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Abstract-Physiological characteristics of populations are often described with two types of data 
and with analyses that coexist in mutual independence. One type targets global measures like mean 
and standard deviation, prevalence, incidence, or distributions of weights, sizes, or some physiological 
markers, while the other type describes physiological or metabolic processes in individuals, such as 
growth or the accumulation of a metabolite. The paper describes a methodological framework for 
bridging the gap between the two aspects. It shows how a dynamic model that characterizes the 
accumulation process in individuals and is represented by a set of ordinary differential equations 
can be reformulated as a transformation function that changes the statistical distribution of the 
physiological marker over time. The method and its limitations are illustrated with data describing 
growth and size distributions of loblolly pine (Pinus taeda). @ 2000 Elsevier Science Ltd. All rights 
reserved. 
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INTRODUCTION 

The design of a mathematical model usually starts with two considerations: should the model 

be discrete or continuous, and should it be deterministic or stochastic. The answers to these 

questions lay the ground rules for the types of functions and for the bag of computational tools 

that can be used for analysis. In particular, the decision of whether the model should be deter- 

ministic or stochastic has immediate and far-reaching consequences, since a deterministic model 

usually leads to differential equations, whereas a stochastic model usually falls in the domain of 

statistics. 

Of course, there is overlap. Stochastic systems can be rather predictable-one only has to 

think of ideal gases in which molecules follow complicated, stochastic paths, while the overall 
behavior of the gas follows the quite simple, deterministic rules that are known as “gas laws.” 

On the other hand, some completely deterministic systems can yield unpredictable, “chaotic” 

behaviors that are best analyzed with statistical means. 

Typical approaches for dealing with true combinations of stochastic and deterministic effects 

are encountered in the area of time series and stochastic processes (e.g., [1,2]). The stochastic 
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component is often modeled as white or colored noise, while the deterministic time trend com- 

ponent may be an algebraic function, a difference equation, or a differential equation. In cases 

of simple algebraic trends, the preferred strategy of analysis is separating the deterministic com- 

ponent from the superimposed random effects and analyzing the random effects with specially 

developed statistical methods. In the case of differential equations, randomness can be incorpo- 

rated in parameters, the initial or boundary values, or in random functions, which may model 

fluctuating inputs. The result is a stochastic differential equation, whose analysis can be quite 

difficult (for further discussion, see, e.g., [3]). 

The present paper also falls in the intersection between deterministic and statistical modeling, 

but it takes an approach that is different from standard time series analysis. Of interest here is a 

situation where a random variable is subject to a potentially complicated trend which is given as 

a system of nonlinear ordinary differential equations. The question asked is how the distribution 

of the random variable, which is known at some initial time point, changes over time with respect 

to mean, variance, and shape. It is demonstrated that, by reformulating the problem, stochastic 

differential equations can be avoided, and the distributional time trends can be evaluated with 

an analysis of ordinary differential equations instead. 

The method will be illustrated below with the prediction of size distributions of trees in an 

even-aged stand. Given the size distribution of young trees and the growth function for the 

species, the method yields projections of size distributions of older trees. As a rather different 

example that could be analyzed with the proposed method, consider a group of workers subjected 

to an incident of radiation exposure. Over the years, the amount of radiation decreases, and under 

simplifying assumptions, this decrease can be expected to be some monotonic function of time. 

Studying a cohort of these workers at some point in time, one will most likely find a distribution 

of radiation, with some workers showing lower and other workers higher values. The questions 

one can ask in the present context are: “what will the distribution of radiation be several years 

in the future?” or “what was the distribution of radiation shortly after the incidence?” 

The two examples have in common that a deterministic process drives the development of a 

probability or frequency distribution. If the process is mathematically simple, the problem is 

well known in statistics, even though it is usually presented with the probability function as the 

focus. The statistical textbook approach (e.g., [4]) studies the distribution of a random variable 

which itself is a function of another random variable with a known distribution. The illustrative 

example given by Mood et al. [4, p. 2001 is a logarithmic transformation of a beta distribution 

with parameters a and b (b = l), which results in an exponential distribution with parameter a. 

In general, if the original random variable is denoted as X and if the new random variable Y is 

a differentiable, monotonic function Y = v(X) with inverse (p-‘(Y), then the density of Y is 

fY(Y) = I+(Y)1 fx (@(Y)) * 

Comparing this result to the question posed in our context, the relationship between distribu- 

tions does not explicitly show dynamic features. To introduce these, consider how the dynamical 

process, during a given, fixed time period 7, shifts values of the random variable X to new values 

of Y. For instance, if the application is the growth of trees according to a known, deterministic 

growth process, select a time period, such as one year, and study how much each tree of the 

cohort grows within this year. Evidently, the growth function maps the size distribution of year 1 

into the size distribution of year 2; each member of the original distribution fx has become a 

unique member of the shifted distribution fy. The shift constitutes some function v(X), which 

is not a function of time per se, even though time, implicitly through the magnitude of the shift, 

determines the numerical characteristics of the function (see Figure 1). Under appropriate adap- 

tations, the distribution of Y can therefore be computed from the distribution of X according to 

transformation (1)) presented above. 
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Figure 1. The function cp, which implicitly depends on the magnitude of the time 
shift 7, maps all admissible values of the random variable X = “size at time tl” onto 
corresponding values of the new random variable Y = “size at time t2.l’ 

If the dynamic process is given as a set of differential equations, the problem is the same in 

concept, but it is not obvious what the function v(X) is. To explore this question, let us begin 

with the simple example of a dynamic process that is described by a single differential equation 

X = Q(X), xc = X(t,). (2) 

After a time period of T time units, the value of the state variable X at time t has changed 

from X(t) to X(t + r), and this is true for any admissible value X(t) and any admissible time 

shift 7. In particular, if X(t) is the random variable of interest at time t, then the corresponding 

random variable r time units later is Y = X(t + 7) ( see Figure 1). The new variable Y satisfies 

exactly the same differential equations, with the only exception that its time scale is shifted by T 

time units. For instance, we can write 

P = Q(Y), Yo = Y(to) = X(to + T). (3) 

When we solve equations (2) and (3) simultaneously, we obtain two copies of the growth process, 

shifted by T time units. 

The transformation of the distribution of X into the distribution of Y, according to equa- 

tion (l), requires the term $$, if one recalls X = p-l(Y). This term is readily obtained from 

equations (2) and (3) as 
dX dX dt Q’(X) 
z=dtdY=9(Y) (4) 

Equation (4) constitutes a new differential equation in which Y is the independent variable and t is 

eliminated. It describes how X changes as a function of Y. Multiplication of the term @(X)/Q(Y) 

with the probability density fx(z) thus yields fu(y). Equation (4) is initialized with Y(tc) as 

the initial value of the independent variable and X(tc) as the value of the state variable. 

It is convenient in this context to formulate the density as the solution of a differential equation. 

This is possible in numerous ways, and only two are mentioned here. As a first alternative, 

densities can be recast exactly as systems of differential equations in which the first variable is the 

density or cumulative of interest and the other variables are auxiliary variables that are generated 

in the recasting procedure (e.g., [5,6]). Th e second alternative is an approximate representation 

in the form of a socalled S-distribution. In this distribution, the dependent variable is the 

cumulative and the independent variable is the random variable. The S-distribution has the 

form 
dF 

f=,,= cY (F 9 - Fh) , FWo) = Fo, (5) 
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where Q is a positive parameter that characterizes the spread, g and h (g < h) are real-valued 

shape parameters, and the initial value Fe determines the location. Several articles about this 

distribution have appeared in the recent literature [7-lo], and it suffices to state here that the 

S-distribution closely approximates most of the traditional distributions. 

If the original random variable is S-distributed, and if it changes dynamically according to the 

process in equation (2), the shifted random variable has the distribution 

dF Q(X) dY = a (Fg - Fh) -, 
WY) 

(cf. equation (l)), which is solved 

dX 

dY= 

dY 

dY= 

F(E) = Fo 

simultaneously with the equations describing the shift, namely, 

Q(X) 
m’ 

X0 = XPO), 

(7) 

I, Ys = Y(ts) = X(to + r). 

The same procedure holds if the distribution and the dynamic process are modeled by systems 

of differential equations. If the variable of interest is Xi, then the corresponding variable of the 

shifted system is Yi. Simultaneous solution of both systems produces in Xi and Yi two copies 

of the growth process, shifted by r. Division of the entire system by the equation for Yi yields 

the required term $$. The technical details of this general procedure are given elsewhere, along 

with some illustrative examples [ll]. 

ANALYSIS OF TREE GROWTH 

Between 1962 and 1989, the USDA Southeastern Forest Experiment Station in Charleston, SC 

measured growth characteristics of trees in even-aged stands of different planting densities. 

In 1989, Hurricane Hugo destroyed these plantations, thereby precluding further measurements. 

A small subset of the data is used as an illustration of the shift method described above. This 
subset contains the measurements of stem diameters at breast height (DBH) of trees with ages six 

through 26 in a plantation of 64 trees, which corresponds to a density of 1,000 trees per acre. 

Only the 25 trees surviving throughout the observation period are considered in this illustrative 

analysis. Their growth curves are shown in Figure 2. It is noted that the diameters of some trees 

at age six are zero or close to zero, which is due to the fact that these trees had not, or only 

barely, reached breast height at age six. 

Growth of Surviving Trees 

0 
5 10 15 20 25 

Tree Age 

Figure 2. Growth curves of all 25 trees surviving throughout the observation period. 
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Figure 3. DBH measurements of all 25 trees surviving throughout the observation 

period, superimposed with limited exponential growth curves (see text for details). 

Observed and Approximated Size Distributions at Age 8 
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Figure 4. DBH distribution at age six, superimposed with an S-distribution model. 

For comparison, the S-distribution is scaled. 

After investigating several alternatives, it was decided to formulate the underlying growth pro- 

cess with the so-called limited exponential growth function, which in differential form (e.g., (121) 

reads 

W=k(Wf-W), Iv(ta) = Wo. (3) 

This function captures the decreasing growth rate and has only three parameters. A coarse 

parameter estimation with the program CurveFit 7.0 [13] suggested an “average” growth function 

with the parameters LV, = 9, k = 0.1, and the initial value Ws = W(t = 6) = 1.097 at age six. 

The function is shown for several values of I%‘, in Figure 3, superimposed on the observed data. 
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The size distribution was estimated for age eight, when all trees have a positive DBH, as an 

S-distribution with the parameters Q = 17, g = 1.5, h = 1.7, and F(0) = 0.0075 (Figure 4). The 

differential equations describing the desired shifts are thus given as 

(9) 

(cf. equations (6) and (7) with the notation W = X). 

To execute the shift operations, the initial value for the random variable W was taken as the 

value of the growth function for age eight, and the value of the shifted random variable Y for 

ages nine, ten, 11, etc., and also for ages seven, six, and five. In order to obtain the entire dis- 

tribution of the shifted variable, the system was solved twice, once in positive direction and once 

with the independent variable running towards zero. The results exhibit shifts in the locations 

of distributional peaks that are in excellent agreement with the observations (Figure 5; data not 

shown). 

However, it is obvious that the predicted distributions have systematically smaller variances 

than the observed distributions. In fact, the predicted variances decrease over time, while the 

observed variances increase. This is quite interesting since the type of the observed growth func- 

tions necessarily leads to decreases in variance. In general, one can show that monotonic functions 

with increasing slopes (such as an exponential growth process) yield increasing variances, whereas 

functions with decreasing slopes, as is the case here (cf. Figure 3), lead to distributions with de- 

creasing variances (cf. [ll]). Since both the growth process and the distributions are directly 

obtained from the same data set, and since the shift method is a direct mathematical extension 

of an established statistical method, this discrepancy must result from some of the assumptions 

or simplifications that underlie the proposed method or the dynamical growth model. 

The most likely culprit is the considerable variability among the growth functions. Studying 

the individual growth patterns in Figure 2, it is evident that some trees are growing much faster 

than others. In particular, the size increments, given a particular size, do not exclusively depend 

on the size but are themselves distributed, thereby violating the assumption that the growth 

process is appropriately described by the ordinary differential equation above. There is no easy 

way to remedy this problem. Since the trees in the study are even-aged, age itself cannot be the 

source of size variation. In fact, from a biological standpoint, all trees in the plantation are as 

similar as can be achieved in a field study of the given type. Competition between neighboring 

trees, individual genetic make-up, and intraspecies variation are some of the likely causes, but 

these are difficult to capture in a simple model. 

One alternative to constructing a more comprehensive model would be to abandon the proposed 

method entirely and to construct a stochastic model in which a tree of a given size would grow by 

a certain increment with a certain probability which could presumably be estimated from data as 

in Figure 1. Another alternative is to apply the shift method to the initial size distribution many 

times, each time using a slightly altered growth function. For the example under investigation, 

variation in the final size parameter I&‘, results in growth curves that include the curve used 

before, but also slower growing and faster growing trees (see Figure 3). By weighting, according 

to observed frequencies of occurrence, and then adding the distributions that result from shifting 

the original distribution by means of these different growth functions, one obtains an impression 

of the impact of variability in growth parameters on the trend in distributions. In some sense, this 

procedure corresponds to separately shifting subsamples from the original distribution that are 

characterized by the same growth parameter IV,. As an example, Figure 6 compares the observed 

tree sizes with the distribution that results from the shift method with superposition. It is noted 
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Shifted Size Distributions 
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Figure 5. The DBH distribution at age eight is shifted toward other ages, using a 
limited exponential growth function with an average final value W, = 9. 

Observed and Predicted Size Distributions at Age 16 
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Figure 6. The DBH distribution at age eight is shifted toward age 16, using limited 
exponential growth functions that differ in their final values (Wf = 6,8,10,12,14). 
The resulting densities are weighted according to approximate occurrence, added and 
multiplied with 25, in order to facilitate comparison with the observed distribution 
of 25 sizes (shaded area). 

that the resulting density is not quite smooth, because only five cohorts were superimposed. A 

finer division would result in a smoother appearance. 

DISCUSSION 

If a random variable accumulates or deteriorates in a more or less deterministic and monotonic 
fashion, the method described here can be used to predict with relative ease how the distribution 
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of a random variable changes location, spread, and shape over time. The method is a numerical 

generalization of the well-established statistical technique of transforming distributions of random 

variables and merely requires an algorithm for solving ordinary differential equations. If the 

accumulation process does not show too much variation in itself, the method appears to be 

reliable. In particular, the method can be used for theoretical studies, including best case and 

worst case analyses and the simulation of what-if scenarios. While the method may at first seem 

to be cumbersome, it has been implemented in its entirely in a relatively simple Mathematics 

program which requires specification of the accumulation process, the original distribution, and 

the shift interval, and subsequently computes entire trends in a few minutes. 

The method has been applied here to a data set in which both the growth phenomenon and 

the distributions over several years were available. This data set provided a good opportunity 

for illustrating the method as well as its limitations. Another example that has been analyzed 

elsewhere is the accumulation of mercury in king mackerel (Scomberomorus cavalla); in this case, 

distributions were available but the accumulation function itself was not [ll]. The method has 

also been used to demonstrate that dynamic shifts can reverse the skewness of distributions and 

that it can transform unimodal distributions into bimodal distributions, a fact that has been 

observed in diverse contexts (e.g., [14-171; see also [ll]). 

As any method, the shift method has limitations. Most significant may be the situation in 

which the accumulation process in itself shows variability that cannot be ignored. In such a 

situation, the method still predicts the trend in modes, but tends to underestimate the spread in 

the shifted distributions. One approach of dealing with this situation is executed here. It yields 

results similar to those observed and allows us to separate variability in growth parameters from 

the overall trend caused by the growth process itself. 

If an application is suited for the proposed method, the method has certain advantages over 

standard techniques of time series analysis. It is very flexible with respect to the distribution of 

the random variable and with respect to the time trend. In fact, except for monotonicity, there 

is hardly a requirement on the system of differential equations that describes the time trend or 

the initial distribution. Yet, the entire analysis can be executed with widely available algorithms 

for solving ordinary differential equations. For simple trends with superimposed white noise, this 

method is probably overly complicated, but in situations that do not fall in any of the typical 

classes of trends and stochasticity, the proposed method appears to be a good alternative. 
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