedure

The result of estimating the corresponding parameters in 50 samples obtained by adding a
statistical noise with normal distribution of zero main and o = true value/10 is shown. For
each kinetic order the mean (bold) values and S.D. (italics) of the 50 samples are indicated.

Variables Kinetic orders
vy 2 3 0.78 0.23
0.08 0.05
2 4 0.76 0.36
011 0.05
2 5 8 0.85 0.12 0.43
012 003 0.09
2 5 9 0.78 —0.48 0.66
010 0.08 014
2 6 8 0.84 0.15 0.41
012 0.03 0.08
2 6 9 0.77 —0.64 0.67
010 011 014
2 8 9 0.86 0.34 0.13
014 007 0.03

Table 3 Performance of the estimation procedure in small samples

The results are obtained with the same procedure as in Table 2. For each kinetic order the mean

(bold) value and S.D. (italics) are indicated.

Number
we have obtained a,, = g,, = 0.67. Additionally, a,; =0 and of
a,, = 0. Although with this information we cannot rule out cases Variables samples  Kinetic orders
in which g, and g,, are close to zero (Sorribas et al., 1993), it is
clear that the value of g,, = 0.67 is an argument for rejecting the v, 2 4 5 0.79 0.36
cases in Table 1 having g,, = 0.61. It was suggested above that 011 007
X, has an inhibitory effect on Vi, with a possible value of 3 0.72 0.33
82 =—0.2. This information points towards the case that 0.08 0.05
includes X, and X, as the only variables to be included in V7.
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Figure 3. Response of X, and X, after a perturbation in an independent variable

(a,d) X, changes from 300 to 400; (b, @) X, changes from 500 to 600; (¢,f) X, changes from 400 to 500.
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Figure 5. Response of X; and X, after a perturbation in an independent variable

(a,d) X, changes from 300 to 400; (b, ®) X, changes from 500 to 600; (e, f) X; changes from 400 to 500.

V; and V. Because no independent variable has been selected
in the compatible patterns for V3}, a,, reduces to —h,,. In V;
only X, and X, appear in the patterns of Table 1. From the
results obtained in Figures 3(d)-3(f), it is clear that neither X,
nor X, has a direct effect on V. Hence, the two cases shown in
Table 4 result.

V¢ and V5. From Figure 4(a), we have obtained a,, = 0. From

the subcases in Table 1, the possibilities that include X, lead
to gy, —hy; =0.14—024 =—0.1, or g;,—h,, =0.12—-0.24 =
—0.12, which do not correspond to the behaviour observed in
Figure 4(a). With this argument, and with the values of a,; and
a,,, the patterns shown in Table 4 are selected.

V; and V. From the above discussion, and considering that
V; = V;, the results of Figure 3(d)-3(f) lead to a single possibility
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Table 4 Final set of compatibie patterns of regulation after the perturbation
experiments (see the text)

Variables Kinetic orders
vy 2 7 —0.12 0.70
ViIvg 1 0.55
vy 2 3 0.77 0.23
2 4 0.77 0.36
Vi 2 5 8 0.20 0.25 0.90
2 6 8 0.20 033 0.90
Vil Vi 3 0.50
vy 4 0.80
Vi 3 9 —032 0.88
4 9 —0.51 0.88
Vsl Vg 5 0.65
Ve 6 0.87

(] l 1
X, X X

2 (+)
(+)|
Xg X X,

3

1
(+)
(—)I
X, X X

5 6

Figure 6. Reference system

X7, Xg and X, are independent variables. Arrows with a (+) indicate an activatory effect. Arrows
with (—) indicate an inhibitory effect.

for the degradation of X,, in which the only variable is X, itself.

V: and V. Because a;, = 0 and a;, = 0, the only possibilities
after the results shown in Figures 5(a)-5(c) are those indicated in
Table 4.

Vs and V. There is no independent variable included in the
pattern selected for these reactions in Table 4. The results shown
in Figures 5(d)— 5(f) confirm this.

After these considerations, Table 4 summarizes the compatible
situations that match the perturbation experiments. As shown in
this Table, there are still a few alternatives after these experiments.
First, in the synthesis of X,, two alternatives appear having X, or
X, as positive effectors. Because there is some evidence of a
correlation of an increase in this rate after an increase in X, (see
above), we can tentatively consider that X, is the variable
involved. Second, we have a similar situation with the synthesis
of X;. In this case, we can also decide that X, is the variable
involved, following the information considered above. Alterna-
tively, and if X, can be perturbed from its steady state, the values
of h,, and g,, can be measured experimentally to test these
assumptions. Finally, there is no information on which to decide
between the alternative patterns for the synthesis of X, in Table
4. At this point, only direct measurement of g,; or g,, can lead
to a decision. Alternatively, we can consider isolating this enzyme
and testing which metabolite acts as an activator of this reaction
in vitro. The results shown in Table 4, and the final considerations
stated above, should be compared with the test system (Figure 6)
and the real parameter values indicated in the Appendix.

DISCUSSION

Investigation of the properties of a given metabolic pathway
requires definition of an appropriate strategy of data analysis so

that the observed behaviour can be related to an appropriate
description of the system structure. We have shown that the
information contained in the steady-state measurements can be
processed to produce a set of tentative interpretations of the
regulatory structure of the system. However, it is clear that this
information is not enough to yield a unique solution. In fact, for
a given set of Logarithmic-Gain measurements, we have shown
that different sets of regulatory signals can explain the behaviour
observed. This multiplicity of compatible regulatory patterns
makes it necessary to consider a way of identifying the true
pattern.

The method introduced in Sorribas et al. (1993) can help to
solve this problem by focusing on the measurement of the initial
rate of change in a given dependent variable after a perturbation
in any of the variables considered in the problem. This method
is particularly indicated for discrimination between the different
alternative patterns compatible with the steady-state behaviour.
In this sense, the steady-state approach helps in designing the
appropriate perturbation experiments, so that the experimental
effort required to identify the regulatory pattern can be dra-
matically reduced.

The results presented in this paper show that the actual
regulatory pattern can be identified by following a step-by-step
procedure. In principle, the suggested strategy can be applied to
any system, provided that the required measurements are avail-
able. In the presence of experimental error, we have shown that
a consistent estimation can be obtained, so that an approximate
description of the system can be derived. We are aware of the
difficulties of performing some of the required measurements in
specific cases. By showing the possibility of identifying the
regulatory structure, which is a legitimate goal in metabolic
research, this paper should encourage experimentalists to develop
new techniques for obtaining the required data. In this sense,
theoretical studies can open up new ways of addressing key
questions. The suggestion of specific measurements optimizing
the search for a regulatory structure contributes a new way of
looking at this kind of problem.

We thank Pedro de Atauri for his help in computing the results shown in Tables 2
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APPENDIX
Reference system

The reference system used to generate the data considered in the
Example section is shown in Figure 6 of the main paper. The aim
is not to represent a particular metabolic situation but to provide
a suitable example to validate the recommended methodology.
To simulate experimental data, this system is modelled by using
irreversible Michaelis rate laws. The kinetic parameters con-
sidered for each reaction are the following:

X, »X, K,=122 Vv, =111
X,~»X, K,=200 V,_ =60

X,» K,=400 V, =150
X,—>X, K, =551 V,, =286
X,~» K,=6692 V., =769

The inhibition of X, (or X,) on the synthesis of X, (or X;) is
represented by the following rate law:

an.x Xj
V+ —_— ‘h

n= _—X—
K, (l + )+X
K,
where, for the synthesis of X, h=1, j=7,1=2, K, = 580,
Vuax., = 100 and K, = 725; and, for the synthesis of XE, h=35,
j= 91—4K 12333V =83.3 and K|, = 72.6.

The activation of X, on the ciegradatron of X is represented
by the following rate Iaw

ﬂ4X4
Vv; = Vmax’X2(1+7—

o}

X,
(K,,,’+X,)(l +7<i)

where Ki, = 502.2, Vipex,, = 21.3, K, —755and/5’
The activation of X, and Xgonthe synthesxs of X, is represented
by the following rate law:
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where K, = 4500 Voax., = 669, K, =8489, K, =349.0,
B, =12 and ﬂ,
Data used in the perturbation experiments are generated by a
numerical procedure using the above kinetic equations.
The S-system equations for this system, after considering that
Vi=V; V;=V};and V; =V}, are:
“.,1 = o, X X7 — B, Xn
X’z = ﬂl X:‘u _.ﬂz Xgn Xz:a
X’a = aaxga:quXgas_ﬁanaa
".’4 =B X3 — By Xju
Xs = oz X X — B, X
Xe = fs X5 — B X g

Under the conditions considered, the steady-state values for
the dependent metabolites X, —X, are 100, 150, 200, 100, 300
and 100 (arbitrary units). The independent variables X,, X, and
X, are equal to 300, 500 and 400 in basal conditions. The steady-
state flux is equal to 30 in the first and second subsystems, and
equal to 10 in the third. With these conditions, the set of S-system
parameters are:

X, = 1.01X;* 12 x97°—
X, =2.38X%%—

2.38 X065
0.12X377 X936

X; = 0.009X920 X333 X3-90—2 12 X35
X, = 2.12X950—0.75X9-80
X, = 0.54X ;%51 X388 —0.24 X35

X, =0.24X%% —0.18X9%

These parameters are the target parameters to be estimated by
using experimental data. The resulting values shown in Tables
14 should be compared with these reference values.



