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Abstract

The power-law formalism has been succesfully used as a modeling tool in many

applications. The resulting models, either as Generalized Mass Action or as S-systems

models, allow one to characterize the target system and to simulate its dynamical be-

havior in response to external perturbations and parameter changes. The power-law

formalism was ®rst derived as a Taylor series approximation in logarithmic space for

kinetic rate-laws. The especial characteristics of this approximation produce an ex-

tremely useful systemic representation that allows a complete system characterization.

Furthermore, their parameters have a precise interpretation as local sensitivities of each

of the individual processes and as rate-constants. This facilitates a qualitative discussion

and a quantitative estimation of their possible values in relation to the kinetic proper-

ties. Following this interpretation, parameter estimation is also possible by relating the

systemic behavior to the underlying processes. Without leaving the general formalism,

in this paper we suggest deriving the power-law representation in an alternative way that

uses least-squares minimization. The resulting power-law mimics the target rate-law in a
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wider range of concentration values than the classical power-law. Although the impli-

cations of this alternative approach remain to be established, our results show that the

predicted steady-state using the least-squares power-law is closest to the actual steady-

state of the target system. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: S-systems; Sensitivity analysis; Enzyme kinetics; Biochemical system theory;

Metabolic control analysis

1. Introduction

The construction of a mathematical model of a metabolic pathway requires
using an appropriate formalism allowing system characterization and simula-
tion. Although models based on enzymatic kinetic rate-laws, such as the classical
Michaelis±Menten and Hill functions, appear as a logical alternative, they result
in a mathematical representation that is too complicated for practical purposes.
Moreover, a compilation of the available kinetic data does not guarantee that
the resulting model does accurately represent the target steady state properties
[1±7]. This is especially true if we consider that kinetic experiments are per-
formed in vitro and that the derived parameters and mechanisms are far from
representing the in vivo situation [8±10]. The complex structure of the intra-
cellular media determines that in vivo conditions di�er from the ideal in vitro
conditions in which the rate-laws of isolated enzymes are derived. In vivo, the
heterogeneous media in which a chemical reaction occurs may involve deviations
from classical kinetics, making it necessary to consider fractal kinetics as a much
more natural generalization for deriving the corresponding rate-law [11,12].

With all these points in mind, the search for an appropriate mathematical
representation is an important issue in modeling metabolic pathways. In this
context, the power-law formalism based on a Taylor series approximation in a
given operating point provides an e�cient alternative for representing the ac-
tual rate-law in situ. To produce a non-linear representation, this approxi-
mation is derived in logarithmic space, so that a power-law representation is
obtained in normal coordinates [13±15]. This leads to models that appear to be
accurate over a wide range for the steady-state values of the system as a re-
sponse to changes in external variables [16±20].

The power-law representation is the best possible according to the criterion
of using a Taylor series approximation for the actual rate-law. As a natural
improvement, the use of second-order terms in the Taylor series approximation
was explored [21]. Although the resulting representation results in an increased
accuracy, the problems in experimentally determining the required second-
order derivatives make this approach unpractical.

In this paper we suggest an alternative way of deriving the power-law rep-
resentation without leaving the general structure of the formalism. The method
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is based on a least-squares criterion that minimizes the quadratic deviation
between the actual rate-law and its corresponding power-law representation.
This minimization can be performed over an arbitrary range of variation of the
system variables. The resulting optimum power-law will be thus dependent on
this range, even for a ®xed operating point.

We compare the resulting least-squares power-law with the corresponding
Taylor-series power-law in the case of the Michaelis±Menten rate-law for a
sample of operating points and minimization intervals. Our results show that
the former does increase the accuracy of the representation and that the
Taylor-series power-law is a limit case when the range of minimization tends to
be a single point. The implications of this new strategy for deriving a power-
law representation are explored by comparing the steady-state predictions in a
simple model. We shall again con®rm that the predicted steady-state using the
least-squares power-law is closer to the actual steady-state of the target system.

2. Least-squares power-law ®tting of functions

Let us consider for the sake of simplicity the case of a one-variable function
v�X �. The standard power-law methodology approximates v�X � by a power-
law around an operating point X0 assuming a ®rst-order Taylor expansion in
logarithmic space. Its goal is to derive an approximate representation that
accurately models the target process in the vicinity of the nominal operating
point but that has the advantage of simplifying the mathematical representa-
tion. Such a method produces automatically a power-law approximation of
v�X � at X0 which is correct to ®rst order in the sense of Taylor, i.e., the value of
the power-law and v, as well as their ®rst derivatives at the operating point, do
coincide:

cX f
0 � v�X0� and

d

dX
�cX f �

����
0

� d

dX
v�X �

����
0

: �1�

In what follows, we shall denote as cT and fT the rate constant and the kinetic
order found according to a Taylor's type criterion, respectively.

However, from the theory of approximation of functions [22] it is known
that the concept of `best approximation' is, in general, criterion-dependent.
Therefore, the best power-law ®tting, in the sense of Taylor, may be eventually
improved if we are able to recognize another criterion which ameliorates the
estimation of some features we are interested in. For instance, we can look for
a criterion providing an overall accurate approximation of the target function
within a given operating range.

We shall thus consider the e�ect of substituting `the best approximation', in
the sense of Taylor, by `best approximation' in the sense of least-squares within
a given operating range. Let us clarify the precise meaning of the new criterion:
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given an operating point X0 and an arbitrary interval �X0 ÿ L;X0 � U� around
it, we shall approximate a rate-law v�X � by a power-law cX f in this interval in
such a way that:
1. cX f

0 � v�X0�, namely the power-law equates v�X � at the operating point.
2. The quadratic deviation between both curves within the interval
�X0 ÿ L;X0 � U� is minimal. This is equivalent to imposing the following
condition:Z X0�U

X0ÿL
�cX f ÿ v�X ��2 dX !Minimum: �2�

Some remarks are in order after this de®nition. First, the apparent kinetic
order in the sense of least-squares depends not only on the operating point X0,
as usual, but on a whole interval �X0 ÿ L;X0 � U� over which we de®ne the
minimization criterion. Consequently, f 6� fT in general. Second, note that this
is an integral criterion. This implies that v�X � needs not be di�erentiable at the
operating point, as in the case of Taylor's approximation, but only integrable
[23], which is a much less restrictive condition. In particular, according to the
least-squares criterion, an optimal power-law may exist even if v�X � is not
continuous at the operating point ± piecewise continuity is a su�cient re-
quirement. This situation may not arise in enzyme kinetic models but it may be
relevant when modeling other dynamical systems.

Let us now concentrate on determining the optimal kinetic order and rate
constant according to the least-squares de®nition. We shall denote them as f
and c, respectively. Notice that we can always write the power-law approxi-
mation of v�X � as

v�X � �: v�X0� X
X0

� �f

: �3�

Expressed in this way, the problem is reduced to ®nding f. Contrarily to
Taylor's case, it is not possible to give a closed expression for f, but it must be
estimated in an appropriate way.

Although a speci®c minimization algorithm for (2) can be derived, for
practical purposes it su®ces to use any standard tool for numerical minimi-
zation such as those available in MathematicaÓ or similar software. The least-
squares f can be obtained as follows:
1. De®ne an operating point X0 and choose the operating range (U and L).
2. Compute numerically the integral in Eq. (2) using some starting value for f.

Although the choice is not as critical as it may seem, a good rule is to use fT

as a ®rst guess for f.
3. Iterate the minimization algorithm, using the least-squares integral as the

objective function and f as the unknown parameter.
4. Stop the minimization when an appropriate minimum is reached.
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This procedure has been implemented in MathematicaÓ v.3.0, using the
function NIntegrate for evaluating the integral (2) and the procedure Find-

Minimum for obtaining the least-squares kinetic-order f. The extension of the
algorithm into the case of several variables rate-laws is obvious and we omit it
for the sake of conciseness. Although the method for obtaining the power-law
representation is somewhat less intuitive than in the Taylor case, the resulting
approximation is optimal in the sense of least-squares and provides a power-
law representation that preserves the formalism. Moreover, a least-squares
minimization is in closer relationship with data analysis. Suppose the actual
v�X � is unknown, and that a set of experimental points �Xi; vi� is measured.
Then, for a given operating point �X0; v0� we can obtain the corresponding f̂
value as follows:Xn

i�1

vi

 
ÿ v0

Xi

X0

� �f̂
!2

!Minimum: �4�

The resulting f̂ will be an estimation of the actual least-squares f corresponding
to ®tting v�X � in a range within the minimum and maximum values of the
corresponding �Xi; vi� data points. In general, this value will di�er from the
corresponding fT value. Because the power-law representation derived from a
least-squares criterion is a variant in comparison to the classical formulation, it
would be useful to explore how does it compare with the Taylor representation
and which are the consequences when modeling the whole system. We shall try
to answer these questions by an example.

3. Comparison of di�erent power-law approximations for the Michaelis±Menten

rate-law

The meaning of the least-squares criterion for obtaining the power-law
representation of a target process can be best understood if we choose an
appropriate reference function v�X �. For the sake of illustration, we shall do
this for the Michelis±Menten rate-law

vMM�S� � VmS
Km � S

: �5�

Notice that the general Michaelis±Menten rate-law (5) for a substrate S can
always be rewritten in the normalized form

v�X � � X
1� X

�6�

after introducing the dimensionless quantities X � S=Km and v � vMM=Vm. We
can thus consider the rate-law (6) as a prototypical representative of the general
process (5).
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We thus compare the rate-law (6) with both power-law approximations for a
sample of operating points and minimization intervals. The results are sum-
marized in Fig. 1. A feature which is apparent at ®rst sight is that the least-
squares approximation remains closer to the function, on the average, over the
minimization interval. This was to be expected, since the traditional approach
does only depend on a single operating point. In particular, the least-squares

Fig. 1. Power-law representation of the Michaelis±Menten rate-law X=�1� X � at di�erent oper-

ating points and minimization intervals. The exact rate-law (continuous line) is displayed together

with the Taylor ( ± ± ± ) and the least-squares (- - - - -) approximate power-laws. The vertical grid

indicates the points �X0 ÿ L;X0;X0 � U�. (a) �X0; L;U� � �0:1; 0:05; 0:1�; (b) �X0;L;U� �
�0:1; 0:05; 0:4�; (c) �X0;L;U� � �1; 0:5; 1�; (d) �X0;L;U� � �1; 0:5; 4�; (e) �X0;L;U� � �10; 5; 10�; (f)

�X0; L;U� � �10; 5; 40�.
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power-law, not being a saturating function, is able to reproduce better the
saturation property of (6) over the corresponding interval. For a ®xed oper-
ating point, the required least-squares kinetic order f is lower than the corre-
sponding fT value for operating regions with U well above the nominal
operating point. For asymetrical regions with L well below X0 and U close to
zero, the corresponding f is greater than fT.

In order to better visualize the average gain when representing the target
function within the operating region, we may de®ne the following ratio

R�X0; L;U ; v� �
R X0�U

X0ÿL �cX f ÿ v�X ��2 dXR X0�U
X0ÿL �cTX fT ÿ v�X ��2 dX

; �7�

where cX f and cTX fT are the least-squares and the traditional power-law ap-
proximations of v�X � at X0 over the interval �X0 ÿ L;X0 � U�, respectively.
Expression (7) is just the ratio of the quadratic deviations of both approxi-
mations (note that the minimization of such quadratic deviation is the criterion
followed in the determination of c and f). Thus, given a rate-law v and a
combination of arguments fX0; L;Ug, function R�X0; L;U ; v� gives a measure of
the extent to which the least-squares power-law remains closer to v�X � than the
Taylor power-law over the corresponding interval. Therefore, we can verify the
way in which we have a greater gain by calculating R for a sample of mini-
mization intervals. This is done in Fig. 2 for the rate-law (6). As it can be seen,
the Taylor and the least-squares approximations remain quite similar in the
case of symmetrical minimization intervals. When the interval width tends to
zero, f becomes equivalent to fT. However, when we deal with asymetrical
intervals, R decreases quickly to values of less than 0.1, thus showing that the
least-squares approximation leads to an improvement of more than 90% in
such cases. This can be especially useful if we want to explore the system's
behavior within a wide range. For instance, if X is an external e�ector that can
vary in a wide range, the least-squares representation may be more adequate
than the Taylor representation if the goal is to explore the dynamic response
related to the dynamic variation of X.

4. Comparison of the steady-state predictions in a simple model

The power-law formalism is especially suited for modeling a whole system.
In that sense, the price to be paid for using an approximated representation of
the underlying processes is compensated by the possibility of e�ciently ana-
lyzing the system's properties. Moreover, the ®nal set of equations will be, in
general, able to model the target system in a wider region than we would expect
from the use of an approximation [16±20]. Because the least-squares algorithm
increases, on the average, the accuracy of the representation within the desired
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operating region, it is expected that the system behavior will be better ap-
proximated by a model incorporating this strategy.

As an illustrative example, we compare the steady-state prediction for both
alternative power-law descriptions of the simple mechanism

X2 ! X1 ! P :

The rate of variation of X1 along the process is given by v � vS ÿ vD, where vS

and vD are the rates of synthesis and degradation of X1, respectively. X2 is
assumed to be in excess, in such a way that its concentration can be taken as
constant. We can then set vS � X20 � constant. For vD we shall consider the
rate-law (6) used in the previous section. This leads to the following simple
di�erential system:

_X1 � X20 ÿ X1

1� X1

: �8�

We can then approximate the Michaelis±Menten rate-law in (8) by either its
Taylor or its least-squares approximation for a sample of operating points

Fig. 2. Plot of the ratio R�X0;L;U ; v� for the Michaelis±Menten rate-law (6), v�X � � X=�1� X � at

X0 � 1 for di�erent values of L and U.
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and minimization intervals. Then, a comparison of both approximations is
provided by the corresponding predictions of the steady-state of the system,
when such steady-state is considered as a function of the operating point ±
which is given by parameter X20. The advantage in taking such simple ex-
ample is that the steady-state can be determined exactly as a function of X20.
Thus the comparison of the approximations with the actual solution is easily
available.

Such comparison is displayed for system (8), for a sample of operating
points and minimization intervals, in Fig. 3. Again, it is apparent that the
prediction of the steady state is improved with respect to the Taylor method
within the selected range. The fact that such range can be conveniently chosen
case by case gives to the least-squares approximation an extra degree of ¯ex-
ibility not present in the classical approach. The appropriate operating range
will depend on the particular problem and, to some extent, on the expected use
of the model. This is similar to the choice of an appropriate operating point in
the Taylor method.

5. Discussion

The power-law formalism based on a Taylor approximation provides a
general framework for modeling complex systems. In this paper, we have
suggested that a power-law derived by a least-squares minimization criterion is
a valid alternative to the classical formulation. The power-law derived using
this alternative criterion has several advantages. First, we are approximating
the target function over a whole interval that can be chosen at will. This is
convenient, since it allows improving the goodness of the representation in the
most relevant range of the variables. For example, we have shown that some of
the limitations of the power-law approximation (such as the overshoot of the
rate-laws, which are usually saturating [24]) can be to great extent overcome
with the new method. Second, the traditional power-law based on a Taylor-like
approach, appears to be the limit of the least-squares approximation when the
width of the optimization interval tends to zero ± i.e., when the interval is just
reduced to the operational point. From a practical point of view, we have
shown (see Fig. 2) that the Taylor approach does almost coincide with the new
one in the case of symmetrical intervals around the operating point. On the
contrary, when the relevant range of the system is not symmetrical around the
operating point, the least-squares method provides a more accurate represen-
tation of the rate-law. Third, the least-squares criterion is directly related to
®tting a power-law from data points. In this sense, if we use experimental data
points the resulting representation is an estimation of the corresponding least-
squares power-law of the actual rate-law. As we have shown, this can be quite
di�erent from the corresponding Taylor power-law.

B. Hern�andez±Bermejo et al. / Mathematical Biosciences 161 (1999) 83±94 91



Application of this new procedure for deriving a power-law representation
of a given system proceeds from the same kind of information than required in
the traditional power-law approach [1±7,9,10,20,25]. Although the ®nal nu-
merical result is di�erent, either the traditional or the least-squares methods for
deriving a power-law approximation will produce the same kind of model, a
GMA or an S-system model, in which the corresponding kinetic-orders and
rate-constants, once evaluated, are considered constant quantities. System

Fig. 3. Steady state prediction for system (8) for di�erent operating points and minimization in-

tervals. The exact solution (continuous line) is displayed together with the Taylor ( ± ± ± ) and the

least-squares (- - - - -) approximations. The vertical grid indicates the points �X20 ÿ L;X20;X20 � U�.
(a) �X20;L;U� � �0:1; 0:05; 0:4�; (b) �X20;L;U� � �0:1; 0:05; 0:8�; (c) �X20; L;U� � �0:3; 0:1; 0:2�; (d)

�X20;L;U� � �0:3; 0:1; 0:6�; (e) �X20; L;U� � �0:5; 0:2; 0:1�; (f) �X20; L;U� � �0:5; 0:1; 0:4�.
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characterization will proceed with exactly the same methodology [9,23], inde-
pendently of the procedure we select for computing the parameters, yielding a
complete steady-state characterization and providing a model for dynamical
simulations. Although we have shown the improvement in the steady-state
prediction in a very simple model, the least-squares power-law is expected to
provide a similar increase in accuracy for large metabolic pathways while
keeping intact all the analytical and conceptual framework of Biochemical
Systems Theory. To develop in detail further implications of this new strategy
for power-law modeling, either in data analysis or in the steady-state charac-
terization and dynamic simulation of a system, shall be the aim of future
research.
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