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The paper introduces a model of human purine metabolism in

situ. Chosen from among several alternative system descriptions,

the model is formulated as a Generalized Mass Action system

within Biochemical Systems Theory and validated with analyses

of steady-state and dynamic characteristics. Eigenvalue and

sensitivity analyses indicate that the model has a stable and

robust steady-state. The model quite accurately reproduces

numerous biochemical and clinical observations in healthy

subjects aswell as in patients with disorders of purine metabolism.

INTRODUCTION

Purine nucleotides and deoxynucleotides are the building blocks

of life-defining information and, in the form of ATP, provide the

energy support for most organisms. The pathway responsible

for the supply and recycling of nucleotides and deoxynucleotides

is purine metabolism. This pathway consists of an almost closed

system that converts the two incoming precursors, ribose 5-

phosphate (R5P) and glutamine, into nucleotides and essentially

one degradation product, uric acid.

Because of its central role in the control of nucleotide pools,

purine metabolism is of great importance in the context of

carcinogenesis and viral diseases. Several purine metabolites or

their analogues have been found to provide a powerful pharma-

ceutical basis for the treatment of these diseases, and also of

some immune disorders [1,2] and major depression [3]. These

successes have suggested the anti-metabolite theory [2] and

triggered extensive research efforts to pinpoint the roles of

enzymes and modulators of purine metabolism.

Nevertheless, given the complexity of the pathway (see Scheme

1; all abbreviations are defined in Tables 1 and 2), it is not

surprising that our understanding of its functioning is still

limited [4]. A large body of biochemical results in �itro and in �i�o

is available, and these results are the sine qua non of any further

analysis. However, the biochemical information alone is not

sufficient. For instance, it is not clear why and how enzyme

deficiencies lead to some types of mental retardation, or how one

could best intervene therapeutically in disorders of purine

metabolism. Biomathematical analysis can be a complementary

tool that is able to integrate different types of biochemical and

clinical findings.

Several approaches to modelling purine metabolism have been

developed in recent years. Franco and Canela [5] designed one of

Abbreviations used: GMA, Generalized Mass Action; BST, Biochemical Systems Theory ; MCT, Metabolic Control Theory. Other abbreviations are
given in Tables 1 and 2.
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These results suggest that the model can be used to assess

biochemical and clinical aspects of human purine metabolism. It

provides a means of exploring effects of enzyme deficiencies and

is a potential tool for identifying steps of the pathway that could

be the target of therapeutical intervention. Numerous quan-

titative comparisons with data are given. The model can be used

for biomathematical exploration of relationships between

enzymic deficiencies and clinically manifested diseases.

the first kinetic models of purine metabolism based on data from

different species and tissues, with the aim of demonstrating the

usefulness of computer simulations of complex metabolic net-

works. Heinmets [6] modelled nucleic acid synthesis from nucleo-

tides and deoxynucleotides, although their parameters were not

basedon experimental data.More recently, Bartel andHolzhu$ tter
[7] constructed a model based on rat liver as the reference system.

The goal of the present paper goes beyond these earlier analyses.

It is to analyse purine metabolism in the human body, to test the

results against clinical observations, and to make predictions

about the responses of patients with disorders of purine metab-

olism to alternative drug therapies.

The process of designing a reliable mathematical model began

with a comprehensive comparative analysis of different modelling

approaches. This analysis was executed over a time period of

several years in an iterative manner. The models were set up

mathematically, parameter values were estimated from exper-

imental data (see [8] for more details), and the steady-state and

dynamic features were analysed in comparison with biochemical

and clinical data, as shown for example by Shiraishi and Savageau

[9–13] for a different biochemical system. Discrepancies between

models and data were used for targeted refinements in model

structure and led to the next iteration in the model design

process. This process led to two conclusions. First, we found that

for our purposes the mathematical form of a Generalized Mass

Action (GMA) system was best suited. Secondly, the resulting

GMA model could be estimated almost entirely from exper-

imental data, and analyses of stability and robustness suggested

that the numerical model promised reliability.

The main purpose of the present paper is a demonstration that

our model is able to reproduce large sets of features that were

experimentally or clinically observed in animals and humans

[14–29]. The consistency with the biochemical and clinical
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Scheme 1 Metabolic scheme of purine metabolism in man

Dependent variables are presented with boxes, independent variables (R5P and Pi) without. Fluxes are represented by straight heavy arrows and coded with mnemonic abbreviations. Regulatory

signals and modulations of the pathway are represented by curved light arrows, with inhibitions given as dashed lines and activations as solid lines.

literature suggests that as yet untested model predictions might

also be reliable and reasonably accurate. Such predictions address

the dynamic and steady-state behaviour of the pathway after

changes in dependent variables (shown here) and the derivation

of cause- and- effect relationships between enzyme deficiencies

and clinical symptoms.

METHODS

For the reasons mentioned above, the GMA approach within

Biochemical Systems Theory (BST) [30] was chosen to model

human purine metabolism. The tools of this modelling approach

are explained in this section. They are divided into two sub-

sections, those that concern model construction and the definition

of the parameters, and those that are useful for the model

analysis.

Model construction

TheGMAmodel is constructed by defining a differential equation

for each of the dependent variables of the model in the form

X
i
¯ 3

r

j="

c
ij
�
j

(1)

where r is the number of steps of the pathway. c
ij

are the

stoichiometric coefficients of step j of the synthesis or degradation
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Table 1 Abbreviations for metabolites of purine metabolism (Scheme 1)

Abbreviation Metabolite Variable

PRPP Phosphoribosylpyrophosphate X1

IMP Inosine monophosphate X2

S-AMP Adenylosuccinate X3

Ado

AMP

ADP

ATP

Adenosine

Adenosine monophosphate

Adenosine diphosphate

Adenosine triphosphate

5

6

7

8

X4

SAM S-Adenosyl-L-methionine X5

Ade Adenine X6

XMP Xanthosine monophosphate X7

GMP

GDP

GTP

Guanosine monophosphate

Guanosine diphosphate

Guanosine triphosphate

5

6

7

8

X8

dAdo

dAMP

dADP

dATP

Deoxyadenosine

Deoxyadenosine monophosphate

Deoxyadenosine diphosphate

Deoxyadenosine triphosphate

5

6

7

8

X9

dGMP

dGDP

dGTP

Deoxyguanosine monophosphate

Deoxyguanosine diphosphate

Deoxyguanosine triphosphate

5

6

7

8

X10

RNA Ribonucleic acid X11

DNA Deoxyribonucleic acid X12

HX

Ino

dIno

Hypoxanthine

Inosine

Deoxyinosine

5

6

7

8

X13

Xa Xanthine X14

Gua

Guo

dGuo

Guanine

Guanosine

Deoxyguanosine

5

6

7

8

X15

UA Uric acid X16

R5P Ribose 5-phosphate X17

Pi Phosphate X18

of X
i
, which can be positive if the reaction affects the synthesis of

the metabolite or negative if the reaction affects the degradation

of the metabolite. �
j
is the rate law of step j in power-law form.

In other words, the variation of each metabolite with respect to

time is given by all processes synthesizing this metabolite minus

all processes degrading the metabolite.

In BST, the kinetic rate law of each flux (�
j
or �

name
) in a given

pathway is represented as a product of power-law functions of

the form:

�
name

¯α
name

0
n+m

i="

X fname
ii

(2)

In this formulation, n is the number of dependent variables in

the model and m is the number of independent variables. All the

kinetic orders are denoted by f followed by two subindices : first

the abbreviated name of the reaction, and second the number of

the variable that affects the rate of the reaction. Each kinetic

order (f
namei

) quantifies the effect of the metabolite X
i
on flux

�
name

. If it describes an inhibition, it has a negative value, and if

it describes an activation or substrate effect, it has a positive

value. They are similar to kinetic orders of elemental kinetics but

may be non-integer. They are mathematically defined as:

f
namei

¯ 0¥�name

¥X
i

1
!

X
i
!

�
name

!

(3)

The basis for the assignment of these values is explained in the

following section, and their numerical values appear in Table 3.

The rate constant (α
name

) represents the speed of process �
name

[31]. It is computed as

α
name

¯
�
name

!

0
n+m

i="

X fname
ii

!

(4)

Numerical values of rate constants appear in Table 4.

Model analysis

The quality of the model was tested with different analytical

tools. Stability was assessed with the program ESSYNS [32] by

computing the eigenvalues of the model. The criterion for local

stability at a given steady state is that all eigenvalues have

negative real parts. If the imaginary parts of some eigenvalues

are different from 0, the system may exhibit oscillatory behaviour

[13,33].

As a second criterion of quality, the robustness of the model

at its steady state was evaluated. This was accomplished by

computing the sensitivities of the concentrations with respect to

the kinetic orders. In general, low sensitivities are an indication

of a robust steady state, whereas high sensitivities often suggest

that the pathway can be easily perturbed. In general, well-

adapted biological systems are not expected to be highly sensitive

to small changes in kinetic parameters and, consequently, low-

parameter sensitivities can be used as a criterion of model

validation [13,34]. The insensitivity of the kinetic parameter

presents another advantage since it means that the behaviour of

the model does not critically depend on very accurate estimates

of this parameter [35]. The sensitivities of the model were

computed with MATHEMATICA [36] as the normalized deriva-

tives of metabolite concentrations with respect to kinetic orders

[37,38] :

S(X
i
, f

name
)¯ 0 ¥X

i

¥f
name

1
!

f
name

!

X
i
!

(5)

This equation means that, if X
i
is a metabolite and f

name
is a

kinetic order, the sensitivity (S(X
i
, f

name
) quantifies the effect of a

change in the kinetic order f
name

on the steady-state concentration

of X
i
.

In addition to parameter sensitivities, we characterized the

steady state with profiles of logarithmic gains. These are the

normalized derivatives of fluxes or concentrations with respect to

an independent variable [37,39–41]. For example, if X
i

is a

dependent variable and X
j

is an independent variable, the

logarithmic gain L(X
i
,X

j
) quantifies the effect of a change of the

independent variable X
j
on the steady-state concentration of X

i
.

The logarithmic gains were computed with the matrix method

implemented in the program MIST [42] and with ESSYNS [32].

Mathematically logarithmic gains of concentrations and fluxes

are defined as

L(X
i
,X

j
)¯ 0¥Xi

¥X
j

1
!

X
j
!

X
i
!

and L(�
i
,X

j
)¯ 0 ¥�

i

¥X
j

1
!

X
j
!

�
i
!

(6)

Dynamic simulations and computations of steady states were

also executed in MIST [42]. For numerical integration, MIST

uses a third-order semi-implicit Runge–Kutta algorithm, and

steady states are computed with a Newton method.

Simulations of enzyme deficiencies or superactivities were

executed with two methods, either by modifying the value of α of

the corresponding reactions or by introducing the enzymes as
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Table 2 Abbreviations for enzymes of purine metabolism (Scheme 1)

Abbreviated

flux

Enzyme

abbreviation Enzyme-catalysed reaction EC number

vprpps PRPPS Phosphoribosylpyrophosphate synthetase 2\7\6\1

vgprt HGPRT Hypoxanthine–guanine phosphoribosyltransferase 2\4\2\8

vhprt HGPRT Hypoxanthine–guanine phosphoribosyltransferase 2\4\2\8

vaprt APRT Adenine phosphoribosyltransferase 2\4\2\7

vden ATASE ‘De novo synthesis ’ (amidophosphoribosyltransferase) 2\4\2\14

vpyr ‘ pyrimidine, tryptophan and histidine synthesis ’ Several enzymes

vasuc ASUC Adenylosuccinate synthetase 6\3\4\4

vasli ASLI Adenylosuccinate lyase 4\3\2\2

vimpd IMPD IMP dehydrogenase 1\1\1\205

vgmps GMPS GMP synthetase 6\3\4\1

vampd AMPD AMP deaminase 3\5\4\6

vgmpr GMPR GMP reductase 1\6\6\8

vtrans MT ‘Transmethylation pathway ’ (protein O-methyltransferase) 2\1\1\24

vmat MAT Methionine adenosyltransferase 2\5\1\6

vpolyam SAMD ‘Polyamine pathway ’ (S-adenosylmethionine decarboxylase) 4\1\1\50

vade ‘ Adenine oxidation ’ (xanthine dehydrogenase) 1\2\3\2 or 1\2\1\37

vinuc 5NUC 5«-Nucleotidase 3\1\3\5

vgnuc 5NUC 5«-Nucleotidase 3\1\3\5

varna RNAP RNA polymerase (from ATP) 2\7\7\6

vgrna RNAP RNA polymerase (from GTP) 2\7\7\6

vrnaa RNAN RNases (to AMP) Several enzymes

vrnag RNAN RNases (to GMP) Several enzymes

vdgnuc 3NUC 5«(3«) Nucleotidase 3\1\3\31

vada ADA Adenosine deaminase 3\5\4\4

vdada ADA Adenosine deaminase 3\5\4\4

vadrnr DRNR Diribonucleotide reductase 1\17\4\1

vgdrnr DRNR Diribonucleotide reductase 1\17\4\1

vgua GUA Guanine hydrolase 3\5\4\3

vadna DNAP DNA polymerase (from dATP) 2\7\7\7

vgdna DNAP DNA polymerase (from dGTP) 2\7\7\7

vdnaa DNAN DNases (to dAMP) Several enzymes

vdnag DNAN DNases (to dGMP) Several enzymes

vhx ‘Hypoxanthine excretion ’ Non-enzymic step

vhxd XD Xanthine oxidase or xanthine dehydrogenase 1\2\3\2 or 1\2\1\37

vxd XD Xanthine oxidase or xanthine dehydrogenase 1\2\3\2 or 1\2\1\37

vx ‘ Xanthine excretion ’ Non-enzymic step

vua ‘Uric acid excretion ’ Non-enzymic step

Table 3 Values of the kinetic orders, in alphabetical order

fada4 ¯ 0±97 fade6 ¯ 0±55 fadrnr4 ¯ 0±1 fadrnr9 ¯®0±3
fadrnr10 ¯ 0±87 fampd4 ¯ 0±8 fampd8 ¯®0±03 fampd18 ¯®0±1
faprt1 ¯ 0±5 faprt4 ¯®0±8 faprt6 ¯ 0±75 fasuc2 ¯ 0±4
fasuc4 ¯®0±24 fasuc8 ¯ 0±2 fasuc18 ¯®0±05 fasli3 ¯ 0±99
fasli4 ¯®0±95 fdada9 ¯ 1 fden1 ¯ 2 fden2 ¯®0±06
fden4 ¯®0±25 fden8 ¯®0±2 fden18 ¯®0±08 fdgnuc10 ¯ 1

fdnan12 ¯ 1 fdnap9 ¯ 0±42 fdnap10 ¯ 0±33 fgdrnr8 ¯ 0±4
fgdrnr9 ¯®1±2 fgdrnr10 ¯®0±39 fgmpr2 ¯®0±15 fgmpr4 ¯®0±07
fgmpr7 ¯®0±76 fgmpr8 ¯ 0±7 fgmps4 ¯ 0±12 fgmps7 ¯ 0±16
fgnuc8 ¯ 0±9 fgnuc18 ¯®0±34 fgprt1 ¯ 1±2 fgprt8 ¯®1±2
fgprt15 ¯ 0±42 fgua15 ¯ 0±5 fhprt1 ¯ 1±1 fhprt2 ¯®0±89
fhprt13 ¯ 0±48 fhx13 ¯ 1±12 fhxd13 ¯ 0±65 fimpd12 ¯ 0±15
fimpd7 ¯®0±09 fimpd8 ¯®0±03 finuc2 ¯ 0±8 finuc18 ¯®0±36
fmat4 ¯ 0±2 fmat5 ¯®0±6 fpolyam5 ¯ 0±9 fprpps1 ¯®0±03
fprpps4 ¯®0±45 fprpps8 ¯®0±04 fprpps17 ¯ 0±65 fprpps18 ¯ 0±7
fpyr1 ¯ 1±27 frnan11 ¯ 1 frnap4 ¯ 0±05 frnap8 ¯ 0±13
ftrans5 ¯ 0±33 fua16 ¯ 2±21 fx14 ¯ 2±0 fxd14 ¯ 0±55

new independent variables of the system and modifying the value

of the independent variable. As is to be expected, both procedures

yielded the same results.

Table 4 Values of the rate constants, in alphabetical order

αada ¯ 0±001062 αade ¯ 0±01 αadna ¯ 3±2789 αadrnr ¯ 0±0602
αampd ¯ 0±02688 αaprt ¯ 233±8 αarna ¯ 614±5 αasuc ¯ 3±5932
αasli ¯ 66544 αdada ¯ 0±03333 αden ¯ 5±2728 αdgnuc ¯ 0±03333
αdnaa ¯ 0±001938 αdnag ¯ 0±001318 αgdna ¯ 2±2296 αgdrnr ¯ 0±1199
αgmpr ¯ 0±3005 αgmps ¯ 0±3738 αgnuc ¯ 0±2511 αgprt ¯ 361±69
αgrna ¯ 409±6 αgua ¯ 0±4919 αhprt ¯ 12±569 αhx ¯ 0±003793
αhxd ¯ 0±2754 αimpd ¯ 1±2823 αinuc ¯ 0±9135 αmat ¯ 7±2067
αpolyam ¯ 0±29 αprpps ¯ 0±9 αpyr ¯ 1±2951 αrnaa ¯ 0±06923
αrnag ¯ 0±04615 αtrans ¯ 8±8539 αua ¯ 0±00008744 αx ¯ 0±0012
αxd ¯ 0±949

It is noted that the GMA approach does not use flux

aggregation, as the otherwise closely related S-system approach

does. In GMA, the kinetic orders f
name i

are strictly equivalent to

the elasticity coefficients (ε) in Metabolic Control Theory (MCT).

Also, the logarithmic gains L(X
i
,X

j
) and L(�

name
,X

j
) are equi-

valent to the control coefficients. This equivalence facilitates the

characterization of the control distribution among the enzymes

of the pathway, and the understanding of our results to readers

more familiar with MCT.
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Table 5 Estimates of metabolite concentrations

Definitions of abbreviations are given in Table 1.

Variable Concn. (µM) Metabolite Conc. (µM) References

X1 5 PRPP 5 43, 44

X2 100 IMP 100 45

X3 0±2 S-AMP 0±2 46

X4 2500 Ado 0±5 47

AMP

ADP

ATP

200

400

1900

5

6

7

8

48–50

X5 4 SAM 4 51, 52

X6 1 Ade 1 48, 49

X7 25 XMP 25 50

X8 400 GMP

GDP

GTP

25

75

300

5

6

7

8

48, 53, 54

X9 6 dAdo 0±1 48

dAMP

dADP

dATP

0±5
1.4

4

5

6

7

8

14, 55

X10 3 dGMP

dGDP

dGTP

0±1
0±5
2.4

5

6

7

8

14, 55

X11 28600 RNA 28600 56, 57

X12 5160 DNA 5160 58

X13 10 HX 6±9 15, 47

Ino

dIno

3

0.1

5

6

7

8

48, 59

X14 5 Xa 5 60, 61

X15 5 Gua

Guo

dGuo

0±5
4.4

0.1

5

6

7

8

48, 59

X16 100 UA 100 62

X17 18 R5P 18 56

X18 1400 Pi 1400 63, 64

In order to build the mathematical model required for Scheme

1, one needs to estimate all parameters of eqn. (2) (kinetic orders

and rate constants) for the 37 reactions of the scheme.

Kinetic order values are estimated using eqn. (3), which

requires steady-state values of the system (fluxes and concentra-

tions). Metabolic concentrations identified from experimental

data are summarized in Table 5 (see [8] for more details). The

characterization of values for the fluxes is more complex, because

there are few direct measurements of fluxes in the intact human

body.

Our model contains 37 fluxes and 16 dependent variables (see

Scheme 1). Consequently, taking into account steady-state con-

straints for the 16 dependent variables, 16 of the fluxes can be

formulated as linear combinations of the remaining 21. In

addition to these steady-state constraints, it is known that the

ratio of adenine and guanine in nucleic acids is approximately

3:2. This fact allows us to formulate four more constraints

between the fluxes in steady-state :

�
arna

¯ (3}2) �
grna

�
rnaa

¯ (3}2) �
rnag

�
adna

¯ (3}2) �
gdna

�
dnaa

¯ (3}2) �
dnag

While very helpful, these constraints are not sufficient for a

complete kinetic characterization. Seventeen more flux estimates

or constraints between fluxes are needed, and these have been

extracted from experimental data. These flux constraints are

presented in Table 6.

With these estimates and constraints, the system of equations

has a unique solution for the flux values at steady state ; this

solution is presented in Table 7 (see [8] for more details).

The estimated values of fluxes and metabolite concentrations

of the system in steady state can be used to estimate the kinetic

orders of each reaction in Scheme 1. In cases where the substrate

or modifier of the reaction is an aggregated pool, it is necessary

to distinguish between the different metabolites that comprise the

pool. This is accomplished with the second subindex of the

corresponding kinetic order which is given as the abbreviated

name of the metabolite instead of the number of the variable. In

these cases, it is assumed that the aggregated pool concentration

is the sum of concentrations of the individual components and

that the equilibrium between them is rapidly achieved. With this

assumption it can be mathematically demonstrated that the

kinetic order with respect to the aggregated pool is the sum of all

kinetic orders with respect to each individual component of the

pool.

Kinetic orders of steps in Scheme 1 that represent linear chains

of reactions (�
den

, �
polyam

, and �
trans

) have been estimated to be

equal to the kinetic orders of the first enzyme of the corresponding

chain (ATASE, SAMD and MT respectively). This assumption

is valid because in the three cases the first enzyme of the linear

chain is irreversible and its velocity is not affected by any other

intermediary metabolite of the chain. Under these particular

circumstances the flux logarithmic gains of a linear chain

correspond exactly to the kinetic orders of the first reaction.

Moreover, once the linear chain is considered to be a single step

in the whole model of Scheme 1, the flux logarithmic gains of the

linear chain become the kinetic orders of this step.

When characterizing a complex system such as this, no single

procedure is sufficient for all parameter estimations, and use of

different procedures is required to characterize the full parameter

set. The numerical values of the kinetic orders have been obtained

using the following methods (see [8] for more details).

(1) For steps corresponding to enzyme-catalysed reactions that

are well characterized in �itro by polynomial rate laws, we

estimate the kinetic orders by partial differentiation of rate laws

at the steady-state operating point, according to the definition

given in eqn. (3). Results are given in Table 8.

(2) For some steps, we know the percentage of inhibition (or

activation) of the rate law by a given metabolite. If metabolite X
i

at concentration C µM inhibits (or activates) the V
j
at P%, one

obtains the constraint :

C fji ¯ 1®(or­)
P

100

From such constraints we estimated the values of the f
ij
. Results

are given in Table 9.

(3) In other cases the percentage inhibition (or activation) is

unknown, but we know the change in kinetic parameters evoked

by a given concentration of the modifier. In these cases, we

substituted the kinetic parameters in the corresponding rate law

and obtained the percentage change in the flux rate caused by a

given concentration of the modifier. From this information, we

estimated the kinetic order using method 2 (see Table 9).

(4) In two cases, the in �i�o flux rates of a given step are known

for different concentrations of the metabolite that influences this

rate. Assuming that no other metabolites influence this rate, the

value of such an f
ij

is given as the slope of a plot of logarithm of

the rate versus the logarithm of the metabolite concentration [see
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Table 6 Experimentally based flux equations

Number Equation References

1 vua D 2±27 µmol/min per body weight 62

2 vhxd ­vhprt D 4±90 µmol/min per body weight 61

3 vhprt D 3¬vhxd 23, 62

4 vhprt D vgprt 19, 65

5 vgdrnr ­vgnuc D 9¬vgmpr 19, 66

6 vasuc D 5¬vimpd 67, 68

7 vaprt D 1 µmol/min per body weight 26

8
vada

vdada

D
[Ado]

[dAdo]
D 10 47

9
vgnuc

vdgnuc

D
[GMP]

[dGMP]
D 250 The same assumption as in eqn. (8)

10 vtrans D 14 µmol/min per body weight 55

11 vpyr D 10 µmol/min per body weight Assuming that purine synthesis is of the same

order as pyrimidine synthesis

12 vade D 0±01 µmol/min per body weight 27

13 vhx D 0±05 µmol/min per body weight 28

14 vx D 0±03 µmol/min per body weight 28

15 vampd D 3¬vada 69

16 vadna ­vgdna ¯ 17 µmol/min per body weight 58

17 varna ­vgrna ¯ 3300 µmol/min per body weight 70

Table 7 Steady-state flux rates in man

Variables are listed in alphabetical order. Units are µmol/min per body weight.

vada ¯ 2±1 vade ¯ 0±01 vadna ¯ 10 vadrnr ¯ 0±2
vampd ¯ 5±69 vaprt ¯ 1 varna ¯ 1980 vasuc ¯ 8

vasli ¯ 8 vdada ¯ 0±2 vden ¯ 2±39 vdgnuc ¯ 0±1
vdnaa ¯ 10 vdnag ¯ 6±8 vgdna ¯ 6±8 vgdrnr ¯ 0±1
vgmpr ¯ 0±5 vgmps ¯ 1±6 vgnuc ¯ 4±7 vgprt ¯ 3±7
vgrna ¯ 1320 vgua ¯ 1±1 vhprt ¯ 3±7 vhx ¯ 0±05
vhxd ¯ 1±23 vimpd ¯ 1±6 vinuc ¯ 2±68 vmat ¯ 15

vpolyam ¯ 1±01 vprpps ¯ 20±79 vpyr ¯ 10 vrnaa ¯ 1980

vrnag ¯ 1320 vtrans ¯ 13±99 vua ¯ 2±3 vx ¯ 0±03
vxd ¯ 2±3

eqn. (3)]. Using this method, we estimated f
ade'

(with data from

[101]) and f
ua"'

(with data from [102]).

(5) In three other cases, only two or three data points were

available, but using the same method with in �itro data from [93],

we obtained the values f
adrnr,dGTP

¯ 0±87, f
gdrnr,dATP

¯®1±2 and

f
gdrnr,dGTP

¯®0±39.

(6) In steps affected by only one metabolite, there are only two

unknowns in the GMA rate law of the process [see eqn. (2)] : the

α and f parameters. If we have the values of flux rate and

concentration of the metabolite at two different steady states (the

operating point and one other point), we can solve for the two

unknowns in the system of two equations. Using this method we

estimated the values of f
hx"$

¯ 1±12 and f
x"%

¯ 2. The values of

two steady states for �
x
, �

hx
, [HX] and [Xa] had been collected

from control subjects (operating point) and HGPRT-deficient

patients in which �
x
¯ 0±27 µmol}min per body weight, �

hx
¯

0±45 µmol}min per body weight, [Xa]¯ 15 µM and [HX]¯
50 µM [29].

(7) Three kinetic orders represent steps catalysed by more than

one enzyme (f
pyrl

, f
rnan""

and f
dnan"#

) and these could not be

estimated with any of these methods because the necessary

information was lacking. In these cases we used reasonable

guesses : (i) the flux �
pyr

is the flux of formation of pyrimidines,

histidine and tryptophan. The most important of these fluxes is

the pyrimidine formation, and this begins with the phospho-

ribosyltransferase step. Thus we used an average value of the

effect of PRPP in the three phosphoribosyltransferases of the

pathway, yielding f
pyrl

¯ 1±27. Several enzymes hydrolyse nucleic

acids to nucleotides and deoxynucleotides : 5«,3«-exonucleases,

3«,5«-exonucleases, endonucleases, H ribonuclease and other

unspecific enzymes. For simplicity, we set the values of the

corresponding kinetic orders as f
rnan""

¯ 1 and f
dnan"#

¯ 1. We

will demonstrate later that these parameter estimates are prob-

ably sufficient because changes in these parameters do not

significantly affect the behaviour of the system (see sensitivities

with respect to these kinetic orders in Figure 1).

Using these various methods, we estimated the complete set of

kinetic orders with respect to the metabolites of the pathway

(Scheme 1). The complete set of these kinetic orders is presented

in Table 3.

To complete the estimation of GMA parameters, we need to

compute the rate constants. This was accomplished with eqn. (4)

for every reaction, using the values of fluxes in Table 7, the values

of concentrations in Table 5, and the values of kinetic orders in

Table 3 (see Table 4).

Finally, the GMA model representing purine metabolism in

humans results from the mass-balance equations for the 16

dependent variables of the pathway, in which the rate laws of all

reactions are in power-law form [eqn. (2)], and the kinetic orders

and rate constants in these equations are substituted with the

numerical values of Tables 3 and 4.

RESULTS

The tools developed within BST allow us to establish a complete

characterization of a given model in terms of eigenvalues,

sensitivities, logarithmic gains, the prediction of new steady



767Purine metabolism model

Table 8 Estimates of GMA kinetic orders, using method 1

Units for constants are µM.

Reaction Kinetic equation Kinetic parameters Estimate References

vprpps Michaelis–Menten Km (ATP)¯ 14 fprpps,ATP ¯ 0±007 71

Km (R5P)¯ 33 fprpps17 ¯ 0±65 56

vprpps Michaelis–Menten Km (Pi)¯ 3300 fprpps18 ¯ 0±7 72

(apparent)

vden Hill Km ¯ 140–480 fden1 ¯ 1±6–2±3 21

h ¯ 2–3

vgprt Ordered sequence [PPi]¯ 15 73

KPRPP ¯ 240, KGua ¯ 4 fgprt1 ¯ 1±2 74

Ki (PPi)¯ 2100, Ki (GMP)¯ 1±25 fgprt,GMP ¯®1±2
fgprt,Gua ¯ 0±42

vhprt Random binding and [PPi]¯ 15 73

sequentially ordered KHX ¯ 7±7, KPRPP ¯ 66 fhprt1 ¯ 1±1 75

dissociation KIMP ¯ 5±8, KPPi
¯ 39 fhprt2 ¯®0±89

KiPRPP ¯ 25, KiIMP ¯ 40 fhprt,HX ¯ 0±48
KiPPi

¯ 260

vaprt Michaelis–Menten Km (Ade)¯ 1±1–5±2 faprt6 ¯ 0±52–0±84 76, 77

Km (PRPP)¯ 6 faprt1 ¯ 0±5
vaprt Competitive inhibition KAde ¯ 0±9, KPRPP ¯ 5 faprt,AMP ¯®0±76 to ®0±96 76, 78

Ki ¯ 7±5–30

vpolyam Michaelis–Menten Km ¯ 50 fpolyam5 ¯ 0±9 79

vtrans Michaelis–Menten Km ¯ 2 ftrans5 ¯ 0±33 52, 80

vmat Michaelis–Menten Km ¯ 450 fmat,ATP ¯ 0±2 52

vmat Uncompetitive inhibition Ki ¯ 2–2±9 fmat5 ¯®0±6 52

with respect to

methionine

vasuc Michaelis–Menten Km (IMP)¯ 30–700 fasuc2 ¯ 0±23–0±87 81, 82

Km (GTP)¯ 30–130 fasuc,GTP ¯ 0±09–0±30
vasuc Competitive inhibition Ki ¯ 170, Km (IMP)¯ 37 fasuc,AMP ¯®0±24 81

with respect to IMP

vasli Competitive inhibition Km (S-AMP)¯ 1±79 fasli3 ¯ 0±99 83

Ki ¯ 9±2 fasli,AMP ¯®0±95
vimpd Michaelis–Menten Km ¯ 7–23 fimpd2 ¯ 0±07–0±19 84

vimpd Competitive inhibition KiXMP ¯ 28 fimpd7 ¯®0±09 84

KiGMP ¯ 90 fimpd,GMP ¯®0±03
vgmps Michaelis–Menten Km (XMP)¯ 4±9 fgmps7 ¯ 0±16 85

Km (ATP)¯ 270 fgmps,ATP ¯ 0±12
vampd Hill Km ¯ 800–12700 fampd,AMP ¯ 0±4–1±2 86, 87

h ¯ 0±9–2

vampd Competitive inhibition Ki ¯ 16000 fampd18 ¯®0±07 to ®0±08 87

Km (AMP)¯ 1000–10000

vgmpr Michaelis–Menten Km (GMP)¯ 7±5 fgmpr,GMP ¯ 0±23 88

varna and vgrna Michaelis–Menten Km (ATP)¯ 100 frnap,ATP ¯ 0±05 89

Km (GTP)¯ 45 frnap,GTP ¯ 0±13
vadna and vgdna Michaelis–Menten Km (dATP)¯ 3 fdnap,dATP ¯ 0±42 90

Km (dGTP)¯ 1±2 fdnap,dGTP ¯ 0±33
vinuc Michaelis–Menten Km ¯ 100–600 finuc2 ¯ 0±5–0±9 91

vgnuc Michaelis–Menten Km ¯ 700 fgnuc,GMP ¯ 0±9 92

vadrnr Michaelis–Menten Km (ADP)¯ 40 fadrnr,ADP ¯ 0±1 93

vgdrnr Michaelis–Menten Km (GDP)¯ 50 fgdrnr,GDP ¯ 0±4 93

vdgnuc Michaelis–Menten Km (dGMP)¯ 3300 fdgnuc,dGMP ¯ 1 94

vada Michaelis–Menten Km (Ado)¯ 17–100 fada,Ado ¯ 0±95–0±99 47, 55, 95

vdada Michaelis–Menten Km (dAdo)¯ 37–40 fdada,dAdo ¯ 1 95

vgua Michaelis–Menten Km (Gua)¯ 0±56 fgua,Gua ¯ 0±5 45

vhxd Michaelis–Menten Km (HX)¯ 12–14 fhxd,HX ¯ 0±65 96

vxd Michaelis–Menten Km (Xa)¯ 3–15±5 fxd14 ¯ 0±37–0±75 97

states, and an assessment of its dynamic responses. These features

are discussed in the following sections.

Validation of necessary conditions for model performance :
steady-state stability and robustness

A basic feature for any model representing a normal physiological

system is steady-state stability, unless oscillations play a specific

role in the system, which is not the case for our target pathway.

In order to test the stability of our model, the eigenvalues of the

system at the physiological steady states were computed. Table

10 shows that all real parts are negative, which confirms that this

steady state is locally stable, and that the system will return to it

after small perturbations in any of the system variables.

As a second test for model performance, we use the sensitivities

to changes in kinetic order parameters. High sensitivity is
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Table 9 Estimated GMA kinetic orders, using methods 2 and 3

Units for concentrations are µM.

Metabolite Change in flux rate

Reaction concentration (%) Estimations Reference Method

vprpps [PRPP]¯ 1000

[AMP]¯ 1000

[ADP]¯ 1000

[GMP]¯ 1000

[GDP]¯ 1000

®19

®53

®92

®3

®24

fprpps1 ¯®0±03
fprpps,AMP ¯®0±1
fprps,ADP ¯®0±36
fprpps,GMP ¯®0±004
fprpps,GDP ¯®0±04

5

6

7

8

71 2

vden [IMP]¯ 5000

[AMP]¯ 5000

[ADP]¯ 5000

[ATP]¯ 5000

[GMP]¯ 5000

[GDP]¯ 5000

[GTP]¯ 5000

®41

®76

®40

®21

®70

®40

®13

fden2 ¯®0±06
fden,AMP ¯®0±17
fden,ADP ¯®0±06
fden,ATP ¯®0±028
fden,GMP ¯®0±14
fden,GDP ¯®0±06
fden,GTP ¯®0±016

5

6

7

8

21 2

vden [Pi]¯ 25000 From 38 to 17 fden18 ¯®0±08 98 3

vasuc [Pi]¯ 2000 ®20 fasuc18 ¯®0±05 99 2

[Pi]¯ 20000 ®59

vampd [GTP]¯ 1000 From 25 to 20 fampd,GTP ¯®0±03 86 3

vgmpr [IMP]¯ 33

[IMP]¯ 330

[XMP]¯ 33

[AMP]¯ 33

[ADP]¯ 33

[ATP]¯ 33

®30

®70

®93

®5

®7

®11

fgmpr2 ¯®0±1
fgmpr2 ¯®0±2
fgmpr7 ¯®0±76
fgmpr,AMP ¯®0±01
fgmpr,ADP ¯®0±02
fgmpr,ATP ¯®0±04

5

6

7

8

100 2

vgmpr [GDP]¯ 2 ­13 fgmpr,GDP ¯ 0±18 88 2

[GTP]¯ 2 ­22 fgmpr,GTP ¯ 0±29
vinuc [Pi]¯ 1000 From 0±5 to 0±04 finuc18 ¯®0±36 92 3

vgnuc [Pi]¯ 1000 From 0±034 to 0±003 fgnuc18 ¯®0±34 92 3

vadrnr [dATP]¯ 5 ®50 fadrnr,dATP ¯®0±3 93 2

Table 10 Eigenvalues of the model at the original operating point

Real part Imaginary part

®5±08¬10−2 0

®2±89¬10−3 0

®1±38¬10−4 0

®1±24¬10−3 0

®1±62¬10−2 0

®4±95¬10−2 3±17¬10−4 i

®4±95¬10−2 ®3±17¬10−4 i

®0±265 0

®0±244 0

®0±371 0

®0±616 0

®0±743 0

®1±491 0

®5±533 0

®3±63 0

®39±6 0

typically an indicator for unreasonable responses of the model

[34]. The sensitivities of the model appear in Figure 1. It should

be noted that they are represented as absolute, instead of positive

or negative, values. The use of absolute values simplifies the

discussion and is sufficient for our purposes, because the ro-

bustness of the steady state is independent of the sign of each

sensitivity. Most of the 1088 parameter sensitivities represented

in Figure 1 are lower than 1, indicating that the model steady

state considered at the normal physiological values is robust, a

property that is expected in the real system [34].

The relatively high sensitivity S(X
"$

, f
prpps")

) of 11±3 indicates

that a 1% increase in f
prpps")

will lead to an increase in X
"$

of

about 11%. This sensitivity represents the influence of the

activation of PRPPS by P
i
on the concentration of X

"$
. However,

the amplification indicated by this sensitivity is not very signifi-

cant, because X
"$

is merely a degradation product of purine

metabolism, and fluctuations in its concentration are incon-

sequential. Similarly, the sensitivities associated with the con-

centrations of X
#
, X

'
, X

"$
and X

"%
are of secondary importance.

These particular variables are not the central metabolites of the

pathway, but precursors or degradation products of the nucleo-

tides or deoxynucleotides.

The only other sensitivities with higher values are associated

with RNA and DNA. One is the sensitivity of RNA with respect

to f
rnan""

, and the other one is the sensitivity of DNA with respect

to f
dnan"#

; all other sensitivities with respect to f
rnan""

and f
dnan"#

are close to 0.

In summary, it is important to note that parameter sensitivities

are low, indicating that the steady state of the model is robust.

Therefore relatively inaccurate estimates of kinetic parameters

will not significantly affect the global behaviour of the system.

Moreover, because the central metabolites of the pathway are

characterized by low sensitivities with respect to all kinetic

orders, they are expected not to change dramatically after small

changes in external conditions, a fact that is expected to occur in

well-adapted biological systems [34].

Logarithmic gains

Logarithmic gains indicate how a system responds if one of the

independent variables is perturbed. Gain profiles for both fluxes

and concentrations therefore provide a reliable characterization
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Figure 1 Absolute values of the sensitivities of concentrations with respect to kinetic orders

of the steady state for a given pathway. Gain profiles for our

model are shown in Figures 2 and 3.

Biochemists generally have some information about those

enzymes that have the greatest effect on the pathway. This

information may derive from mutations that lead to altered

enzymes and resultant disorders of purine metabolism or from

known effectors of these enzymes. All available information

about the enzymes of purine metabolism seems to be consistent

with the results of our gain analysis (Figures 2 and 3). Enzymes

with relatively high logarithmic gains, primarily PRPPS,

HGPRT, IMPD and AMPD, are all known to be important in

the regulation of purine metabolism, and inhibitors of these

enzymes are often used for therapeutical purposes.

Although these enzymes have higher logarithmic gains than

others, the results presented in Figures 2 and 3 show that the

control of the pathway is widely distributed among the in-

dependent variables. The enzymes RNAP, RNAN, DNAP and

DNAN are important only for the control of RNA and DNA

and their synthesis or degradation, but have little effect on other

variables of the model.

Some fluxes of the pathway are not catalysed by a single

enzyme (�
pyr

, �
ade

, �
hx

, �
x
and �

ua
). In these cases, the independent

variable in Figures 2 and 3 reflects a combination of enzymes. In

some cases, two fluxes are equivalent at steady state (�
asuc

¯ �
asli

,

�
impd

¯ �
gmps

and �
xd

¯ �
ua

), and in other cases the kinetics of one

flux is proportional to the kinetics of another flux. An example

of the latter situation is the proportionality between the fluxes

catalysed by DNAP and DNAN and RNAP and RNAN. In

both cases, the logarithmic flux gains are the same for both

fluxes, and one row of logarithmic gains is sufficient in Figure 3.

In some cases, the position of an enzyme within a pathway can

significantly affect its influence on other fluxes and concentra-

tions. In particular, it has been shown with mathematical rigour

(R. Curto, E. O. Voit, A. Sorribas and M. Cascante, unpublished

work), that, if the first step of a linear pathway is unmodified,

subsequent steps can be lumped into a single step, and the kinetic

properties of the pathway are determined by the kinetics of the

first step. A case in point is the pathway consisting of the two

reactions �
asuc

and �
asli

. The pathway is linear and the enzyme of

the first reaction, ASUC, is unmodified. Therefore the enzyme

ASLI, catalysing the second step, does not exert control over any

other flux in the entire system. The situation is different in the

case of �
impd

and �
gmps

. Here, GMPS exhibits some logarithmic

flux gains that are not zero, because in the linear pathway of �
impd

and �
gmps

the first flux (�
impd

) is affected directly by one of the

variables of the pathway (XMP), and this constitutes the

differences between this case and the case of �
asuc

, which is not

affected by S-AMP.

As is to be expected for a biochemical pathway in which fluxes

are homogeneous functions of enzyme concentrations, and as a

consequence of the mathematical representation selected for our

model, the summation property proposed in MCT is satisfied for
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Figure 2 Logarithmic concentration gains for all relevant components of the pathway

Positive values are represented by open bars and negative values by solid bars.

both the individual flux rates and the metabolite concentrations.

This property asserts

3
l

i="

CJ

Ei

¯ 1 and 3
l

i="

CX

Ei

¯ 0

where l is the total number of enzymes in the pathway, J is a flux

of interest and X is one of the metabolite concentrations of the

pathway [104,105].

Consistency of the model with experimental and clinical data

The analysis of the local stability of a model and the charac-

terization of its sensitivities are crucial elements of any systems

analysis. However, the fact that a system is stable and robust

alone is only one necessary condition of validity. Maybe more

important is whether the model reflects or predicts reality. This

question is discussed below with a comparison of experimental

or clinical findings with model results.

Constancy of adenine and guanine nucleotide pools

It is extensively documented in the literature that these pools

remain almost constant under very different conditions [14] (see

also [106]). To test whether our model accurately predicts this

observation,we analysed the dynamic behaviour of the adenylates

and guanylates after simulating the infusion or depletion of other

system variables by the same absolute amount (100 µM increase

or decrease on each variable). Table 11 shows the maximum or

minimum values that X
%

and X
)

reached during the transition

from the perturbed state back to the original steady state (2500

and 400 µM respectively), which the system always approached

after some time.We simulated absolute instead of relative changes

in each variable of the pathway because this corresponds to the

same addition or subtraction or purine rings at different points

of the network.

The results of these simulations demonstrate that temporary

changes in DNA, Xa or UA do not yield appreciable alterations

in the nucleotide pools. The injection or depletion of any of the

other variables is buffered by the pathway, and it is evident that

the adenylate and guanylate nucleotide pools are rather in-

sensitive even to large changes in the other variables of the

model, which is consistent with clinical findings in man.

Relatively larger changes in adenylates are observed as a

consequence of initial changes in S-AMP. This is not surprising

because S-AMP and the adenylates are part of a closed pathway,

and S-AMP molecules have no choice other than to enter the

adenylatepool.Noticeable changes are alsoproducedby increases

in SAM and Ade. Again, this fact is reported in the literature as

an exception from the otherwise well-known unresponsiveness of

adenylates (see under Incorporation of Ade and Gua below for

more details). Apart from these variables, only temporary
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Figure 3 Logarithmic flux gains for all relevant components of the pathway

Positive values are represented by open bars and negative values by solid bars. The results are presented in two panels because of the large number of fluxes associated with purine metabolism.
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Table 11 Maximum and minimum values reached by X4 and X8 in response
to temporarily increasing or decreasing dependent variables

The concentrations at the physiological operating point are 2500 µM for adenylates (X4) and

400 µM for guanylates (X8). The variables X12, X14 and X16 do not appear because adenylates

and guanylates are not responsive to changes in these variables.

Variable

name Metabolite

Normal

concentration

(µm)

Externally

set

concentration

(µM)

Transitional

extreme

value of

adenylates

(X4) (µM)

Transitional

extreme

value of

guanylates

(X8) (µM)

X1 PRPP 5 105 2504 (max) 405 (max)

X2 IMP 100 200 2536 (max) 401 (max)

X2 IMP 100 1 2454 (min) 400

X3 S-AMP 0±2 100±2 2595 (max) 397 (min)

X5 SAM 4 104 2589 (max) 401 (max)

X6 Ade 1 101 2591 (max) 394 (min)

X7 XMP 25 125 2416 (min) 425 (max)

X9 dAMP pool 6 106 2524 (max) 399 (min)

X10 dGMP pool 3 103 2402 (min) 410 (max)

X11 RNA 28600 28700 2514 (max) 409 (max)

X11 RNA 28600 28500 2478 (min) 393 (min)

X13 HX pool 10 110 2515 (max) 399 (min)

X15 Gua 5 105 2432 (min) 417 (max)

changes in XMP and the deoxyguanylates affect the nucleotide

pools appreciably.

Effects of hypoxanthine

Studying human bone marrow cells, King et al. [15] observed

that a 100-fold increase in HX causes the rate �
den

to decrease to

a minimum of 19% of its initial value (0±45 µmol}min per body

weight). To test this response, we increased the initial value of

HX by 100-fold. During the subsequent response phase, �
den

reached a minimum value of 0±7 µmol}min per body weight,

which reflects King’s observation quite well.

Incorporation of Ade and Gua

Observations in humanplatelets [16], humanmuscle [17], Swis3T3

cells [18] and xanthinuric patients [19] suggest that the in-

corporation of Ade into adenylates is more significant than the

incorporation of Gua into guanylates. The sixth and last rows of

Table 11 demonstrate the strong response of adenylates after the

addition of Ade and the weak response of guanylates after the

addition of Gua, again suggesting consistency between model

and experimental reports.

Inhibition of AMPD

A disorder has been reported in the literature in which the

enzyme AMPD is resistant to inhibition by guanylates (f
ampd%

)

and P
i
(f

ampd")
). In humans, this resistance results in increases in

UA and �
xd

[20]. Setting the value of f
ampd%

and f
ampd")

equal to

0, the model reaches a new steady state, with a UA concentration

of 117 instead of 100 µM and a �
xd

of 3±24 instead of 2±3 µmol}
min per body weight. Numerical values of [UA] and �

xd
in

patients with this disorder are not reported in [20], and we can

Table 12 Clinically observed and simulated concentrations in subjects with
PRPPS superactivity

For this simulation, the rate constant for PRPPS was changed from 0±9 to 1±8. The HX

concentration has been calculated as 7/10 of X13, because X13 also includes Ino and dIno, which

are in equilibrium with HX.

[UA]

(µM)

[Xa]

(µM)

[HX]

(µM)

vden

(µmol/min

per body

weight)

[PRPP]

(µM)

Control values 100 5 7±0 2±39 5±0
PRPPS superactivity simulation 131 15 28±7 4±70 7±8
Patients with PRPPS superactivity 300 10 21±0 8±55 21±0

only state that there is qualitative agreement between model

results and clinical data.

PRPPS activity

Numerous reports have described the strong effect of increases in

PRPPS activity on purine metabolism. In human subjects,

increased PRPPS activity results in high concentrations of PRPP

and UA, and in an increased flux �
den

[21]. In patients with 200%

activity of this enzyme, PRPP increased from 270 to 520% [107],

and, in two other patients with the same disorder, HX, Xa and

UA increased to 300, 200 and 300% respectively [60]. Table 12

shows the concentrations at the operating point, simulated

concentrations for a system with 200% activity in PRPPS and

clinically observed values in patients with PRPPS superactivity.

The simulation results are in qualitative agreement with the

clinical data.

HGPRT deficiency

Deficiencies in HGPRT can lead to dramatic changes in human

purine metabolism. Many of these have been characterized in the

literature; they are compared with model results in the following.

In particular, HGPRT deficiency has been reported to result in:

(i) a 3- or 4-fold increase in �
den

in rats [22] and a 20-fold increase

in �
den

in humans [23] ; (ii) increases in the concentration of HX

from 6±9 to 50 µM in humans [29] ; (iii) increases in the con-

centration of Xa from 5 to 15 µM in humans [29] ; (iv) increases

in the excretion of Xa and HX to about 9-fold the normal value

in humans [29] ; (v) increases in UA concentration from 100 to

150 µM in humans [25] ; (vi) increases in UA excretion from 2±3
to values between 7 and 14 µmol}min per body weight [24].

For comparison, we implemented a 1% HGPRT activity, thus

simulating a rather severe deficiency. The resultant steady-state

values are given in Table 13. The control values in this Table

correspond to values measured in healthy subjects and thus to

valuesof theoriginalmodel at theoperatingpoint.Thepredictions

of the model reflect the clinically measured values in HGPRT-

deficient patients rather well.

APRT deficiency

Deficiencies in APRT are almost asymptomatic, except that the

excretion of adenine metabolites (Ade, 8-hydroxyadenine and



773Purine metabolism model

Table 13 Clinically observed and simulated concentrations in HGPRT-deficient patients

Simulation results were obtained for 1% HGPRT activity. The HX concentration has been calculated as 7/10 of X13, because X13 also includes Ino and dIno, which are in equilibrium with HX.

[UA]

(µM)

[Xa]

(µM)

[HX]

(µM)

vden

(µmol/min

per body

weight)

vua

(µmol/min

per body

weight)

vx

(µmol/min

per body

weight)

vhx

(µmol/min

per body

weight)

Control values 100 5 7 2±39 2±30 0±03 0±05
HGPRT deficiency simulation 146 22 49 6±31 5±25 0±60 0±44
Patients with HGPRT deficiency 150 15 50 40±00 10±00 0±27 0±45

Table 14 Clinically observed and simulated concentrations in XD-deficient patients

Simulation results were obtained for 1% XD activity. The HX concentration has been calculated as 7/10 of X13, because X13 also includes Ino and dIno, which are in equilibrium with HX.

[UA]

(µM)

[Xa]

(µM)

[HX]

(µM)

vua

(µmol/min

per body

weight)

vx

(µmol/min

per body

weight)

vhx

(µmol/min

per body

weight)

Xa turnover

(µmol/min

per body

weight)

UA turnover

(µmol/min

per body

weight)

Control values 100 5 7 2±30 0±03 0±05 2±33 2±30
XD deficiency simulation 19 31 42 0±06 1±22 0±37 1±28 0±06
Patients with XD deficiency 1±6 15±8 12±3 0±045 1±155 0±28 1±20 0±045

2,8-dihydroxyadenine) is increased to values of about

0±5 µmol}min per body weight [26,27]. We simulated this

deficiency by implementing a 1% APRT activity. As observed

clinically, this change was almost inconsequential, and the steady

state was essentially unaffected.The only exceptions were found

to be the flux value for �
ade

of 0±23 µmol}min per body weight,

which is close to the value found in APRT-deficient patients, and

an elevated adenine concentration of 310 µM. No information

supporting or contradicting this considerable accumulation seems

to be currently available in the literature.

Xanthinuria

Several metabolic alterations are associated with xanthinuria.

They are reflected in the following clinical measurements : Xa

turnover¯ 1±2, UA turnover¯ 0±045, �
hx

¯ 0±28, �
x
¯ 1±155 (the

urinary excretion is only 1, and this flux includes other excretions

that must be equivalent to Xa turnover minus UA turnover),

�
ua

¯ 0±045 µmol}min per body weight (the urinary excretion is

only 0±02, and this flux includes other excretions equaling UA

turnover), HX¯ 12±3, Xa¯ 15±8 and UA¯ 1±6 µM [28].

We implemented a 1% XD activity to simulate xanthinuria in

humans. Values of the resulting steady state are given in Table

14. The predicted flux values are consistent with those in XD-

deficient patients. The predicted concentrations are somewhat

higher than those observed but qualitatively consistent with

those in xanthinuric patients.

UA overproduction

In addition to the causes of elevated UA levels mentioned earlier

in this section, there are a considerable number of conditions in

�i�o that cause overproduction of UA in humans. Examples

include increases in PRPP, a surfeit of IMP [43,62] and increases

in XD activity [108]. No quantitative clinical data for these

conditions are available, but it is noted that our model quali-

tatively reproduces all these clinical observations over a vast

range of changes in PRPP, IMP or XD activity (results not

shown).

DISCUSSION

Mathematical models of biochemical systems offer an alternative

to experimentation that allows the researcher to minimize cost

and to test situations that are difficult or unethical in their

implementation. They are also a prerequisite for a true under-

standing of the complexity of metabolic pathways [109]. Of

course, before one can trust a mathematical model, it needs to be

subjected to a battery of tests. There is never proof that a model

is correct and, in fact, models are ‘wrong’ by design, since they

simplify reality and ignore effects that could potentially be more

significant than originally thought. Nonetheless, if mathematical

analyses confirm the intrinsic validity and robustness of a model

and if numerical simulations yield consistency with observed

data, confidence in the model increases.

The model proposed in this paper was constructed from

proven principles of systems analysis and estimated in its entirety

from data found in the reviewed literature. The reliance on

observed data and the structural robustness provided us with

reasonable confidence about the validity of the model. The

mathematical analyses of stability and various types of sensi-

tivities corroborated this assessment.

Stability and robustness of the steady state are necessary, but

by no means sufficient conditions for the quality of a model. It

was therefore of great importance to simulate biochemical

experiments and disorders of human purine metabolism that had

been clinically documented. These simulations yielded good

results, not only in terms of qualitative responses, but often

quantitatively.

Beyond the comparisonswith clinical and biochemical findings,

the model analysis is interesting in two respects. First, the model

integrates very different types of data, thereby allowing us to test
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the consistency among different data sets and among data

obtained under different conditions or from different organisms

[110,111]. In this sense, the values obtained in Table 7, even

though they merely constitute a collection of bibliographic data,

are interesting in themselves because they elucidated the pattern

of distribution of fluxes in human purine metabolism. Second,

the model renders it possible to analyse questions about the

design of the pathway [30]. Such design analyses explain the role

of particular metabolites or modulators, as well as the rationale

for the given pathway structure in comparison with other

hypothetically possible structures [30].

Reliable mathematical models can be very attractive in the

screening and analysis of ‘what if ’ hypotheses. Such hypotheses

can again address questions of design, but they can also be of

great clinical and pharmaceutical interest. For instance, the

establishment of logarithmic gain profiles can be a guide in the

identification of processes that would be best suited for the drug

treatment of a given disease. Enzymes with low gain factors are

less likely candidates for efficacious manipulation than enzymes

with high gains.

Reliable mathematical models can generate predictions not yet

tested or even untestable in humans. Even if such predictions are

only qualitative, they may provide clues about responses in situ

and stimulate experimental investigation. For example, the

prediction of significant adenosine accumulation in patients with

APRT deficiency, to the best of our knowledge, has not been

reported in the literature.

As an extension of the research presented here, we have

recently used the model [8] to predict and explain neurological

dysfunctions in patients with disorders of purine metabolism.

This analysis sheds light on the biochemical mechanisms that

result from some enzyme defects and classified primary and

secondary causes of defects and disorders. Future research will

address the specific effects of known and hypothetical drugs that

interact with purine metabolism.
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