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Abstract

Experimental and clinical data on purine metabolism are collated and analyzed with
three mathematical models. The first model is the result of an attempt to construct a tra-
ditional kinetic model based on Michaelis—-Menten rate laws. This attempt is only par-
tially successful, since kinetic information, while extensive, is not complete, and since
qualitative information is difficult to incorporate into this type of model. The data gaps
necessitate the complementation of the Michaelis—-Menten model with other functional
forms that can incorporate different types of data. The most convenient and established
representations for this purpose are rate laws formulated as power-law functions, and
these are used to construct a Complemented Michaelis-Menten (CMM) model. The
other two models are pure power-law representations, one in the form of a Generalized
Mass Action (GMA) system, and the other one in the form of an S-system. The first part
of the paper contains a compendium of experimental data necessary for any mode] of
purine metabolism. This is followed by the formulation of the three models and a com-
parative analysis. For physiological and moderately pathological perturbations in me-
tabolites or enzymes, the results of the three models are very similar and consistent
with clinical findings. This is an encouraging result since the three models have different
structures and data requirements and are based on different mathematical assumptions.
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Significant enzyme deficiencies are not so well modeled by the S-system model. The
CMM model captures the dynamics better, but judging by comparisons with clinical ob-
servations, the best model in this case is the GMA model. The model results are discus-
sed in some detail. along with advantages and disadvantages of each modeling
strategy.  © 1998 Elsevier Science Inc. All rights reserved.

Kevwords: Biochemical systems theory: General mass action system: Mathematical
model: Purine metabolism; S-system

Abbreviations

Abbreviation Metabolite Variable
PRPP Phosphoribosylpyrophosphate X
IMP Inosine monophosphate X5
S-AMP Adenylosuccinate Xy
Ado Adenosine

AMP Adenosine monophosphate Xy
ADP Adenosine diphosphate

ATP Adenosine triphosphate

SAM S-adenosyl-L-methionine Xs
Ade Adenine X
XMP Xanthosine monophosphate X
GMP Guanosine monophosphate

GDP Guanosine diphosphate Xy
GTP Guanosine triphosphate

dAdo Deoxyadenosine

dAMP Deoxyadenosine monophosphate Xy
dADP Deoxyadenosine diphosphate

dATP Deoxyadenosine triphosphate

dGMP Deoxyguanosine monophosphate

dGDP Deoxyguanosine diphosphate Yo
dGTP Deoxyguanosine triphosphate

RNA Ribonucleic acid X
DNA Deoxyribonucleic acid X
HX Hypoxanthine

Ino Inosine s
dIno Deoxyinosine

Xa Xanthine X
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oxidase)

Gua Guanine

Guo Guanosine Xis

dGuo Deoxyguanosine

UA Uric acid Xie

RSP Ribose-5-phosphate X7

Pi Phosphate X1

Abbreviation Full name

GMA Generalized Mass Action

BST Biochemical Systems Theory

MCT Metabolic Control Theory

CMM Complemented Michaelis-Menten

BW Body weight

Abbreviated  Abbreviated  Enzyme catalvzed reaction EC

flux enzyme

Vprpps PRPPS Phosphoribosylpyrophosphate  2.7.6.1
synthetase

Uypri HGPRT Hypoxanthine-guanine 24.28
phosphoribosyltransferase

e HGPRT Hypoxanthine-guanine 2428
phosphoribosyltransferase

Capr APRT Adenine phosphoribosyl- 24.2.7.
transferase

Uden ATASE ‘De novo synthesis’
{Amidophosphoribosyl- 2.4.2.14.
transferase)

Upyr ‘pyrimidine synthesis’ several enzymes

Pasue ASUC Adenylosuccinate synthetase 6.3.4.4.

Pagli ASLI Adenylosuccinate lyase 4.3.2.2.

Limpd IMPD IMP dehydrogenase 1.1.1.205.

Uamps GMPS GMP synthetase 6.3.4.1.

Campd AMPD AMP deaminase 3.54.6.

Curnp GMPR GMP reductase 1.6.6.8.

Cirans MT ‘transmethylation pathway’
(Protein O-methyltransferase) 2.1.1.24.

Ermat MAT Methionine adenosyltransferase 2.5.1.6.

Upolyam SAMD ‘Polyamine pathway’
{S-adenosylmethionine de- 4.1.1.50.
carboxylase)

Vade ‘Adenine oxidation” (xanthine 1.2.1.37.
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Vinue SNUC §'-Nucleotidase 3.1.3.5.

Vgnuc SNUC 5'-Nucleotidase 3.1.3.5.

Varna RNAP RNA polymerase (from ATP) 2.7.7.6.

Ugrna RNAP RNA polymerase (from GTP) 2.7.7.6.

Urnaa RNAN RNases (to AMP) several enzymes

Urnag RNAN RNases (to GMP) several enzymes

Vdgnue INUC 5'(3") Nucleotidase 3.1.3.31.

Lada ADA Adenosine deaminase 3.544.

Udada ADA Adenosine deaminase 3.544.

Vadrnr DRNR Diribonucleotide reductase 1.17.4.1.

Ugdrne DRNR Diribonucleotide reductase 1.17.4.1.

Ugua GUA Guanine hydrolase 3.54.3.

Vadna DNAP DNA polymerase (from dATP) 2.7.7.7.

Vgdna DNAP DNA polymerase (from dGTP) 2.7.7.7.

Vdnaa DNAN DNases (to dAAMP) several enzymes

Vdnag DNAN DNases (to dGMP) several enzymes

Uhs ‘Hypoxanthine excretion’ Non-enzymatic
step

Uhxd XD Xanthine oxidase or xanthine 1.2.1.37.

dehydrogenase
Uyd XD Xanthine oxidase or xanthine 1.2.1.37.
dehydrogenase

Uy ‘Xanthine excretion’ Non-enzymatic
step

bua ‘Uric acid excretion’ Non-enzymatic
step

1. Introduction

Purine metabolism constitutes a key pathway for every organism since it is
at the heart of DNA and RNA synthesis and degradation and involves the pro-
duction of ubiquitous metabolites like ATP. It is also clinically important be-
cause of numerous diseases, ranging from gout to mental retardation, that are
associated with well-characterized enzyme defects of this pathway.

The literature contains an enormous amount of data about purine metabo-
lism in different species, tissues, and under different metabolic and physiologi-
cal conditions. Even so, there are very definite gaps in our knowledge about the
pathway, and the complexity of the regulatory mechanisms and the large num-
ber of branches in this pathway make it very difficult to understand and predict
its behavior intuitively.

A promising approach to understanding purine metabolism is the construc-
tion and analysis of a mathematical model that is able to deal with large
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numbers of metabolites and complex interactions. Such an approach is feasi-
ble since purine metabolism constitutes an almost closed pathway in which
only a few metabolites are products of, or substrates for, other pathways.
In our model definition, the metabolic system consists of sixteen dependent
variables, two independent variables and thirty-seven steps; it is depicted in
Fig. 1.

Several approaches to modeling purine metabolism were developed in recent
years. Franco and Canela [1] designed one of the first kinetic models of purine
metabolism based on data from different species and tissues, with the aim of
demonstrating the usefulness of computer simulations of complex metabolic
networks. Heinmets [2] modeled nucleic acid synthesis from nucleotides and
deoxynucleotides, but the model parameters were not directly obtained from
experimental data. More recently, Bartel and Holzhiitter [3] constructed a
model based on rat liver as the reference system.

The goal of the present paper is to develop an integrated model that is based
on available data and that may aid our understanding of the complex dynamics
of purine metabolism. Our reference system is the whole human body. This is a
daring task, but it seems that in the long run it will be the only way to address
the large and diverse amount of experimental and clinical data on normal and
deficient purine metabolism and potential treatments. Furthermore, it would
appear to be restrictive to focus on a single cell type or tissue, since the path-
ways of purine metabolism are distributed among several tissues at different lo-
cations throughout the body [4,5].

In order not to become overwhelmed with complexity, the prototype models
presented here do not account for the physiological compartmentalization of
purine metabolism throughout the body. This is a potentially significant simpli-
fication that should be addressed in the future. However, at this point, a non-
compartmental model seems to be a reasonable starting point for understand-
ing some aspects the complex dynamics of purine metabolism. The future in-
clusion of compartments in an overall model must be expected to be a
challenge, since some pathways within purine metabolism differ among tissues
and even at the cellular level [6]. Since there are no absolute guidelines for the
choice of a particular model, we develop three alternative models and compare
them with each other and with clinical observations. This comparison may help
future researchers with model selection in similar situations.

The first and most significant step for this comparative analysis is the assess-
ment of experimental data from the literature. For this step, we collected pub-
lished information on metabolite concentrations, flux values, and enzyme
kinetics from both biochemical and clinical studies. The evaluation of this in-
formation is useful not only in the context of the present paper, but it is a nec-
essary prerequisite for any modeling approach to understanding purine
metabolism. Because of the importance of this step, we discuss data collection
and parameter estimation in some detail.
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Fig. 1. Metabolic diagram of purine metabolism in man. Dependent variables are shown in boxes.
independent variables (RSP and Pi) without boxes. Fluxes are represented by straight, heavy ar-
rows and identified with abbreviated names. Regulatory signals are represented by curved, light ar-
rows: inhibitions are indicated by dashed lines and activations by solid lines (for names of
metabolites and fluxes. see Section Abbreviations).
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The literature contains considerable information about the key processes of
the pathway, and this information is often presented in the form of parameters
such as Ky, Vmax. and K;. This information can be directly translated into tra-
ditional Michaelis-Menten or Hill rate laws. However, the published informa-
tion is not complete, especially, if one restricts the search to human cells. In
some cases, the lack of information can be alleviated with direct or indirect da-
ta, obtained in vivo or in vitro. that show how one variable affects the rate of a
particular step. While this information is insufficient for translating these ob-
servations into corresponding Michaelis-Menten equations, it can be used to
formulate and parameterize power-function rate laws proposed in Biochemical
Systems Theory (BST) [7-13].

The first model we analyze is a *‘Complemented Michaelis-Menten’ (CMM)
model in which as many steps of the pathway as currently possible (15 out of
the 37) are expressed as traditional Michaelis-Menten rate laws, 10 are expres-
sed as power-law rate laws, and 12 are mixed.

The other two models are formulated as canonical models within the frame-
work of BST. The first of these is a Generalized Mass Action (GMA) model in
which each individual step is represented as power-function rate law. These rep-
resentations are readily obtained directly from data or from the previously defined
CMM model, with methods that are well documented in the literature [10,14].

The second power-law model is given in the form of an S-system. In this
form, influxes and outfluxes at branchpoints are aggregated into one power-
law term each. This form is simpler in structure and allows analytic evaluations
of the steady-state that are not possible in other types of models. It was also
shown in a theoretical setting [14] that S-systems capture the dynamics of pure
Michaelis-Menten models better than GMA systems, if the involved metabo-
lites vary within physiological ranges. If the metabolites deviate greatly from
their nominal values, ¢ither one of the power-law models may be more accurate
[14]. Our results here confirm that this is true for purine metabolism. For small
perturbations, the responses of the S-system model are slightly closer to CMM
than GMA, but for very large perturbations, as they occur in severe enzyme de-
ficiencies, the GMA model agrees significantly better with clinical observations
than the S-system model. Reasons for this result, along with advantages and dis-
advantages of the three models. are discussed in the final section of the paper.

2. Mathematical representation and data requirements

A standard concept for describing the dynamics of complex systems is based
on mass balance equations of the type

X, = Z(’,, e (1)

jol
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where 7 is the number of processes in the system, and the processes v, are func-
tions of some or all of the metabolites X;. The parameters ¢;; are the stoic-
hiometric coefficients of the reaction v; in the equation of metabolite X;.
These coefficients take values: greater than 0, if v; synthesizes X;; equal to 0,
if v; has no effect on X;; and lower than 0, if v; degrades X..

In traditional enzyme kinetics, the functions v; represent enzyme catalyzed
processes, each of which is formulated as a rational function that relates the
reaction rate with the concentrations of substrates and modulators. The sim-
plest example is the Michaelis--Menten equation

v = .V‘_“_Aj_)_(L (2)
YKyt X,
which has been the paradigm rate law for almost a century [15]. It has proven
very useful in itself and has also been used as the basis for more complicated
rate laws involving activators, inhibitors, allosteric substrates. and other mod-
ulating influences.

For reactions that include several substrates, products, or modulators, the
traditional rate laws become unwieldy, and this has prompted the search for
alternative representations. Valid, yet mathematically convenient substitutes
for the traditional rate laws are particularly needed if the objective of the inv-
estigation is the analysis of realistically sized, integrated metabolic pathways
and their dynamic behavior. Addressing this need, BST [9,13] was developed
as a mathematically rigorous modeling approach that can make use of a wide
variety of data and other types of more qualitative information. In BST, each
rate is represented by a product of power-law functions. This strategy has em-
pirically proven successful and is mathematically justified, since it derives from
linear approximation of the rate in logarithmic space. The power-law represen-
tation is equivalent with the actual rate law at any chosen operating point, but
the two typically differ when the system moves away from this point. Experi-
ence suggests that the rate laws in BST are sufficiently accurate if the metabo-
lites in the pathway remain within their physiological ranges.

For the GMA model, the rate laws are formulated as

ne=nr
— ()
jesl

In this representation, # is the number of dependent variables and m the num-
ber of independent variables (in the case of purine metabolism, n= 16 and
m=2), and 2; 1s the rate constant of the reaction. The kinetic orders f;; are
the normalized partial derivatives of fluxes with respect to the involved metab-
olite or modulator concentrations; they are equivalent to elasticity coefficients
in Metabolic Control Theory (MCT) [10.16,17]

LR A
ox, ), b, T )

o
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This interpretation of kinetic orders provides a straightforward procedure for
translating traditional rate laws into GMA rate laws (see Appendix A for illus-
trations).

An alternative to the GMA power-law model is an S-system model. The ra-
tionale again is representation in logarithmic space of the actual and unknown
rate law, but instead of approximating each step separately, all fluxes of synthe-
sis of a given dependent variable are aggregated in only one power-law term
and all fluxes of degradation are aggregated in one power-law term. As a result,
the typical S-system equation contains two terms and reads

n+-m #etm
X =o]xF - g5 (5)
j=<1 el
As before, n is the number of dependent variables (16) and m the number of inde-
pendent variables (2); o; and f3; are the rate constants for the synthesis and degrada-
tion processes of the reaction; and g; and Ay, are the kinetic orders of the metabolite
or modulator j in the synthesis or degradation of metabolite #, respectively.

The transition from the GMA model to the S-system model is straightfor-
ward, since the S-system parameters are computed by partial differentiation
from the collections of GMA terms that describe all influxes or all outfluxes
for each dependent variable

i h,, /t,u . (6)
e Z <Z\ 1 i )0

Here, v;, and v, represent the individual steps for the synthesis or degradation
of the metabolite X, lis the number of individual steps that constitute the ag-
gregated synthesis or degradation of the metabolite X;, and the parameters f;
are the kinetic orders in GMA of the variable X; with respect to the rth step of
synthesis or degradation of metabolite X;.

The maximal velocities Vvivo in the CMM rate laws and the rate constants
in the power-law models are defined in such a way that the steady-state concen-
trations of metabolites give the desired steady-state values for fluxes.

3. Estimation of parameters from experimental data

It is quite evident that any in vivo parameter estimates are subject to great
uncertainty. This uncertainty is composed of two types, sometimes referred to
as natural variability or Type A and true uncertainty or Type B [18]. The natural
variability accounts for the situation that the parameter in question is uniquely
given but unknown, whereas the true uncertainty accounts for the situation
that the parameter indeed is distributed. Clearly, both types of uncertainty
are relevant in purine metabolism, and this must be remembered when results
are presented and interpreted.
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3.1. Steady-state operating point

The first step in the estimation of parameter values is the choice of an oper-
ating point, which 1s characterized by a set of concentrations and fluxes that
represent a physiological steady state in humans. Of course, this steady state
varies from person to person and also is affected by diet and the degree of phys-
ical activity, and we chose a hypothetical average situation that appeared to be
realistic. Sensitivity tests [19] have shown that this steady state in fact is rather
robust and that moderate changes in kinetic parameters of the model do not
affect the fluxes or concentrations much (see also below). The steady-state con-
centrations are presented in Table 1. along with clinical measurements in dif-
ferent tissues and with references.

2. Fluxes and flux constraints

The estimation of fluxes is the most difficult step in constructing kinetic
models. because there are few direct measuremenis of fluxes in the intact hu-
man body. However, using indirect information about the amount of a chem-
ical compound that is metabolized during a given period of time and an
average body weight (BW) of 70 kg, we can deduce several of the required flux-
es. We selected pmol min~ ' BW ! as units of flux, being those units the number
of pmols transformed per minute in the whole human body, assuming an av-
erage weight of 70 kg.

The model contains 37 fluxes (cf. Fig. 1). Given steady-state values for the
16 dependent variables, 16 of the fluxes can be formulated as linear combina-
tions of the remaining 21. The resulting steady-state flux equations are

Xy Uprpps = Laprt + Chprt + Laprt + Cgen T Upyrs

f‘,?_: Uden + Ugmpr + l-umpd + Uhprt = lAimpd + Uasue + Uinues

/\/3: Uasue = Uasiis

)(4: Caprt + Uyl + Dtrans + Prnaa = Pmat + l:’umpd + Carna + Vadrnr + Lada -
/\/5: Pt = Cypans T Upalyam

X Upotyam = Papr + Lade.

X Limpd = Cgmps»

Xyt Famps + Urnag + Loprt == Vgmpr + Ugrna + Ugdrnr + Ppnucs
)(‘): Uadmar + Pdnaa = Vudna + Udadas

X Cedrnr + vyn, ag = Updna + Vdgnucs

)(llz Carna T Lorny = Urnag + Urnaus

X120 Cagna + Vydna = Ldnag + Tdnaas

XH: Cada + Udada + Vipue = Dhpre + Uhxd + Uhys
/YM: Unsg + Paya = Ud + .

X15: Cdpnuce + Uonue = Laprt + Couas

)(lh: Usd = Lua
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Table [
Estimation of metabolite concentrations (units for concentrations are in uM)
Variables Conc. Metabolite Conc.  Tissue Conc. Refs. Comments
X 5 PRPP S Human cells S (55
Human erythrocytes 2.7 S
Human cells <10 [56]
Xs 100 IMP 100 Human liver 120300 [57) 1
Human kidney 50110
Human erythrocytes 5-858
Human brain 17 [58]
X 0.2 S-AMP 0.2 Rat muscle <0.2 [59] 2
Xy 2500 AMP 200 Rat muscle 93 {59]
Rat liver 270 [60]
Rat erythrocytes 37
Erlich cells S00-700 {6l1]
Glioblastoma 241 [58]
Human brain 242
ADP 400 Rat muscle 624 [59]
Rat liver 530 [60]
Rat erythrocytes 174
Glioblastoma 527 [58]
Human brain 788
ATP 1900 Rat muscle 5000 [59]
Rat liver 1512 [60]
Rat erythrocytes 1702
Glhioblastoma 1105 [58]
Human brain 2100
Ado 0.5 General tissues 0.5 [30]
X 4 SAM 4 Human ervthrocytes 3.5 [62.63)
X 1 Ade | Erlich cells 1.4 [64)
Rat liver 0.9 [60]
Rat muscle 1.3
Rat erythrocytes 1.6
Rat plasma 32
Human brain 4.5 [58]
Human plasma 0.07 [65]
X- 25 XMP 25 Not infected cells = [GMP]  [66]
X 400  GMP 25 Glioblastomas 22 [58]
Human brain 26
GDP 75 Human erythrocytes RR [67]
Erlich cells 220 [64]
Glioblastoma 74 {58]
Human brain 169
GTP 300 Human ervthrocytes 208 [67]

Erlich cells 350 [64]
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Table 1 (continued

Variables Conc. Metabolite Conc.  Tissue Conc. Refs. Comments
Glioblastoma 225 [58]
Human brain 300
X, 6 dAdo 0.1 Human brain <{.1 [58]
dAMP 0.5 General tissues {31,681 3
dADP 14
JdATP 4
X 3 dGMP 0.1 General tissues [31.68] 3
dGDP 0.5
dGTP 24
Xn 28600 RNA 28600 Mammalian orgamisms 6 [DNA]  [69]
D discoideum 30000 [70]
Xi» 5160 DNA 5160  Human body 5160 (71 4
Xz 10 HX 6.9 Rat interstitial fluid 7.2 {30
Human plasma 1.7 {72}
Human bone marrow 7.1 [73]
Human plasma 24
Glioblastoma 30 [58]
Human brain 32
[no 3 Rat liver 4.7 [60]
Rat muscle 24
Rat erythrocytes 2.6
Rat plasma 2.1
Human plasma 0.9 [72]
Glioblastoma 30 [58]
Human brain 27
dIno 0.1 Human brain <0.1 [58]
Xia 5 X 3 Human plasma 0.9 [74]
Human CSF 2
Xanthinuric patient H [21]
Glioblastoma 32 [58]
Human brain 34
Xis 5 Gua 0.5 Glioblastoma 0.6 [58]
Human brain 0.4
Guo 44 Rat liver 6.9 {60]
Rat muscle 4.5
Rat erythrocytes 1.7
Rat plasma 0.8
Glioblastoma 6.2 [58]
Human brain 5.3
dGuo 0.1 Human brain <0.1 [58]

PNP deficient patient

1

[67]



R. Curto et al. | Mathematical Biosciences 151 711998) 1-49 13

Table 1 (continued )

Variables Conc. Metabolite Conc.  Tissue Conc. Refs. Comments
X6 100 UA 100 Human body 100 [20]
X 18 R5P 1§ Mouse liver 18 [69]
X 1400 Pi 1400 Eukaryotic cells 4006000 [75]
Rat cardiomyocytes 1400 [76]
Human erythrocytes 1000 [77]

Comments: (1) The IMP concentration can vary considerably with the metabolic and physiological
conditions. Some of these variations are due to the differences in metabolism during rest (when IMP
concentration is lower) and during exercise (when IMP is higher). (2) No concentrations were found
for this metabolite in human tissues. (3) The concentrations of deoxynucleotides are very difficult to
estimate. When cells are in stationary phase, the deoxynucleotides cannot be detected; they can only
be measured when cells are dividing. In the latter case, the concentrations are of the order of 20 uM
[68]. Furthermore, one can assume that deoxynucleotides are less than 1% of the corresponding
nucleotides [31]. (4) The human body contains about 75 x 10" cells. and each cell contains
2.9 x 107 base pairs. Using these parameters. we arrive at a concentration of 5160 uM for purine
nucleotides bound in DNA.

In addition to these steady-state constraints, it is known that the ratio of ad-
enine and guanine in nucleic acids is approximately 3. This fact allows us to for-
mulate four more constraints between the fluxes in steady state:

Varna :% Varna»
Urnay :% Urnag-
Padna :% Podna s
Udnan Z% Udnag-

While very helpful, these constraints are not sufficient for a complete kinetic
characterization. Seventeen more flux estimates or constraints between fluxes
are needed, and these have been extracted from experimental data. The results
are presented in Table 2 and explained in the foilowing. The fluxes with non-
explicitated units have the implicit units of pmol min~! BW~!,

(1) The first equation reflects in vivo measurements of the amount of UA
excreted in urine. Normal subjects excrete 418-426 mg per day of UA in urine
[20]. However, only 75% of the total UA excretion appear in urine, while the
remaining 25% are excreted by the gut as allantoine or as other catabolites
[20]. The flux thus has to be increased by 4, which yields the final value of 2.27.

(2) Strictly speaking, data obtained from xanthinuric patients (usually indi-
viduals with XD deficiency) are not valid for our model, because they do not
derive from healthy subjects. Nevertheless, they provide the only quantitative
information on this flux, The excretion of oxypurines in xanthinuric subjects
is about 300 mg per day [21], which is approximately the same as UA excretion
in healthy subjects. The xanthinuric subjects in Bradford’s [21] study had no
other relevant disorders of purine metabolism, with the exception of large
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Table 2

Experimentally based flux equations

Number Equation References

| rya 2 2.27 pmol min " Bw! [20]

2 Phad -+ P ™ 4.9 pmol min " Bw'! 20

3 Ppps 0 3 X U [20,22}

4 Thper ™ Lgpnn [23.24)

5 Pt Fanne 2 95 L [24.25]

6 Vasne 27 S % Cipd [26.27]

7 Uy = 1 pumol min ' BW! [28]

8 iy 10 [30]

9 o ﬁ('ﬂf; ~ 250 The same assumption as in Eq. (8)

10 r;m,,\ ~ 14 pmol min ' BW"! [31)

11 e 2 10 umol min = BW ! Assuming that purine synthesis is of
the same order of pyvrimidine
svnthesis

12 Fre > D01 pmol min™' BW 78]

13 > 1L05 pmol min ' BW™! [33]

14 ro 2 0.03 pmol min b BW ! [33]

15 Fimpd T3 X U [34]

16 Cadna 7+ Lgana = 17 pmol min " BW ! [71]

17 Fame + Cang = 3300 pmol min' BW™' [33]

excretion of Xa and HX instead of UA, which in these patients is negligible. It
thus appears reasonable 1o assume that purine metabolism in these subject is
similar to that in healthy subjects, except that HX, which in healthy subjects
is transformed into Xa (v,q), and Xa, which in healthy subjects is transformed
into UA (v4q). are excreted in larger amounts (y, and ). Given that the stea-
dy-state values of other fluxes are unaffected by xanthinurea. the turnover of
HX in xanthinuric patients seems to provide at least a crude estimate. The
HX turnover in these patient is 4.9. and this implies thpr, + thyg = 4.9.

Based on similar arguments, one can use information about Xa turnover.
which in xanthinuric subjects is about 1.26. Because the only reaction that syn-
thesizes Xa in these patients is vu,,. one concludes that Loua = 1.26. One might
assume that healthy subjects had the same value of Poua. but since this is not
clear, we do not use this information as a constraint. Nonetheless. this estima-
tion is in accord with the third equation in Table 2.

(3) It is generally known that most of HX is recycled by vpyr. which implies
that vhp is greater than vnyg. Averaging available data [20.22], one can assume
that v degrades about 75% of HX, so that Phprt = 3 Uhxg. This relationship,
combined with information about the turnover of HX discussed in (2) (4.9),
suggests roughly rpg =12 and enp =3.7. Furthermore, il tpy=1.2 and
txg = 2.27 at steady-state, then vy, = 1.07. which is close 1o the value obtained
for xanthinuric subjects (1.26).
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(4) Measurements ol the activity of tupp. thpr and rgpy reported in the liter-
ature suggest that the activities of hprt and gprt are similar and that the activity
of aprt 1s less than the other two [23.24].

(5) Between 90% and 100% of guanine nucleotides are degraded to Xa
[24,25]. Even though this information is not as quantitative as we would like,
it roughly suggests the constraint Cagrar + tonue = 9 Cempr-

(6) The branchpoint of IMP is most important in the regulation of purine
metabolism. It has been reported that the ratio vy.../timpa 1s close to 5 in human
tissues in stationary phase, while it 1s close to 1 during cell proliferation [26,27].
We selected a value of 5 for our system.

(7) The flux v, was studied in an APRT deficient patient [28]. Since this
subject presented with no other relevant disorders of purine metabolism (see
below), one can assume that this patient synthesized the same amount of
Ade as healthy subjects, but excreted it as 2.8-dihydroxyadenine instead of re-
cycling 1t with v,y If this is the case, the excretion of adenine metabolites in
this patient should be equivalent to the flux of z,,, in healthy subjects. Adjust-
ed for BW, 1,5, thus has a value of approximately 1. Other experimental data
[29] yield similar results.

(8) No direct information is available about the kinetic properties of reac-
tions catalyzed by ADA. However. according to Geiger and Nagy [23],
ADA exhibits the same activity with Ado as with dAdo. A reasonable assump-
tion is therefore, that the proportionality between r,q, and Ado 1s probably of
the same order of magnitude as the proportionality between tg,q, and dAdo.
This assumption leads to the statement in Table 2: its uncertainty is reflected
by the symbol ~.

(9) No hard experimental data are available to estimate what fractions of the
guanine nucleotide pool are degraded by tynye and vyginr. respectively. One may
suppose that the proportionality between these fluxes and the corresponding
concentrations of the guanine nucleotides and deoxynucleotides are probably
of the same order of magnitude. This assumption leads to the statement in Ta-
ble 2: its uncertainty is reflected by the symbol .

(10} Human S-adenosyl-L-homocysteine hydrolase, which is the last enzyme
in the transmethylation pathway, generates between 14 and 23 mmols of Ado
in 12 h [31]. This corresponds to an average flux of about 14.

(11) The flux of rpy, 18 difficult to estimate. One may assume that the synthe-
sis of pyrimidines is approximately equal to the synthesis of purines. A reason-
able value seems to be 10.

(12) g 15 less than 0.07 [29]. and this flux 1s 0.01 or less [24.32]. We sct the
value as 0.01.

(13) and (14) vy, and v for humans in vivo are about 0.05 and 0.03, respec-
tively [33].

(15) [34] related the fluxes of rympg and vy, in different tissues and suggested
a ratio of about 3.



16 R. Curto et al. | Mathematical Biosciences 151 (1998) 1-49

(16) If one assumes an average human cell turnover of 15 days and takes
into account that DNA must be resynthesized during every cell cycle, one ob-
tains a DNA turnover rate of 17.

(17) mRNA constitutes a mere 3% of the total RNA pool, but the turnover
flux of the mRNA pool is about 30% of the turnover flux of the total RNA
pool. Furthermore, the half life for mRNA in eukaryotic organisms is about
30 min [35]. These data yield an RNA turnover rate of 3300. Sander et al.
[36] estimated this turnover value as 0.06 assuming one mole of RNA as the
entire chain of nucleotides, whereas in our model, one mole refers to a single
RNA nucleotide. For comparison, the turnover rate in Sander’s analysis must
therefore be multiplied with the average length of an RNA chain. If one as-
sume that the average length of an RNA chain is about 50 000, the two estima-
tions are very close.

With these estimates and constraints, the system of equations has a unique
solution for the flux values at steady state; this solution is presented in Table 3.
While these values have been calculated for our specific modeling purposes,
they are interesting in themselves because they provide some insight in the dis-
tribution of fluxes in human purine metabolism.

3.3. Estimation methods

For the CMM model, we collected as many parameters as possible from ex-
perimental data in humans. Only less than half of the fluxes could be evaluated
in this fashion, and we were forced to complement them with other types of
rate laws. For this purpose, we estimated kinetic orders of power-law represen-
tations instead of the traditional constants Ky, K; or K.

Some of the variables in our model represent pools, rather than individual
metabolites. An example is the pool Xj, which includes ATP, ADP, AMP,
and Ado. This needs to be considered when only one or two of the constituents

Table 3
Steady-state flux rates in man

Cada = 2.1 tade = 0.01 Coadna == 10 Codrne == 0.2
[—— Uapna = 1980 Cague = 8
Cdadn 0.2 Udep, == 2.39 Udgnuc = 0.1
Cgpaz = 10 Udnay 7 0.8 Cana = 0.8 Cggenr = 0.1
Campr = 0.5 Parps = 1.6 Peue = 4.7 Veprt = 3.7
Carna = 1320 ey = 1] Uhpre = 3.7 s = 0.03
Uhag 5= 1.23 Vinpa == 1.6 Cinge == 2.68 Et 5= 13
Cpolyam == 1.01 Fprpps = 20.79 Cpyr == 10 Crnaa = 1980
Crnag = 1320 P = 13,99 g = 2.3 = 0.03

U= 2.3

Variables are listed in alphabetical order. Units are yumol min"' BW"'.
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of such pools affect a rate law. For instance, we cannot directly include ATP as
a variable in a kinetic rate law, because ATP is not a dependent variable in the
model. Instead, we use X4 and correct the disparity between ATP and X, by
multiplying X4 in the rate Jaw with the factor [ATP)/ X} at the operating point.
The kinetic rate law of each reaction and its associated parameter values are
presented in next section.

Parameter values for the GMA model were obtained from kinetic data as
shown in Eq. (4). In most cases, the kinetic orders were coded as ‘f* followed
by the abbreviated name of the reaction and by the number (or abbreviated
name) of the variable that affects the rate of the reaction.

The only exceptions are the kinetic orders for the synthesis and degradation
of nucleic acids. These are constrained by the fact that the ratio of Ade/Gua in
nucleic acids is essentially constant, To ensure that the kinetic parameters of
Uarna and g, are the same, we coded them as fi,p) (as an acronym for the
enzyme RNA polymerase). Similarly. finani) stands for the kinetic orders of
Urnag and vmaa (as an acronym for the enzyme RNA nucleotidase), fynapi) for
the kinetic orders of t3gns and vgqn. (for DNA polymerase), and fgnan, for ki-
netic orders of vgnaa and vgnae (for DNA nucleotidase). This deviation in no-
menclature signifies that the incorporation of guanine nucleotides to nucleic
acids is proportional to the incorporation of adenine.

To estimate the GMA parameters in cases where the substrate or modifier of
the reaction is an aggregated pool, we took into account that the aggregated
pool concentration is the sum of the concentrations of the individual compo-
nents and that the equilibrium between them is achieved very rapidly. For in-
stance, suppose that the aggregated pool of X; is composed of three chemical
substances, X,, X, and X.:

Xti:Xa +Xb"+’)(l~

X, =X,=X..

Introducing the equilibrium constants K; = Xp/X,, K3 = X/ X}, we can form-
ulate the rapid equilibrium between the metabolites as

Xy =Xo + KX, + KKiX, = X, (1 + K + KiK>) = KX
X/ :X[, *X/,/K] +K3X{, :X/,(l -+ ]/K] '*'[S’zi) = K;Xh

X,’ =X, +XV/K2 + /Y(/(K:]Kl) = X'L(l -+ ]/K] + ]/(K']Kg) = K';)(:
According to Eq. (4), the parameters of interest are defined as

aU,' X“ . aU,' /Yau
ﬁ, = a— ”‘/_ fm == P o
X, /v, X, /¢ ti,

Ov; \ X, , ov; \ X,
()5 ()2
oxXy, /), v, 0X. /vy
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Application of the chain rule of differentiation leads to

SRR )
f=\ay ), v T oy, ) ey, ), T ey )\ ey ),
au,-) eX,
(), ()

N ( at?, ] K]/YU | '611, 1 /X’_‘.'IY/-, ; 619,’ 1 K},X(
Ay, Ko X, ) Ky v oX. /Ky v,

and this yields, upon rearrangement of terms,

Jii = Lo + fin + e

This mathematical derivation shows that a kinetic order with respect to an
aggregated pool is equal to the sum of the kinetic orders with respect to the in-
dividual components of the pool.

Some steps within purine metabolism (e.g., vden. Lpolyam. and ypns) do not
consist of only one reaction, but of hnear pathways, and it turned out to be
impossible to find kinetic rate laws for the entire sets of reactions. Theoretical
arguments suggest estimating the parameters of these fluxes from the first en-
zyme of the pathway, as is discussed below.

First, one can argue that the kinetic orders of a flux representing a linear
pathway are, by definition, the logarithmic flux gains [13] of this lincar path-
way. For instance. if one would construct a model of the 10 reactions that com-
prise tqen, one could calculate the logarithmic flux gains of this pathway and
subsequently use them as kinetic orders in the overall model of purine metab-
olism.

Secondly, one can justify the use of kinetic orders associated with the first
enzyme by evoking a fundamental equation of BST that relates flux gains
and kinetic orders: [L(v;. X3)] = [Gi] + [G)[L(X;, Xi)] [37.38]. In a linear path-
way, all rows in the matrix [L(¢;.X;)] are identical because all fluxes have the
same value in steady state. Thus, one needs to calculate only one row of this
matrix to know all logarithmic flux gains of the system. Consider one step in
the linear pathway which is not modified by any dependent variable of the
pathway, and for which. consequently, all kinetic orders of the matrix G, are
zeros. The corresponding row of the matrix [Gy] L(X;, X;)] is a row of zeros,
and the logarithmic flux gains correspond exactly to the row of [G;] of those
kinetic orders of independent variables in the synthesis term of this variable
that are not affected by any other dependent variable. However, the only step
in the pathway that can be unmodified by any dependent variable is the first
step, in which the substrate is an independent variable, because the substrates
of all other reactions are dependent variables. This implies that in a linear path-
way in which none of the dependent variables inside this linear pathway is a
modifier of the first step. the logarithmic flux gains of the pathway correspond
exactly to the kinetic orders of the first reaction. In such cases. it is justified to
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substitute the li\near chain of reactions with one step in which the kinetic orders
correspond to those of the first reaction. This procedure applies to vden, tpolyam.
and tians.

The kinetic orders for the S-system model were computed with Eq. (6), using
the previous estimates of GMA kinetic orders and the values of fluxes at the
operating point.

Applying these methods to published experimental data, we estimated the
kinetic orders for every reaction of the pathway. The results are given in Ap-
pendix A following the order of the pathway of Fig. 1. The resulting kinetic
orders of the GMA and S-system models are shown in Tables 4 and 5 respec-
tively, the GMA rate constant and V., are given in Table 6, and S-system rate
constants are given in Table 7.

4. Preliminary model evaluation
4.1. Steadyv-state features

With 18 variables, 37 fluxes, and numerous modulations, the proposed mod-
els of purine metabolism are quite complicated, and a full evaluation is beyond
our scope here. A rather detailed analysis of the steady-state properties can be

found elsewhere [19]. This analysis demonstrates that the steady state is stable

Table 4
Values of GMA Kkinetic orders in alphabetical order

./mi,m 0.97
Sugero = 0.87
Sapen = 0.3
_/J.\UL’J ‘1)24
‘/u.\]H = —(.95

.fdun4 = —().25
,/\»umnli = |
./;idllll“) = —12

Sompr == =0.76
./‘«;'num’ =0.9

Saprs =0.42
Srpros =048
fimpaz = =0.09

Sovaz == 0.2
Frappst = —0.45
foyer = 1.27

Jrranss == 0.33

./:xderv = (0,55
./dm]:vd:: ={.8
../‘II]VH-I —(1.8
Jawes = 0.2
Jaads = 1
Sten 2 —0.2

,"A‘i:m;v‘J = () 42
Ladrwin = ~0.39

)
"é!nu\ [ &= "()]\4

Faars = 0.5

/]x\l cam ]2
]ll“]ﬁi“\‘ =~(.03
.’m;ﬂﬁ sz =) 6
Ty = —0.04
_/Hun!l = |

_/nu]u 221

./:llil!ll-‘ = (.1
.f:nnpdh‘ = =003
./:!I‘llly = 075
fasuers = =0.05

; —
fdcnl =~

faer1s = —0.08

femprr = =015
fi._-mp\--i =(.12
Joprit = 1.2

/ixpul = 1.1
Thaa-z = 0.65

.,mu;l ={).8
potyams = 0.9

forpparz = 0.65

Jrnaps = 0.03
fxld =20

./a‘ldrru*) = —0.3
./:nnpdls = (), ]

fuuz = 0.4
f:nlﬂ =().99
faee2 = —0.06
/(’ignuulﬂ S
/]‘Jih‘m'f\' = ”4
/;.'mpM =-0.07
fpmpﬁ = (.16
=12

‘/zzprzk = s
_/hpx‘l] = (.89
_/unpdz = ()4 ] 5
jmu(l?{ =—0.36
Speppar = =003
Forppag = 0.7
Jroaps = 0.13
Suana =055

It should be noted that the kinetic order fuuaz applies to vy, and tn,. kinetic orders fnqe and
Sanapro @pply 10 £y and ryg,,. the kinetic order finn applies 10 o, and t,, and kinetic orders
enaps @nd frngps apply 1O g, and 2y, Further details are given in text and Appendix A.
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Table 5

Values of the S-system kinetic orders (kinetic orders not presented in this table have a value of 0)
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g1 =-0.03
&= 0.720
g213=0.144
gais=—0.05
216 =0.0003
gr2=0.15
gs2=10.00019
oo = —0.0058

gi210 =0.33
F4ERRE= 0.343
Lioas = 0.55
g =-0.23
hyy=-0.15
h34=-0.95
Ngjo=8 x 10 s
heo = 0.748

hg 7 = ~0.0002
hyy =0.431
hpan =
/I];_] = 0925

grq=-045
g2 =—0.28
g1z =—0.06
g = 0.0002
gagy = (1.988
gy =—0.09
gox ==0.00335
Lo = [)(]] 7
= ()985
gz =0.43
gi1s = 0.236
hyyo=1.27

/I] 1= [)()85
/73 o= —().“l
/744 = [)054
/1.1 = -0.0002
hy =012

fig =0.132
hy o = (.323
/l] = (].8 17
fys o= —0.925

215 =—0.04
2.4=0.319
g:2=04
243 =0.003
gs4=02
g75=-0.03
gs 11 =0.996
802 =0.98

2124 = 0.409
giss = 0.881
=016
/l1 15 =0.074
hrg=0.126

y s =~-0.0045
hs< == 0.368
N7, =0.16

N9 =-9 x 107
fype =0.413
s, =-0.66
/1|5_[i =0.438

g117=0.65
8.7 =~0.03
g4 =—0.24

Zaa =0.0042
gss=-0.6
gy =0.003
x5 == 0.001
Zis = 0.005
Zng=0.13

139 == 0.04
50 =0.02
/7|_4 = —().06
gy = —0.0092

/l: 18 = -0.11
fag=0.128
Ney =0.495
figy=-5x107°

fg g0 ==2 % 1073

Ry =0.339
fy3ya =0.528
M6 =221

grag =07
g5 =—0.02
g1y =02
g5 =0.002
o5 =10.9

gsa = 0.00014
guq =0.001
oo =-0.017
L1290 =0.42
giag = =019
o =—0.33

hy»=0.454

31 =10.99

,74_9- -2 x 10~*
hes =-0.79

g 4 = 0.049
hs_[i = ~0.001
=1

/I|4_]4 = {).568

Table 6

Values of rate constants in GMA and V., in CMM for each reaction, in alphabetical order

FLada = 0.001062

V\im (ada) = 86.1
Lampd == 0.02688

V\lm fmpd ! = 33.4657
Lot = 06544

V\im tasli = 1636.12
Hgnaw = 0.001938
Voo i = 0.00194
Lgmpr = 0.3005

V\i\'n (gmpr: = 0.3005
Fema = 409.6

Fivo gmar = 1609.75

V\m\ (had) = 3.51428
Lpolyam = 0.29

V\!\U ipolyam) = 13.635
Ky = 0.046135

Viivo mags = 0.04613
g =0.949

V\lw xd S5.1106

Aude = 0.01

Viive tadey == 0.01

Ly = 233.8

V\\m fapre; = 1045.64
Aaeta = 0.03333

V‘»l\n (dada; = 793667
Hgnag = 0.001318
Vireo inees = 0.001318
Hgmps = 0.3738

Fiivo gmps: = 0.7483
Lgua = 0.4919

Fivo guay = 2.2

FLimpd =7 1.2823

v fimpd) T 2.299
Hprpon = 0.9

Vo props: = 16.7
Liruans = 8.8539

Vw\w frans) = 20.985

Ydna = 3.2789

Vo (adna) == 35.7912
arna = 614.5

Vivo tuma: = 2414.63
Lden = 5.2728

Flico tden) = 1278.32
Ly = 2.2296

Vo tgana, == 24.338
2gnuc =0(.2511

Vo tanuey = 1600.22
xhprt - ]2569

Fino thprir = 370.646
e = 09135

V\iw (mue; = 181.849
Yo = 1.2951

Viw tpyry = 1.2951
%y, = 0.00008744
Flive ) = 0.0000874

Lagrnr = 0.0602

Vvi\'u tadrnr; = 0.1461
Fasue = 3.5932

Viivo ase; = 37.7716
Yggme = 0.03333
Veavo idgnuer = 3300.4
Yggrmr = 0.1199

V\ri»o {gdrnrj = 2.1963
Oyt = 361.69

F oo (o = 5601
any = 0.003793

V\nu (hsr = 0003793
Dy = 71.2067

Voo imat: == 42.6228
T = 0.06923

oo (raan) = 0.06923
oy = 0.0012

V\'lw x; 0.0012
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Table 7
Values of rate constants in the S-system model

Alpha Beta
X, 0.9 30.8182
X 1.6914 5.6
X 35932 66 544.7
X 0.08115 612.1
X 7.2067 9.001
X (.29 223.54
Xs 1.2823 0.3738
Xy 0.0484 408.86
Xy 0.00227 33
X 0.00151 2.2629
X 1024.12 0.1154
X 5.5085 0.00325
Xis 0.10582 8.2073
X (.7203 0.9324
X5 0.26646 135.46
X6 (0.949 0.00008744

and quite robust. It is rather insensitive to changes in independent variables
and parameters, but responsive enough to deal with physiological perturba-
tions. Most of the over 1000 parameter sensitivities are less than one in mag-
nitude, and among the remaining sensitivities, most are between 1 and 5,
predicting that a 1% alteration in a parameter value would lead to a 1-5%
change in the response variable. The relatively few sensitivities that are some-
what higher fall into two categories. Some are associated with the enzyme
PPRPS, which is known to be crucial for the dynamics of purine metabolism;
these higher sensitivities are thus a correct reflection of a well-known fact. A
few are associated with marginal metabolites like HX, and therefore rather in-
consequential. The generally low parameter sensitivities are important for an-
other reason: they imply that inaccuracies in the estimation of parameter values
have relatively minor consequences.

[t may be noteworthy to comment on the quite complex stoichiometry of the
model. Of course, at the steady state, the totality of inputs must equal the to-
tality of outputs, and the equations indeed reflect this balance of fluxes. The
stoichiometry is complicated. because key metabolites are composed of three
different moieties. namely the purine ring, ribose, and phosphate. In numerous
steps of the pathway, one of these moieties is either attached or split off, and
this complicates any graphical representation. In order to keep confusion to
a minimum, we decided to omit phosphate moieties from the pathway diagram
and focus on ribose and the purine ring (see Fig. 1). This simplification does
not affect the mathematical equations or any of the analyses. The equations
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account for the dynamics of the relevant moieties through their mathematical
structure and the values of their parameters.

Influxes of ribose and purine rings, respectively. occur in two places. The
Uprpps Step s the point of entry for the ribose moiety. while the vye, step repre-
sents entry of the purine ring. The two moieties leave the system in several pro-
cesses. The ribose moiety is removed directly through the steps ¢pyr. 2polyam. and
indirectly through the steps tuga, tdada- tenues Udgnue. a0d tinye. The latter steps do
not involve the loss of ribose directly. but are followed by splitting steps that
occur within aggregated metabolite pools directly downstream. These reactions
are catalyzed by purine nucleoside phosphorylase and separate the ribose moi-
ety from the purine base. Purine rings leave the system through the steps e,
Unx. Ux. and ry,. As mentioned above. phosphate moieties are attached or re-
moved in a large number of steps and even within pools.

4.2, Dynamic features

For the present evaluation, the three models (CMM, GMA, and S-system)
are tested for consistency through simulations that reflect normal and patho-
logical perturbations of purine metabolism. In particular, the purpose of the
analysis 1s to determine whether one, two, or all three models yielded reason-
able results, as measured against some representative biochemical and clinical
observations.

Michaelis-Menten models are often considered the standard. and they have
been the cornerstone of kinetic analyses in vitro for almost a century. Nonethe-
less, there is growing suspicion about whether these models are adequate in vi-
vo [39,40]. It 1s not guaranteed that their underlying steady-state assumptions
are satisfied in vivo. Relaxing the assumption of homogeneity leads to rate laws
of different types [41]. Michaelis-Menten models of moderately sized pathways
become rather intractable when it comes to mathematical analysis. Savageau
[13] discussed the drastically increasing complexity of traditional rate laws, if
they are affected by several modulators. Even analyses of essential features
of pathways, such as steady states and their stability and sensitivities, become
forbidding in Michaelis-Menten models of realistic, integrated pathways. while
they are readily executed in power-law models. In the present case. we found it
impossible to design a pure Michaelis-Menten model from existing data and
had to complement it with power-law processes. These theoretical and practical
concerns make the exploration of alternative models highly desirable.

Power-law models. whether of GMA. S-system. or Half-system type [9],
have significant advantages when it comes to steady-state and dynamical anal-
ysis. The issue of potential concern here is that these models are developed as
local representations of the actual rate law, which implies that their accuracy
and reliability are guaranteed mathematically only for small perturbations.
Even without this mathematical guarantee though, there is mounting empirical
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evidence that power-law models often provide reliable representations for quite
large ranges of variation in substrates or modulators. These ranges sometimes
span several orders of magnitude [42-44)]. Supporting and explaining these ob-
servations, Savageau [40,41.45] collated several direct studies and theoretical
considerations [46-30] suggesting that power-law functions seem to be simple.
yet adequate descriptions of processes in vivo.

It has been demonstrated several times that power-law models exhibit re-
sponses very similar to Michaelis-Menten equations, if the metabolites re-
main within ranges of physiological variation (e.g. Refs. [14,51]). However,
it 1s difficult to assess in general how the three models compare under patho-
logical conditions, as they are encountered in total or severe enzyme deficien-
cies. While one could argue that such conditions should be modeled at
different operating points, one would consider it an advantage if the same nu-
merical model could adequately represent both physiological and pathological
conditions.

Three representative conditions were simulated: a 10-fold increase in PRPP;
PRPPS superactivity; and HGPRT deficiency. The first simulation typifies a
rather large, but still physiological deviation from the normal operating point.
The second condition represents a persistent alteration in one of the key en-
zymes of purine metabolism. Chinically. this situation is accompanied by an
overproduction of UA and gout. Mathematically. it is implemented as a two-
fold increase in the activity of the first enzyme of the pathway, PRPPS (cf.
Fig. 1). Such an increase is outside the typical range for which local approxi-
mations are guaranteed. even though power-law models have accurately mod-
eled other phenomena of a similar type and magnitude of variation. The third
situation exemplifies a drastic change in metabolism. Clinically, HGPRT defi-
ciency is characterized by overproduction of UA and gout and. depending on
the severity of the deficiency, by spasticity, choreoathetosis. mental retardation
and self-mutilation. a symptom complex that is often referred to as Lesch-Ny-
han syndrome [52]. Mathematically, the deficiency is implemented by decreas-
ing the enzyme activity 100-fold. Such a deviation is far beyond the range of
local deviation, and thus constitutes a test for the models outside the mathe-
matically guaranteed range.

4.3. Simulation of a 10-fold increase in PRPP

For this type of simulation, the models are initiated with all metabolites at
their physiological steady-state level. At time fg, the concentration of PRPP is
raised to a 10-fold increased value, and the models are solved numerically to
show the dynamics of the metabolic system. Representative results of this set
of simulations are shown in Fig. 2. Even though the concentration of PRPP
1s rather drastically increased by a factor 10, the three models seem to reflect
the effects consistently. After a strong initial response (e.g., as shown in
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Fig. 2. Dynamic responses to a 10-fold increase in PRPP. At 7= 10, PRPP was changed from 5 to
50 uM. Solid lines show predictions of the CMM model, dashed lines predictions of the GMA mod-
el, and dotted lines predictions of the S-system model. (a) Dynamic response of IMP (X). (b) Dy-
namic response of hypoxanthine (X);).

Fig. 2 for IMP and HX), the system returns to the original, normal steady
state.

Fig. 2 demonstrates that all three models have similar characteristics. In ac-
cord with earlier studies [14], the responses of the S-system and CMM models
resemble each other more than those of the GMA and CMM models, but the
differences may not be significant.

Other simulations of this type were executed and produced similar results.
This suggests that the three models show similar dynamics as long as the per-
turbations are within a physiological range. There are no clinical data with
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Table 8
Predictions of concentration and flux values in a simulation of PRPPS superactivity with the three
models (units are (uM) for concentrations and (UM min~! BW~!) for fluxes)

Variables Operational ~ PRPPS superactivity
point
GMA S-system CMM Clinical Reference

PRPP 5 7.8 7.8 8.2 13-29 [79]
Cden 2.39 4.7 - 438 47124 [79]
X5 (not HX) 10 41 47 90 30 [74]
X4 or Xa 5 15 15 18 10 [74]
UA 100 131 132 126 300 [74]

* The flux of g, cannot be obtained from the S-system model since it is part of the aggregated flux
of PRPP degradation and IMP synthesis.

which to compare these dynamic responses quantitatively, but all observed sys-
tem behaviors appear to be reasonable.

4.4. Simulation of PRPPS superactivity

To simulate PRPPS superactivity, Vi, in the CMM model and the rate
constants in the power-law models (GMA and S-system) were increased two-
fold. Some representative results are shown in Table §, along with clinical ob-
servations. Since in this case a parameter value is changed, as opposed to an
initial value in the previous set of simulations, the models assume new steady
states. Again, results from the three models are quite similar, with the two pow-
er-law models being essentially indistinguishable. The results of all three mod-
els appear to be supported by the few available clinical observations. This is
interesting to note, since the three models are based on different types of ap-
proximations and underlying assumptions. Also noteworthy is the fact that
the issue of aggregation, which is the landmark distinction between GMA
and S-system models, is inconsequential, even though the deviation from the
operating point is extensive.

4.5 Simulation of severe HGPRT deficiency

HGPRT deficiency was modeled by reducing the activity of the enzyme to
1%. This was achieved by a 100-fold decrease in V., for CMM and in the rate
constants of vppr and vepy for GMA. In the S-system model the deficiency was
simulated in two different ways: (i) by introducing the enzyme HGPRT as an
independent variable of the model, and (ii) by multiplying the corresponding
alphas and betas of the affected rate laws with the deficiency factor (0.01),
raised to the aggregated kinetic order of the enzyme. As expected, both proce-
dures yielded the same results.



26 R. Curto et al. | Mathematical Biosciences 151 (1998} 1-49

Some representative simulation results from the three models are shown in
Table 9, along with clinical measurements in Lesch—Nyhan patients. Also, crit-
ical fluxes are modeled by all three models with reasonable accuracy, as far as
can be judged in comparison with clinical findings. However, some of the new
steady-state values are unacceptable. In comparison with clinical observations.
GMA performs better than either CMM or S-system. For instance, the CMM
model overestimates the inosine concentration by about threefold and hypo-
xanthine excretion by 30-fold. The reasons for this are unclear. As pertains
to the S-system, the aggregation apparently is no longer an appropriate proce-
dure, and the S-system model breaks down, because of the large deviation from
the operating point. This breakdown is not a structural all-or-nothing problem,
but a gradual process, as i1s evident from simulations of mild HGPRT deficien-
cies, which are modeled with an accuracy similar to that in the PRPPS super-
activity studies above (data not shown). In the case of severe HGPRT
deficiency, the activity approaches very small values, and this has a strong im-
pact on the aggregated product of power-law functions, thereby yielding the S-
system representation unsatisfactory.

One can only speculate about the apparently good quality of the GMA
model. Even though mathematically this is a local model, it seems to capture
the dynamics of purine metabolism not just close to the chosen operating point,
but over a very large range of conditions. Outside ‘lucky coincidence’, the first
explanation that comes to mind is that the power-law representation of an in-
dividual reaction step or flux may indeed be a valid description of the process
In nature, not just in a confined, approximate sense, but over the entire relevant

Table 9
Predictions of concentration and flux values in a simulation of HGPRT deficiency with the three
models constructed (units are (uM) for concentrations and (pM min~" BW ') for fluxes)

Variable Operational ~ HGPRT deficiency
point
GMA S-system CMM Clinical Reference

X, or PRPP 3 7.1 11.0 7.2 - -
X (not HX) 10 70.6 1185.7 207 71 (80]
Xy or Xa 3 225 1339 23 15 [80]
X:s (not Gua) 5 9 13.3 9.9 -
X, or UA 100 145.7 226.6 129 150 [81]
Coua 1.1 1.47 - 1.5 - -
Uy 1.23 44 - 32 - -
Pul 23 5.3 14.0 4 7-14 [52]
. 0.05 0.4 _ 1.5 0.45 [80]
v, 0.03 0.6 - (.65 0.27 [80]
(8 23 53 14.0 4 7-14 [52]

* These non-aggregated fluxes cannot be obtained from the S-system model.
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range of physiological and pathological variation. This explanation would be
in line with measurements by Kohen et al. [48,49].

4.6. Issues of aggregation

Tables 8 and 9, and Fig. 2, demonstrate that the three models show similar
results for small variations about the operating point, whereas they differ for
large deviations. Previous comparisons between GMA, S-system and Michael-

chaelis-Menten models more closely than GMA models, if the metabolites and
modulators remain within physiologically relevant ranges [14]. These earlier re-
sults are confirmed here for the complex and more realistic model of purine me-
tabolism. as shown with the first two sets of simulations (Table 8 and Fig. 2).

For large variations, at least for those demonstrated here with the simula-
tion of HGPRT deficiency. the S-system model appears to be inferior, predict-
ing metabolite concentrations that are at variance with those observed
clinically and predicted by CMM and GMA (Table 9). This discrepancy can
be interpreted in two ways. On one hand. it is a consequence of violating the
fundamental assumption of any Taylor approximation (which underlies the
S-system model) that the variable of interest should not deviate from the oper-
ating point too much. lest the quality of approximation suffers. On the other
hand. it can be seen as a direct result of the aggregation strategy that differen-
tiates S-system and GMA.

To evaluate the latter, let us recall the definitions of the S-system parameters
in Eq. (6). This equation shows that the aggregated parameters in S-systems
are composed of kinetic orders of GMA (f;.), which can be expected to remain
constant from one steady state to another. and of fluxes (v, and v, ) which ac-
tually change from one steady state to another. An example is the S-system
model parameter /1414 which in fact is a function of two GMA kinetic orders
and two fluxes

_ funta + fat,

Hiags = =
Uy + ry

In order to calculate the new values of /1144 in the S-system, we need actual flux
values of vy and r,. The S-system structure directly provides the value of ¢4
which is equivalent to the synthesis of UA, but it does not provide the value
of v, because it is aggregated with v into the degradation of Xa. To circum-
vent this problem, we introduce an ancillary variable (X)9) which collects the
fraction of xanthine that is degraded via the excretory pathway v, and that,
in turn, 1s degraded by only one step (z.). v, is characterized by the same ki-
netic parameters as before, and the parameters of t,, are chosen to balance
the degradation of the new variable and its synthesis: fugo=0.5 and
A%y = 0.009486. As to be expected, the introduction of the new variable did
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not change any other property of the model but allowed us to evaluate the flux
of vy in the S-system simulations.

The values of the kinetic orders used for the computation of h414 can be
found in Table 4, and values of the fluxes at the operating point in Table 3.
These values lead to the S-system parameter £44 =0.568. However, when
we alter the model, the values of vy and v, may change, and so does Ah44.
For instance, the S-system simulation of PRPPS superactivity implies a value
of vy =0.2832 which, together with the flux vy =4.2643 and the kinetic orders
in Table 4 results in /14,14 = 0.6403, a value which is close to the value (0.568)
estimated at the operating point. In contrast, simulation of HGPRT deficiency
with the S-system model yields v, = 21.5 which, together with the flux v,y =14
and kinetic orders of Table 4, yields 4414 = 1.43, a value three times higher
than the value estimated at the operating point. This difference is directly re-
sponsible for the large concentration of xanthine that is predicted by the S-sys-
tem model. The same argument (for the kinetic order /)3 13) explains the large
and unphysiological accumulation of HX predicted by the S-system model for
HGPRT deficient subjects (data not shown).

The case of HGPRT deficiency also demonstrates that the inaccuracy in the
flux stoichiometry of S-system models can become significant for large devia-
tions from the operating point. For example, we find vy = 21.5 and v,4 = 14.0,
whereas the flux of degradation of Xa is only 15.1. In the case of PRPPS super-
activity, by contrast, the corresponding values in the S-system model are
vx = 0.2832 and vxg ==4.2643, and the flux of degradation of Xa is 4.4113, which
is reasonably consistent even for the 200% increase in the activity of PRPPS.

The GMA kinetic orders (f) also depend on the chosen operating point, and
their values are determined by the steady state of the system. Similarly, the ki-
netic parameters (Kjs) in the CMM model are ‘apparent’ Kys, and their values
can vary with different conditions of the system in vivo. It is difficult to assess
how strongly GMA or CMM parameters are affected by such changes. The
GMA model, and to a lesser degree the CMM model, produces results that
are quite similar to those measured in patients. Nevertheless, only one pathway
is analyzed here, and further experimental and theoretical work is necessary to
evaluate the reliability of these models in vivo.

Within the class of power-law models, S-system models have advantages
when it comes to algebraic analysis. They are unique with respect to steady-
state analysis [13] and optimization [53] and provide convenient tools for qual-
itative analysis [54]. For moderate variations about the operating point, their
accuracy is usually sufficient. Their lack of accuracy in modeling situations
such as severe HGPRT deficiency can be argued by asserting that an HGPRT
deficient subject constitutes a metabolic system that is vastly different from nor-
mal, and that a new operating point should be selected for modeling such dis-
order. After all, a normal subject does not gradually become HGPRT deficient.
We tested this hypothesis by using the same S-system model for both normal
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and HGPRT deficient subjects and adjusting the parameter values to either one
of the two steady states. As in the case of normal subjects, the S-system, the
GMA, and the CMM models indeed produced very similar results for pertur-
bations about the HGPRT deficient steady state (not shown). For instance, all
three modeled perturbations in PRPP in a Lesch-Nyhan patient in a quantita-
tively similar fashion.

5. Discussion

This paper served two purposes. The first part was dedicated to screening
the literature and extracting kinetic information that is necessary for any math-
ematical modeling of purine metabolism. This quite laborious exercise com-
prise both a conceptualization of the target system. which yield a scheme of
metabolic relationships and regulatory signals, and an exhaustive search of rel-
evant data. This process has been presented in detail so that future research can
build upon it and replace current knowledge with new or fine-tuned results.

A large amount of material was collated, of which most is presented in Ap-
pendix A. This material is considered an important contribution, since it is use-
ful not only for reproducing our results but also for designing other models of
this pathway. There is no doubt that much is unknown about the biochemistry
of purine metabolism, and as new data become available, they can be gradually
incorporated into the parameter estimates presented here. Thus, the first part
of this paper is largely independent of a particular modeling framework, even
though we concentrated on standard procedures of traditional enzyme kinetics
and more modern methods of BST. Nonetheless, other modeling approaches
would require similar kinetic data.

The second part served the purpose of selecting a model for further analysis.
While not shown, this was a several-year process involving numerous model re-
visions and refinements (for a detailed account, see Ref. [19]). At each stage,
the current model was tested for consistency, stability, and robustness, and spe-
cific refinements were implemented to alleviate former problems. These refine-
ments were usually introductions of fluxes or variables that had been assumed
secondary in previous versions. Particular care was applied to these refine-
ments, in order to assure biological vahdity and relevance.

In this process, the analvtical tools developed in BST, specially the compu-
tation of parameter sensitivities and steady-state stability conditions, were fun-
damental in identifying potential unrealistic assumptions in the model. While it
was not the purpose of this paper to provide detailed information about the
process of designing the model, the process in itself revealed which variables
affect the global behavior of the model most significantly. For example, the in-
clusion of SAM. RNA and DNA turned out to be the key to improving the
robustness of the model. Accounting for excretion of purines (vude, thy. and
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vy) became critical, as it prevented the unphysiological accumulation of purine
bases in several situations. By contrast, the addition of the flux vpy, turned out
to be almost inconsequential.

As in any modeling effort, we had to make several assumptions. The most
critical are the following:

(i) The metabolites inside each pool were considered to be in equilibrium.
Even though there is no real equilibrium between ATP and ADP (or other
pairs of adenylates), there is experimental evidence that the energy charge is
fairly constant under different physiological conditions. This suggested to con-
sider ATP and ADP as if they were in equilibrium.

(i1) Several linear chains of reactions were lumped into single processes (e.g..
Udens Upolyams and Dyrany ). This appeared to be legitimate, since it was demonstrat-
ed that the properties of the linear chain are closely related to those of the first
step.

(iif) For this first analysis. we ignored the physiological compartmentalizat-
ion of the human body. This was done to avoid overwhelming complexity, but
it is clear that the consequences of this simplification should be analyzed. Be-
cause at the level of the whole human body, this assumption seems more risky.
However, it should be seen as a conceptual election so that we can approach
the analysis of purine metabolism as an integrated process. From the know-
ledge gained following this strategy. further improvement could include differ-
ent compartments (o produce a more realistic model.

Once a conceptual model was stablished, the challenge is to build up a math-
ematical model that allow us: (i) to validate the conceptual model; (ii) to dis-
cuss the system properties; and (ii1) to predict specific features of the target
metabolic pathway. The election of a particular framework for obtaining such
a model is a difficult task. As a traditional standard, we attempted to develop a
Michaelis--Menten model. However, this was not possible in a pure form, since
some necessary information was simply not available in terms of kinetic pa-
rameters which are the characteristic elements for these types of models. Where
possible (about half the time). reactions were formulated as kinetic rate laws of
Michaelis—Menten type. and these were complemented with power-law kinetics
in order to obtain a useable simulation tool. The lack of information. and the
fact that our reactional scheme included different processes that were not single
enzyme reactions but a pool of different processes, suggested the use of model-
ing strategies specifically devised for dealing with these situations. The S-sys-
tem and GMA variants within BST were specially suited for this case.

Two types of power-law models were developed within the framework of
BST. The kinetic parameters for these models were either derived from kinetic
data in vitro or directly from experimental concentration and flux data and
other qualitative information. The possibility of deriving useful estimation of
the desired kinetic data from these assumption is one of the advantages of
the modeling strategies in BST. Furthermore. the possibility of testing the mod-
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el sensitivity towards any of the considered parameters is a valuable help for
checking how critical i1s the choice of a particular parameter value from qual-
itative assumptions. The resulting GMA and S-system models are robust to pa-
rameter variation, so that the system properties would not significantly change
with a slightly different choice in the parameter values.

For relatively small variations in metabolites or in model structure, all three
models behaved quite similarly, and all results appeared to be reasonable and
in accord with biochemical and clinical findings. The permissible ranges of de-
viation from normal operating conditions appeared to be wide enough to cover
all physiological and mildly pathological conditions.

As one can see in Tables 8 and 9 for severe pathological conditions. the
GMA model produced reasonable results, even if the system deviated far from
the operating range. This observation is quite amazing, since the GMA model
is based on local approximation. The GMA structure seems to cover a wide
range of physiological and pathological conditions with one and the same nu-
merical model, which was derived almost without further assumptions and ex-
clusively from published data. Outside serendipity, a cautious explanation of
this result may be that, for all practical purposes, metabolic processes in vivo
follow power-law kinetics.

The results in Tables 8 and 9 are not only important for future decisions
about model selection in similar situations, but they are biochemically important
in themselves. For example, Table 9 suggests the investigation of some conse-
quences of HGPRT deficiency that may not have been documented in the liter-
ature, such as increases in Gua and in the fluxes vy, and vpyg. Some of these
issues are discussed elsewhere, but it is clear that models of the documented com-
plexity will require further extensive experimental and mathematical evaluation.
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Appendix A

Al Estimates of kinetic parameters for each reaction of the pathway
) ! . ) /! i

Upipps: RSP + ATP — PRPP + AMP
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PRPP (X)) inhibits its own formation. According to Ref. [82], PRPP in a
concentration of 1 mM inhibits tppps at 19%. Thus,PRPP/m» =1 —0.19
and fpeppst = —0.03.

Ref. [82] also asserts that AMP and ADP in a concentration of 1 mM inhibit
the reaction at 53% and 92%, respectively. Applying the procedure shown
above, we obtain fprpps.amp = —0.1 and fprpps app = ~0.36. Finally, ATP is a co-
substrate of this reaction with a K}, that is higher than 14 uM. Derivation and
normalization of Eq. (2), using this Kj, and the corresponding steady-state
concentration for ATP (see Table 1), implies that foppsaTe =14/
(14 + 1900) = 0.007. As was explained before, furppss is the sum of all kinetic
orders associated with metabolites that constitute Xy: forppss = —0.45.

Metabolites of the guanylate pool also inhibit this reaction. Ref. [82] found
that 1 mM of GMP or GDP inhibits the reaction at 3% or 24%, respectively.
Thus, _fbrpps.(}MP =-0.004, fi)rpps(i[)? =-0.04, and ./i?rppsS =-0.04.

According to Ref. [83]. the apparent K, for phosphate is 3.3 mM. and this
yields fprppsig = 0.7.

With Ky =33 uM for RSP, [69,84]. the kinetic equation for v,ppe reads

Pyivorereps) X17 ‘
__ PVIVO{PRPPS) A7 o, farppad yrfprppss yrdprppst prd pepps i
AL PPS) 0T oty frons ot gt

Uden*

As explained in the text, the parameters of this step can be estimated from
the rate law of the first enzyme of the de novo pathway, which is amid-
ophosphoribosyltransferase. The reaction catalyzed by this enzyme is

PRPP + glutamine + H.O — fi—5~—phosphoribosyl-1-amine
-+ glutamic acid + PPi.

This reaction exhibits cooperative kinetics with respect to the substrate PRPP.
According to Ref. [85], the K, of PRPP varies between 140 and 480 pM, and
the Hill coefficient (#) between 2 and 3. depending on the tissue. We selected the
values Ky, =300 and n=2.2.

Ref. [86] demonstrated that GMP, GDP and GTP in a concentration of
5 mM inhibit the reaction at 70%, 40% and 13%, respectively. This implies
Faenamp = —0.1413. fien.op = —0.06. and fyen.g1p = —0.016. Adding these values
yields fgens = —0.2.

Constituents of the adenylate pool also affect the reaction: AMP, ADP and
ATP inhibit at 76%. 40% and 21%, respectively [86]. These results suggest
Jaenamp = =0.1675. fyen app = —0.06, and fyen ap = —0.028, which yields essen-
tially fyens = —0.25.

5 mM IMP inhibits the reaction at 41% [86]. This yields fyen2 = —0.06.

Ref. [87] showed that Pi inhibits vge, by changing the Hill coefficient of
PRPP for this kinetics, taking the values of Hill coefficients reported at 0,
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25, and 50 mM, one obtains the strength of inhibition of Pi at these concentra-
tions, which suggests fgen1z = —0.08.
Summarizing these data, we obtain the complete kinetic rate law

VV]VO(DEN] Xl deuﬂ X’dend X/dxna deunl?«

Uden = KM n X,,

Ugpri: Gua + PRPP — GMP + PPi

This enzyme is reversible. However, it is thought that the enzyme in vivo
only catalyzes the reaction in the direction indicated above. To account for
these uncertainties, we considered the reaction as essentially irreversible, but al-
lowed for inhibition by the product GMP. The kinetic rate law was thus rep-
resented as suggested by Ref. [88]

VV]VO\(,PRT,(AB PQ IPA,Q)

v, e
¥ KpKia + AKp + BK, + AB + PRafe 4 Qfefa 1 pQpage

+(ABPL) + BPQis- + AP£: 1 BQf2

In this formulation, A, B, P, and Q code for PRPP, Gua, Pyrophosphate and
GMP, respectively. Their concentrations were estimated at the operating point.
For pyrophosphate, the concentration was set as 15 uM [89], and the K, K,

Kip, and Kiq were set as 240, 4, 2100, and 1.25 uM. The remaining three param-
eters, Kp, Kia and Kip could not be estimated from data. However, it turned out
that Kp has almost no influence on the system (results not shown), and we se-
lected a value of Kp=1000 uM. K;4 and Kg are the inhibition constants of
PRPP and Gua, respectively. These again had little effect on the results, and
we selected values of Ka and Kz =4 and 1 uM, respectively, which are close
to the concentrations of the associated metabolites.

vhpri: HX + PRPP — PPi + IMP

This reaction and the v, reaction are catalyzed by the same enzyme, hypo-
xanthine-guanine phosphoribosyltransferase (HGPRT). The same questions
about reversibility apply, and they are handled in the same fashion. An appro-
priate rate law, according to Ref. [90], is

‘  BKpKa
WivonprT (AB T KioKp

ol APQ + 5280 PQ + SLAP + R QA + AB + S P+ S5 Q

KiaKigKp
+KgA + KAB + KAKIH

The symbols A, B, P, and Q represent HX, PRPP, IMP and Pyrophosphate,
respectively, and the constants Ku, Kp, Kp, Ko. Kis. Kip, Kig are 7.7, 66, 5.8,
39, 25, 40, and 260 pM. The constant K, has not been experimentally deter-
mined. However, because model evaluations demonstrate that outputs are

Dhprt =
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practically unaffected when the parameter K;, is varied between 1 and 200, we
used a K == 10 uM [1] and a concentration of 15 pM for PPi [89].

tapri: Ade + PRPP — AMP + PPi

This enzyme is similar in type to hypoxanthine-guanine phosphoribosyl-
transferase. It also could possibly catalyze a reversible reaction, although the
reverse reaction seems irrelevant in vivo. To account for this uncertainty, inhi-
bition of the product AMP has been included.

The substrate PRPP has a Ki; close to 6 pM [29,91,92], and we select
KM =5 },lM

The Ky for Ade has values between 1.1 and 5.2 uM [29.91,92]. This implies
Sapriade between 0.5 and 0.83, and we set fupre = 0.75.

The K; for AMP is between 7.5 and 30 uM [29.93]. Inhibition is competitive
with respect to PRPP, and this suggests that fi, amp should range between
—0.76 and —0.96. Selecting fypri4 = —0.8, we obtain the rate law

PavorarRT: X1 fure vl
= XA

[ g—
ape /Y| + [X’\/

Upyr:

Because the initial enzyme in the synthesis of pyrimidines is also a phosphor-
ibosyltransferase, it seems reasonable to assume that its kinetic parameters are
similar to those of vhpri. Uaprt OF Uapri- We roughly estimated the value of f,1 as
an average of fup1. fiprir. and fuprr. which yielded fiy = 1.27. 1t is shown else-
where [19] that sensitivities of variables to this parameter have low values. The
kinetic properties of this step are reflected in the power function rate law

Af ot
Cpyr = dper X7

impd: IMP + NAD + H,O — XMP + NADH

Ref. [94] published a table of K, values for this enzyme in different tissues:
for example, in Yoshida tumor cells 12 pM, in human placenta 14 uM, and in
human leukemia cells 23 pM. For our model, we chose an average value of
Ky =17.

XMP and GMP inhibit the enzyme by competing with IMP. The K for
XMP is 25 uM and for GMP it 1s 90 uM [94,95]. The kinetic rate law for com-
petitive inhibition suggests finpgomp = —0.03 and, thus, finpas = —0.03.

- Wivoampen A>
Uimpd == ]
K ( I X5 ] — X5
M . t A Apxap -

tomps: XMP + ATP + glutamine - GMP + AMP + PPi + glutamate

The published value of Ky =270 uM for ATP [96] suggests the parameter
value fympsa = 0.12. Moreover, the Ky, for XMP is 4.9 uM [96], which yields
the kinetic equation

Simpaz
X
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o havoiomes X7 fune
Lgmps - X7 + KM /Y4 :

Vasuc: IMP + L-aspartate + GTP — S-AMP + GDP + Pi

The enzyme comes in the form of two isoenzymes (L and M) that have dif-
ferent kinetic characteristics [97]. A rigorous assessment of the contributions of
each isozyme is difficult, and we use an average of Ky; = 66.6 [97,98]. GTP and
Asp are cosubstrates for this reaction. Aspartate is not included in the model,
but an average Ky for GTP [97,98] suggests fiue.gp = 0.2, and thus fges = 0.2.

Adenylates in general, and AMP in particular inhibit this reaction compet-
itively with respect to IMP. Using a K value of 170 pM for AMP and a K, of
37 uM for IMP [98] in the traditional rate law for competitive inhibition. one
obtains fyueamp = —0.24 and. thus, fiwes = -0.24.

Finally, Pi in concentrations of 2 or 20 mM inhibits the enzyme at 20% and
59%. respectively [99]. This is represented with the parameter setling
‘lemlclb‘ =-0.05.

Summarizing these results, an appropriate rate law is

ivoasue, X2 ;
- PASLL Y oy fusied ylasues e fasuci®
e DVOUASUCL 2 o o yrfosers

Uagli-
This enzyme catalyzes two reactions of purine metabolism. One of them. the
reaction of vug;. 1s specifically depicted in Fig. 1.

S-AMP — AMP + fumarate
AMP acts as a competitive inhibitor of the enzyme with a K; of' 9.2 uM for
AMP [100]. With Ky, = 1.79 uM for S-AMP [100], the appropriate kinetic rate
law is
Vyivoasen A3
Ky (1 + Xy %) + X3

The second reaction constitutes one of the steps in the ten step pathway of
de novo purine synthesis (v4.,). This reaction is rather insignificant, and we do
not consider it here.

Vasli =

Compr: GMP + NADPH « IMP + NADP + NH;

The substrate GMP has a Ky of 7.5 uM [101]. which corresponds to
Jempr.omp = 0.23. This effect of a guanylate is augmented by the activation of
the enzyme by GDP and GTP. 2 uM of GTP or GDP activate the enzyme
at 22% or 13%. respectively [101]. Thus, femprGre =0.29 and Jemor.op =0.18
which, added 10 fympr.imp, yields fumps =0.7. XMP is a potent inhibitor of
the enzyme: 33 uM of XMP inhibit the enzyme at 93% [102]. This is repre-
sented with the setting fumper = —0.76.
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Ugmpr 18 @ reversible step, in which the product (IMP) inhibits the enzyme.
IMP in a concentration of 33 uM inhibits the enzyme at 30%, and 330 uM in-
hibits at 70% [102], which suggests a value for fympr2 between —0.1 and —0.2. We
use the average fgmpro = —0.15.

Adenylates inhibit the enzyme less strongly than guanylates. In a concentra-
tion of 33 uM, AMP inhibits the enzyme at 5%, ADP at 7% and ATP at 11%
[102] This lmplles fgmpr.AMP =-0.01; .f;;mpr.ADP =-0.02, fgmpr.ATP =-0.04, and
fgmpr4 =-0.07.

The kinetic rate law of this reaction in power-law form is thus

. . 3 f;x))prl fgmpm ,/‘gmpl 7 f‘gm pri
l-’gmpr - 1gmpr 2 X4 X7 Xh’ :

Vampd: AMP — IMP + NH;

This enzyme exhibits cooperativity with respect to its substrate AMP. This
suggests a Hill rate law whose parameters are appropriately chosen as
Ky =2300 uM and » = 1.4 [103-106}. GTP inhibits the enzyme, thereby affect-
ing the apparent K, and » [105]. The result is a smaller reaction rate with an
approximate kinetic order fimpas = —0.03.

Pi is an inhibitor of this enzyme with a K; of 16 mM in human kidney [106].
2.5 mM of Pi decrease the flux from 24.79 to 13.71 in human heart {105], and
1.8 mM inhibit the reaction in human erythrocytes by 50% [104]. These data
correspond to kinetic orders of fympais of ~0.08, ~0.075, and 0.1, respectively,
and we specify the parameter as fimpais =—0.1.

The appropriate kinetic rate law is thus

~ Wivoiampp) (X3 0.08)"

Tampds v fampd 1
v, — X ampd X P .
ampd KM + (X4 008)// 8 I8

Umat: Methionine + ATP — SAM + Pi + PPi

The Ky of this enzyme for ATP is 450 uM [63]. The enzyme is inhibited un-
competitively by SAM with a K; between 2 and 2.9 uM [63], which suggests a
kinetic order of fu,,s = —0.6. The kinetic rate law is thus

o Wvopnan X, 076,
X076+ Ky

Uyeans: protein + SAM — methylated protein + S-adenosyl-L-homocysteine

For this transmethylation pathway we use the kinetic parameters of the first
enzyme (protein carboxyl methyl transferase) which has a K; for SAM of 2 uM
[63,107]). This yields the following rate law:
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Upolyam*

This pathway, like vgen and vyang, includes several enzymes. As discussed be-
fore, it is justified to use the kinetics of the first enzyme in the pathway (S-ad-
enosyl-methionine decarboxylase) which catalyzes the step

SAM — decarboxilated SAM

Decarboxylated SAM is subsequently transformed into 5-methylthioadeno-
sine, which in turn is the substrate for the linear polyamine pathway that even-
tually produces Ade. The Kj; of SAM decarboxylase for SAM is 50 uM [108].
This yields the kinetic rate law

Wivoeoryam; Xs

Upolyam — -
Poy Ky -+ X5

Vinuc: IMP + H,O — Ino + Pi

There is a large variety of 5-nucleotidases. Among them, the 5-nu-
cleotidases (E.C. 3.1.3.5.) hydrolyze nucleotides to nucleosides with some resid-
ual activity for hydrolyzing deoxynucleotides. Others (5(3’)-nucleotidases
E.C.3.1.3.31.) hydrolyze deoxynucleotides to deoxynucleosides with some re-
sidual activity for hydrolyzing nucleotides. The nucleotidases determine the ki-
netic parameters vinue, Vgnues and Pagnue. Among the 5'-nucleotidases, several
subkinds need to be distinguished. The ecto 5'-nucleotidases have a high speci-
ficity for AMP and a lesser specificity for IMP and GMP, whereas the cytosolic
5'-nucleotidases have a higher specificity for IMP and GMP. For our purposes,
we focussed on the kinetic parameters of the more relevant cytosolic 5-nu-
cleotidase-II for vipye and vgyye [109]. Assuming a Michaelis-Menten mecha-
nism, the values of Kj, of this enzyme for IMP are somewhat higher than
400 puM [109-111].

Pi is an inhibitor of the enzyme: 1 mM Pi increases the X, from 200 to
4800 pM, [111], which corresponds to a concomitant tenfold decrease in the
flux rate, thus suggesting finucis =—0.36. Based on these experimental data,
the appropriate kinetic rate law is

A ~
I Wivounue A2 fouets
muc T .
Ky + X5 a

bgnue: GMP + H,O — Guo + Pi

For this enzyme we also assume a Michaelis—-Menten mechanism with the
kinetic parameters of cytosolic 5'-nucleotidase-II. Data [109-111] suggest a
Ky for GMP of about 700 pM.

Pi inhibits this enzyme, changing the K, from 700 to 7900 uM [111]. The
appropriate kinetic order is fynucis = —0.34, and the resulting rate law is

Upriie == Wivoenuey As 0.0625
enue X3 0.0625 + Ky, "

fenucix
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vagnue: dGMP + H,O — dGuo + Pi

Again, we assume a Michaelis-Menten mechanism with kinetic parameters
for 5'(3')-nucleotidases, because it seems that this enzyme catalyzes the reaction
in vivo. The Ky of this enzyme for dGMP is very high. with a value over
3.3 mM [112]. This yields the following rate law:

. B Pavomenuc; Xio 0.0333
dgnue ™ Ky + X0 0.0333

Cedrmr: GDP + NADPH — dGDP + NADP + H,O

Diribonucleotide reductase is an allosteric enzyme that is modulated by
deoxynucleotides. There are different kinds of this enzyme, but the human en-
zyme is in the same class with that of other mammals and of E.coli. The esti-
mation of kinetic orders was based on data from calf thymus [113].

The Ky of this enzyme for GDP is 50 uM [113]. dATP is a potent inhibitor
of this reaction, but its kinetic order is difficult to estimate. We used the equa-
tion fugraraatp = d(log vegrmc¥/d ([dATP]) [dATP], to estimate it, and with nu-
merical values obtained from [113], we obtained the kinetic order fugrmeo = —1.2.

Similarly, dGTP is an inhibitor whose kinetic order is difficult to estimate.
Again using data from the study by Ref. [113], we graphed the logarithm of
vedrnr against the logarithm of the concentration [dGTP]. After removing ob-
vious outliers, the slope of the regression line was —0.39, with a correlation co-
efficient of 0.9999. Hence. fugrnrio = —0.39.

The appropriate kinetic rate law is

v — V\;lV(‘)‘(C'DRNR) ‘X;‘ ()]875 X’gdw"! Yf;_vdrmiu
wdmr Ky + Xy 0.1875 o o

Vadinr: ADP + NADPH — dADP + NADP + H,O

The same enzyme catalyzes tudmr and vugmr, but the kinetics of the reactions
differ quite significantly. According to Ref. {113], the Ky, for ADP is about
44 uM. 5 uM of dATP inhibits vygm, at 50% [113], and this produces an ap-
proximate kinetic order of fiqmr = —0.3.

dGTP in this case acts as an activator of the reaction. Its kinetic order was
estimated from Ref. [113]) as fudgmrdcre = d(log tagmr)/d(log [dGTP])=0.87.
Thus, fz'ldmr]l‘l == (.87,

The resulting rate law 1s

v _ Pavoiaprar; X4 0.16
adrnr /\4 (] ]6 i K'M

Fadenry Y- fudinrio
Xr) X 10 .

Uada: Ado — Ino + NH;

Adenosine deaminase (ADA) is an irreversible enzyme that catalyzes the
deamination of Ado to Ino and of dAdo to dIno. The enzyme apparently is
ubiquitous in all species and tissues, with Kj,’s for Ado in humans that range
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between 17 and 100 uM [30,31,114]. We selected a value of Ky =20 uM for the
following rate law:
- Wivoiapa; X4 0.0002
TR 0.0002 4 Ky
tdada: dAdo — dIno + NH;
This reaction is also catalyzed by ADA, with a K); for dAdo of 38 uM [114].
This yields the rate law
Wivomapa; Xq 0.016
X, 0.016 + Ky

Udada =

Varna and Pgrna-

The RNA nucleotidyltransferase adds nucleotides to the RNA strands, fol-
lowing the reaction

(ATP or GTP) + RNA, — PPi + RNA,

Because both fluxes produce essentially the same product, the kinetics of
these fluxes are constrained to be the same except for their rate constants. Spe-
cifically, to preserve the stoichiometric composition of RNA, Vyyvo In 4y
must be % times that in ym,. Because the kinetic parameters of these two fluxes
must be equal. the same kinetic orders fmaps and fraaps (referring to the forma-
tion of RNA by RNA polymerase) are used in the GMA rate law of the two
reactions Uumna and gry. The Kys for ATP and GTP are 100 and 45 uM., res-
pectively [115]. These data suffice to determine power-law kinetic orders, but as
was commented in the text, power-law parameters are insufficient to determine
Michaelis-Menten parameters. In this case we need to determine Michaelis—
Menten parameters for a bisubstrate enzyme,

Larna PVIVO(ARNA)

Ny 0.76 Xy 075
or= or Ll

Kk vy 076 K Ye 0.751 Ko Xe 075 %, 076
Perna WivoiGrNA;

We still have two degrees of freedom in determining the kinetic parameters
of this reaction, so two additional constraints are needed, and we set Ky, and
Kc=1 pM. With these specifications, we obtain the values K, =47.5 and
Ko=1159.

Urnaa and Urnag:

Several enzymes hydrolyze nucleic acids to nucleotides and deoxynucleo-
tides: 3'3'-exonucleases, 3'5'-exonucleases, endonucleases, H ribonuclease,
and some other unspecific enzymes. The reactions, catalyzed by any of these
enzymes, do not have exactly the same stoichiometry. Because the ratio Ade/
Gua in RNA is constant. the kinetics of Ade and Gua must be equal, except
in the values of their rate constants, as was the case for vum, and vgma. Here,
the kinetic order representing the degradation of RNA is called fijanii. We
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set the value for this kinetic order as finan = 1. This parameter is discussed
elsewhere [19] in more detail, and it is sufficient to note here that changes in
this parameter do not affect the behavior of the system much. The power func-
tion rate law for this step of the pathway is

Urnaa VV[V(){RNAAD
_ Triantl
or = or X"
-
Urnag I'VI\«'()(RN/\(}\

Uadna and tgany: (AATP or dGTP) + DNA, — PPi + DNA,

This enzyme adds deoxynucleotides to DNA strands, and because the ratio
of added dATP and dGTP is constrained by the structure of DNA, the corre-
sponding rate law must be equal except for the rate constants, as was discussed
in the preceding case. The kinetic orders used in the two reactions are called
Janapo and fanapio. The Kys for JATP and dGTP are 3 and 1.2 uM, respectively
[116]. Still, there are two degrees of freedom in the kinetic rate law for these
bisubstrate reactions, and we set Ky; and K¢ = 1 pM. With these specifications,
we obtain the parameter values Ka =2.58 uM and K; = 5.54 uM in the follow-
ing rate law:

Dadna FVIVO(ADNA)

of = or Xy 0.66 X4 0.8

KoK ¥ 0661Ke Xy D8 TKe Xy 0.8 Xyg 066"
Dadna PYIVOIGDNA)

Vdnaa and Udnag-

These two fluxes are constrained and pose the same estimation problems as
the degradation of RNA (see above). We made the same assumptions, specify-
Ing fanan1> = 1 for both kinetic rate laws. This parameter is discussed further in
Ref. [19]. The rate law for this step is thus

Cdnaa YWIVOIDNA A
or = or )(llihmnn )
Pdnag WivomoNac

thxd: HX + HO + (NAD or 0») — Xa + (NADH or H,0»)

The conversion of HX to Xa and subsequently to UA is irreversibly cata-
lyzed by the enzyme xanthine oxidase, if oxygen is used as the electron acceptor,
or by xanthine dehydrogenase, if NAD is the electron acceptor. These two en-
zymatic activities are carried out by the same protein which can switch from
one catalytic activity to the other. In humans, the two reactions take place only
in liver and gut, and there is no agreement about which of the activities is more
significant in vivo: Some references [33] purport that the main activity rests with
xanthine dehydrogenase, while others [20] consider xanthine oxidase as more
important in vivo. For our models, we set the K, value of this enzyme with res-
pect to HX as 13 uM (cf. [117]), which yields Michaelis—Menten reaction
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Wivomxp; X13 0.7
Xl3 0.7 + KM

vxg: Xa + H,O + (NAD or O;) - UA + (NADH or H;0,)

This reaction is catalyzed by the same enzyme as vpxq. The Kys of the en-
zyme for Xa are 15.5 and 3 uM for human gut and human liver, respectively
[118], and we set K, == 6 uM in the Michaelis-Menten rate law

Uhxd =

Wivoxp) X4

Vg =
X X+ Ky

Uoua: Gua + H;O — Xa + NH;

Guanase or guanine aminohydrolase is believed to be a Michaelian enzyme
with a K, for the substrate Gua of 0.56 pM in human erythrocytes [57]. This
value has been used for the Michaelis—Menten rate law

- Wivoiua Xis 0.1
= Xis 0.1 + Ky,

Uade-

This flux represents the oxidation of Ade to 2,8-dihydroxyadenine and the
excretion of this end product and of Ade in urine. When we take values mea-
sured in vivo [65] and plot the logarithm of adenine metabolite excretion
against the logarithm of plasma adenine concentration (see Fig. 3(a)) we ob-
tain a reasonably straight line with a slope equal to f,4e6. The kinetic order thus
determined 1S fages = 0.55, and the rate law is

5 —_ f fetv
Uade = Qade X(,a( "

Uhx

This flux represents excretion of HX in urine and is not an enzymatic rate.
We can estimate its parameter values by solving a system of two equations. In
every steady state these values have to satisfy the condition vy = apx X213
Also, we know that at our operating point [HX] =7 pM and vgx =0.05
umol min~! BW~!, Furthermore, it is known that in Lesch-Nyhan patients
[HX] is about 50 pM and vgyx is over 0.45 uM min~' BW~! [80]. Substitution
of these data and solving the equations results in the kinetic order fix3 =1.12.
The rate law thus is

Unx = Xpx X{»i’;ﬂ] .
vy
This flux represents excretion of Xa in urine. As in the previous case of vy, its
kinetic order has been determined from two equations at the operating point,
one with Xa =35 uM and vy = 0.03 pmol min~! BW~! for healthy subjects, and
the other with Xa of about 15 pM and v, of about 0.27 pmol min~' BW~!
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(@) log of adenine metabolites excretion
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Fig. 3. Graphical representation of the regression for estimating /.. (panel a) and f,.;4 (panel b) in

healthy subjects. Symbols for panel b are: (W) measurements obtained from different individuals; (+)
measurements from the same individual after injections of UA.

for Lesch-Nyhan patients [80]. With these data we obtain a kinetic order of
faa=2 and the rate law

fsia

Uy = % X))

Lua-

This flux represents excretion of UA by the kidneys and gut. Again, this flux is
not an enzyme catalyzed reaction, which made it impossible to find a kinetic rate
law in the literature. However, as most UA is eliminated in urine, it has been
possible to assess vy, in vivo by measuring the concentration of UA in urine
every day. The resulting data, as obtained from [119], were represented in a



R. Curto et al. | Mathematical Biosciences 151 (1998) 1-49 43

log-log plot (Fig. 3(b)) in which the slope corresponds to fa16. With the numer-
ical value fu416 = 2.21. The Y axis in this plot does not represent the logarithm
of total concentration of UA in the human body, because these data were not
available. Instead, it represents the logarithm of plasma UA concentration.
which is assumed to be proportional to the total concentration in the human
body, and thus leads to the same slope. The appropriate rate law is

fuai6

Dya = Ay X]ﬁ
We have demonstrated in this séction how one can construct a CMM model
from kinetic parameters and other information found in the literature. By
showing almost all steps of estimation, this section can easily be extended,
amended. or rectified as new data become available. The CMM estimates pro-
vided the basis for the pure power-law models in GMA and S-system form. To
construct the GMA model, we applied Eq. (4) to the CMM rate laws for all
fluxes. The resulting kinetic orders of the GMA model are shown in Table 4.
Subsequent application of Eq. (6) to each process of synthesis or degradation
then yielded the kinetic orders of the corresponding S-system model. These re-
sults are shown in Table 5.

A.2. Estimated values of rate constants and Vo

The last set of parameters that need to be estimated for the three models
consists of rate constants in GMA and S-system and V,;,, in CMM. To esti-
mate these parameters we need all previously determined parameter values,
as well as the concentrations of all metabolites and the flux rates at the oper-
ating point. These pieces of information allow us to solve one equation for each
rate law in which either the rate constant or ¥, is the only unknown. Results
for CMM and GMA models are given in Table 6, and results for the S-system
model in Table 7.
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