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SUMMARY

Receiver operating characteristic (ROC) curves provides a method for evaluating the performance of
a diagnostic test. These curves represent the true positive ratio, that is, the true positives among those
a�ected by the disease, as a function of the false positive ratio, that is, the false positives among the
healthy, corresponding to each possible value of the diagnostic variable. When the diagnostic variable is
continuous, the corresponding ROC curve is also continuous. However, estimation of such curve through
the analysis of sample data yields a step-line, unless some assumption is made on the underlying
distribution of the considered variable. Since the actual distribution of the diagnostic test is seldom
known, it is di�cult to select an appropriate distribution for practical use. Data transformation may
o�er a solution but also may introduce a distortion on the evaluation of the diagnostic test. In this
paper we show that the distribution family known as the S-distribution can be used to solve this
problem. The S-distribution is de�ned as a di�erential equation in which the dependent variable is
the cumulative. This special form provides a highly �exible family of distributions that can be used
as models for unknown distributions. It has been shown that classical statistical distributions can be
represented accurately as S-distributions and that they occur in a de�nite subspace of the parameter
space corresponding to the whole S-distribution family. Consequently, many other distributional forms
that do not correspond to known distributions are provided by the S-distribution. This property can be
used to model observed data for unknown distributions and is very useful in constructing parametric
ROC curves in those cases. After �tting an S-distribution to the observed samples of diseased and
healthy populations, ROC curve computation is straightforward. A ROC curve can be considered as
the solution of a di�erential equation in which the dependent variable is the ratio of true positives and
the independent variable is the ratio of false positives. This equation can be easily obtained from the
S-distributions �tted to observed data. Using these results, we can compute pointwise con�dence bands
for the ROC curve and the corresponding area under the curve. We shall compare this approach with
the empirical and the binormal methods for estimating a ROC curve to show that the S-distribution
based method is a useful parametric procedure. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Receiver operating characteristic (ROC) curves are widely used in clinical practice to assess
the performance of a diagnostic test [1–3]. A ROC curve represents the joint values of the
true positive ratio TPR (sensitivity) and false positive ratio FPR (1-speci�city) for each value
of the diagnostic variable. In some cases, the diagnostic variable is a discrete score and the
resulting ROC curve is a step-line. In other cases, the diagnostic variable is continuous and
would correspond to a continuous ROC curve [3–6].
In the case of a continuous diagnostic test one may ask if it would be possible to obtain

a continuous ROC curve from the sample data. An obvious method involves the assump-
tion of a given distribution accounting for the statistical behaviour of the test variable in
the healthy and diseased populations. The most popular alternative is considering normal or
log-normal distributions [6–8]. This strategy yields appropriate results so long as the se-
lected distribution is appropriate [6; 7]. In practice (see for instance Sorribas et al. [9]),
the search for an appropriate distribution is a subjective and uncertain process. This is a
potential drawback for this approach, unless enough information exists on the underlying
distribution.
To overcome these problems, di�erent non-parametric methods have been suggested. The

most popular one is based on a step-by-step computation of the TPR and FPR on the observed
test values [1; 2]. In such cases, the resulting curve is a step-line that approximates the
theoretical ROC curve. Using this methodology, the area under the empirical ROC curve
(AUC) can be calculated as the Mann–Whitney version of the two-sample rank-sum statistic
of Wilcoxon [10; 11].
An alternative approach is based on a kernel estimation of the density function. The ROC

curve is computed using the estimated densities. The algorithm known as ROC&ROL can
be used for performing the required computations [12]. In this method, no assumption is
needed for the underlying distributions and a smooth ROC curve can be derived from the
kernel estimates of the corresponding densities. A minor disadvantage of this approach is the
need to select an appropriate kernel function and the corresponding bandwidth for an accurate
result. With an appropriate choice, the resulting ROC curve is a good estimation of the actual
one.
The binormal method [4; 5; 13] provides another interesting solution. This method is based

on the assumption that the ROC curve has a binormal form. This is equivalent to assuming
that some monotonic transformation of the test variable produces a normal distribution for
both populations. ROC curve estimation is obtained by a maximum likelihood procedure on
the transformed z-scores. The program ROCKIT implements a quasi-ML procedure (algorithm
LABROC 5) for computing the required ROC curve using this approach [5]. The binormal ap-
proach produces appropriate ROC curves in many applications, although it may be inaccurate
in some special situations [14].
Although all those methods are appropriate in most cases, it would be interesting to in-

vestigate if a more general approach can be de�ned. As a goal, such a method should skip
the assumption of a particular distribution, it should solve the potential problems related
to non-parametric and semi-parametric methods, and it should provide a continuous ROC
curve.
A solution would be to use a su�ciently general family of distributions that could ac-

count for the actual unknown distributions of the diagnostic test in healthy and diseased
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populations. Ideally, such a family should include as particular cases as many classical dis-
tributions as possible. Besides, it would be desirable that this family could account for distri-
butions that do not correspond to any of the classical ones. Although some of such families
actually exist [15–17], they are often too complicated for practical use. An exception may be
the S-distribution family. The S-distribution is de�ned as a di�erential equation in which the
cumulative is the dependent variable [18]. This provides a useful family of distributions that
contains most continuous unimodal distributions as special cases. Furthermore, known distribu-
tions occur in de�nite regions of the S-distribution parameter space but they do not �ll all the
theoretically possible combinations [18]. Therefore, S-distributions provide an in�nity of new
models di�erent from the classical distributions. This possibility makes the S-distribution an
interesting framework for data analysis [9; 19; 20]. We shall see that it is also an appropriate
tool for ROC curve estimation.
In this paper we shall present the application of the S-distribution to the computation of

ROC curves showing that no previous assumption, other than being unimodal and contin-
uous, is needed on the underlying distributions. First, we shall brie�y review the idea of
S-distribution and the method for deriving an appropriate S-distribution for a given data set.
Second, we shall discuss how to compute a ROC curve and its corresponding pointwise con-
�dence bands using the �tted S-distributions. Furthermore, we shall see that computation of
the area under the ROC curve (AUC) is straightforward using S-distributions. By simulation
experiments we shall compare our method with the usual empiric (non-parametric) and bi-
normal (semi-parametric) approaches. Finally, we present a couple of application examples
using real data.

2. ROC CURVE COMPUTATION USING S-DISTRIBUTIONS

2.1. Motivation

Diagnostic tests based on continuous clinical variables must deal with a great variety of
distributional forms. It is common that diseased people show highly asymmetrical distributions,
while healthy people tend to follow more symmetrical distributions. Also, it is common to
observe distributions with long tails to the left and a sharp right tail close to zero. Real
examples of these situations are illustrated in Figures 13 and 14. Here, we wish to use clinical
measurements taken on patients during the �rst 24 hours of their admission to intensive care
units (ICU) to predict subsequent events. In Figure 13 worst mean arterial pressure is used to
predict the future need for inotropic agents, and in Figure 14 urinary output is used to predict
acute renal failure.
Although these situations can be studied either by the non-parametric or by the semi-

parametric methods, a parametric description would provide a model for the test variable
in both populations. Such a model can facilitate some computations and it can be used for
di�erent purposes. For instance, a parametric model can be used to generate random samples
that can be used in simulation studies. Also, a parametric model can be useful for discussing
the calibration and discrimination of the diagnostic test.
With this in mind, we shall present a method for computing a ROC curve based on the

S-distribution. The S-distribution is a parametric family that can provide an accurate repre-
sentation of most unimodal statistical distributions. We shall �rst brie�y review the use of
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the S-distribution for data representation. Then we will discuss the ROC curve computation
from the estimated S-distributions.

2.2. Data representation using S-distributions

The S-distribution [18; 21; 22] is de�ned in terms of a di�erential equation in which the
cumulative, F , is the dependent variable [18]:

dF
dX

= �(Fg − Fh); F(X0)=F0; �¿0; h¿g (1)

The density, PDF, is thus de�ned as a function of the cumulative, CDF (F in (1)), and the
random variable does not appear explicitly. For a given value of Xi, the corresponding CDF,
is obtained by numerically integrating (1) from X0 to Xi [18]. Parameters g and h are respon-
sible for the shape of the S-distribution, while parameter � is inversely related to the variance
of the variable. The initial condition F(X0)=F0 determines the location of the resulting distri-
bution. For a given value of X , its PDF can be computed as f(X )= �(F(X )g − F(X )h). For
simplicity, an S-distribution with parameters �; g and h, and initial condition X (F0)=X0, will
be indicated as S[F0; X0; �; g; h]. Technical details for computing quantiles are discussed in the
Appendix.
As de�ned, the S-distribution can accurately represent most of the known unimodal sta-

tistical distributions. Each classical statistical distribution (that is, Normal, Weibull, central
and non-central Student’s t, etc.) corresponds to a point in the S-distribution parameter space
and the resulting representation preserves the limit relationships between variables [18]. Be-
sides this property, the high �exibility of the S-distribution results in a whole new scenario
in which the classical distributions are embedded in a more general framework where other
distributions are possible. This makes the S-distribution a good candidate for data modelling
[9; 19; 20; 22].
S-distributions can be �tted to observed data to obtain an estimation of the underlying

distribution. Di�erent methods for estimating the S-distribution parameters are available in the
literature [9; 19; 20; 23]. For practical purposes, we will use the two-step procedure suggested
by Sorribas et al. [9]. According to this method, we organize the data of a sample of size n
in a histogram in which the total area equals one. The height of the histogram at each class
is taken as an estimate of a PDF value and the corresponding CDF are computed by adding
the PDF values. Taking fi=PDFi and Fi=CDFi we can �t

fi= �(F
g
i − Fhi ) i=1; : : : ; n (2)

using a non-linear �t procedure. Selection of a barwidth is not critical at this step, since the
resulting histogram is used only for obtaining initial estimates for the parameters. In practice,
we can use the barwidth according to the procedure suggested in reference [12]. From this
step, we obtain a �rst estimation of �; g and h. Once these parameters are computed, we
re�ne the estimation by using the S-distribution di�erential equation (1) and a least-squares
procedure that minimizes the sum of squares between the observed and predicted quantile
values. At this step, the previously estimated g and h are taken as �xed values and new
values for � and the initial condition X0 are obtained. For simplicity, a value of F0 = 0:5 is
taken so that X0 is an estimation of the median. Details of this procedure and examples of
its performance can be found in reference [9]. Alternatively, the shape parameters g and h of
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Figure 1. Fitting observed data with S-distributions. Data generated from di�erent distributions are
�tted by an S-distribution. In each case, the sample size is 200. The black line indicates the �t-
ted distribution and the grey line indicates the actual distribution from which data is simulated.
(a) Original distribution S[0:5; 50; 0:1; 0:3; 3], �tted distribution S[0:5; 50:12; 0:097; 0:32; 3:35]. (b) Orig-
inal distribution S[0:5; 50; 1; 1:2; 1:75], �tted distribution S[0:5; 50:12; 0:625; 1:14; 2:13]. (c) Original dis-
tribution S[0:5; 50; 1; 0:6; 7], �tted distribution S[0:5; 49:91; 1:07; 0:67; 9:28]. (d) Original distribution

Normal[100; 5], �tted distribution S[0:5; 99:15; 0:15; 0:64; 2:85].

the S-distribution can be obtained by using the corresponding maximum likelihood estimator
[23]. In such case, � and the initial condition can be obtained using the same procedure stated
above.
Using samples of moderate size, the estimation procedure yields, for each case, an S-

distribution that closely approximates the original distribution (see examples and discussion
on the performance of the S-distribution for data representation in references [9; 19; 20; 23]).
As an example, we generate four random data sets from di�erent distributions (Figure 1). In
the considered examples, only one is generated from a classical distribution (Figure 1(d)). All
the others are generated from S-distributions with no correspondence to known distributions
(Figure 1((a); (b) and (c)). In either case, the obtained S-distributions closely resemble the
actual ones. For practical purposes they can be used as parametric models for each of the
unknown underlying distributions.
Once the corresponding S-distribution parameters are estimated on a given sample, compu-

tation of CDF and quantiles is straightforward (see Appendix). As we shall see, this makes
the S-distribution specially suited for ROC curve estimation from observed data in continuous
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Figure 2. Continuous diagnostic test. The statistical behaviour of X in the diseased (D) and healthy
(H) populations can be represented by continuous statistical distributions. From these distributions a
continuous diagnostic test can be constructed and the corresponding sensitivity and speci�city for a

diagnostic point Xc can be easily computed.

diagnostic tests. The main advantage of this approach is that the resulting S-distribution is a
parametric model that facilitates further computations.

2.3. ROC curve computation from S-distributions

Let us suppose that in the population su�ering the disease (D) the statistical behaviour of a
given characteristic can be represented by a random variable with S-distribution:

S[F0D; X0D; �D; gD; hD] (3)

Let us consider that the same characteristic can be represented by an S-distribution:

S[F0H; X0H; �H; gH; hH] (4)

on the healthy (H) population. For convenience, let us take F0D and F0H equal to 0.5, so that
the initial condition corresponds to the median of each population. Without lack of generality,
we shall consider X0D6X0H. As illustration of a generic case, a typical situation is shown in
Figure 2.
For a given diagnostic point Xc, an individual is classi�ed as positive (+) if X¡Xc. On

the contrary, if X¿Xc the individual is classi�ed as negative (−). In selecting an appropriate
Xc, two properties shall be taken into account: (i) sensitivity, de�ned as the probability of a
correct diagnosis on a diseased individual, and (ii) speci�city, de�ned as the probability of a
correct diagnosis on a healthy individual. According to this de�nition, in Figure 2 sensitivity
can be computed as

sensitivity=P(+|D)=P(X¡Xc|D)=FD(Xc) (5)

that is, it can be interpreted as the corresponding CDF for Xc on the diseased population.
Similarly, speci�city can be computed as

speci�city =P(−|H)=P(X¿Xc|H)=1− FH(Xc) (6)

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1213–1235



ROC CURVE COMPUTATION USING S-DISTRIBUTIONS 1219

Figure 3. Receiver operating characteristic (ROC) curve. The diagnostic variable follows an
S-distribution both in the diseased and healthy populations: (a) probability density functions; (b)
ROC curve. The ROC curve can be seen as a trajectory that is a solution of the di�erential

equation dFD=dFH (see text).

that is, it can be interpreted as the corresponding 1 − CDF value for Xc on the healthy
population. If the diseased population has a distribution shifted to the right of that of the
healthy population then sensitivity will correspond to 1 − FD(Xc) and speci�city to FH(Xc).
As indicated before, for simplicity we shall consider the case of a diseased population with
a distribution shifted to the left of that of the healthy population.
Then, for a given situation in which diseased and healthy populations are represented by

S-distributions, computation of sensitivity and speci�city is straightforward by any of the
available techniques [18; 22]. All we need to do is select a given Xc and compute its corre-
sponding CDF. Since sensitivity and speci�city are dependent on the selected value of X , it is
convenient to represent the change in these quantities as a function of the diagnostic point Xc.
This representation should help evaluate the utility of the considered variable as a basis for
a correct diagnosis. Receiver operating characteristic (ROC) curves represent the probability
of a true positive within the diseased (true positive ratio, TPR) as a function of the false
positive among the healthy (false positive ratio, FPR)(Figure 3). In the case we are consider-
ing, TPR corresponds to FD and FPR to FH. Then, according to (5) and (6), the ROC curve
represents FD as a function of FH, and can be interpreted as the solution of the di�erential
equation

dFD
dFH

=�(FD; FH) (7)

If the random variable in the diseased and healthy populations is represented as an S-
distribution, the ROC curve can be obtained from (1) by taking

dFD
dX

= �D(F
gD
D − FhDD ) FD(X0D)=0:5 (8)

dFH
dX

= �H(F
gH
H − FhHH ) FH(X0H)=0:5 (9)

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1213–1235
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Figure 4. Examples of ROC curve computation from S-distributions. For each example, the �g-
ure on the left represents the PDF for each population. The �gure on the right represents
the corresponding ROC curve. (a) Diseased population S[0:5; 100:0; 1:0; 1:0; 2:0], healthy population
S[0:5; 105:0; 0:5; 1; 2], AUC 0.686199. (b) Diseased population S[0:5; 100:0; 0:2; 1:7; 3:2], healthy popula-
tion S[0:5; 110:0; 0:5; 1:3; 2:0], AUC 0.831128. (c) Diseased population S[0:5; 100:0; 0:2; 1:3; 3:2], healthy

population S[0:5; 104:0; 0:5; 0:6; 2:0], AUC 0.749436.

and obtain �(FD; FH) in (7) by dividing (8) and (9). After that, equation (7) can be written
as

dFD
dFH

=
�D(F

gD
D − FhDD )

�H(F
gH
H − FhHH )

(10)

with appropriate initial conditions (see Appendix). These initial conditions can be obtained af-
ter selecting a starting value Xs for X , and computing the corresponding FD(Xs) and FH(Xs).
These values are then used as starting values for integrating (10) and compute the corre-
sponding ROC curve using FH =1 as a �nal value of the integration procedure. Although
this approach requires numerical integration, it can be easily performed by using any stan-
dard mathematical package like Mathematica or Mat-Lab. Alternatively, all computations
can be performed in PLAS, a computer software specially designed to simulate power-law
models [24]. We have developed a Mathematica package that can perform all the required
computations automatically. All results in this paper are obtained using this package. Exam-
ples of ROC curve computation using S-distributions as models for the underlying statistical
distributions are shown in Figure 4.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1213–1235
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2.4. Pointwise con�dence bands for the ROC curve

Con�dence bands for ROC curves can be obtained in di�erent ways [2; 12; 25–29]. The
methodology suggested by Zou et al. [12] is particularly suited for computing pointwise
con�dence bands for the ROC curve estimated by using the S-distribution method. We shall
brie�y reproduce this method here to show how it can be adapted to the case of S-distribution
based computations. Given a value p=FPR, the goal is constructing a con�dence interval
for the q̂=TPR obtained in the ROC curve. As suggested by Zou et al., it is convenient
to use a logit transformation and compute the corresponding con�dence interval in logit-
space. Once obtained, an inversion of the logit transformation yields the required con�dence
interval for q̂. If v̂= logit(q̂)= log(1=(1 − q̂)), an estimation of the variance of v̂ can be
obtained as

s2(v̂) ≈
1
m �̂(t)

2p(1− p) + 1
n q̂(1− q̂)

q̂(1− q̂)2 (11)

In this equation, �̂(t)= f̂D(t)=f̂H(t) and q̂= F̂D(t) with t= F̂
−1
H (p). Since the PDF for a given

value t of X , in the case of an S-distribution, corresponds to �(F(t)g − F(t)h), �̂(t) can be
expressed in our case as

�̂(t)=
�D(q̂gD − q̂hD)
�H(pgH − phH) (12)

where the corresponding parameters are those obtained by �tting an S-distribution to the
corresponding samples of n diseased and m healthy subjects. For a con�dence (1 − �), the
corresponding interval for v̂ is

v̂± z1−�=2s(v̂) (13)

The desired con�dence interval for q̂ is obtained as logit−1(v̂± z1−�=2 s(v̂)). The resulting
interval is adequate except for extreme values of p. The denominator of (11) becomes zero
when p→ 1⇒ q̂→ 0 and when p→ 0⇒ q̂→ 1. In those cases, s2(v̂)→∞ (see examples of
this situation in Figures 7–13.

2.5. Examples of ROC curve estimation using the S-distribution method

The performance of this method can be tested with some examples. Results in Figure 5 il-
lustrate the di�erent steps of our method. In this example, we compare the resulting ROC
curves obtained with the empirical and the S-distribution methods on simulated data from
known distributions. First, we de�ne a distribution for the test variable in the diseased and
healthy populations. Then, random samples are obtained for each case and the correspond-
ing S-distributions are �tted (Figure 5(a) and (b)). A ROC curve is then computed using
these estimated S-distributions as parametric models. Finally, the con�dence bands are ob-
tained. The estimated ROC curve using the S-distribution method is compared with the ROC
curve obtained by the non-parametric procedure. It can be seen that the S-distribution re-
sult is close to the actual ROC curve and that the con�dence bands contains the actual
curve.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1213–1235
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Figure 5. ROC curve estimation from observed data. Samples are obtained from normal
distributions: (a) diseased population N(100,5), sample size n=200; (b) healthy population
N(105,5), sample size n=200. In (a) and (b) the data histograms are compared to the �t-
ted S-distributions. The resulting S-distributions are: (a) S[0:5; 99:8796; 0:28489; 0:84811; 1:9705]; (b)
S[0:5; 104:634; 0:283396; 0:805393; 1:84707]; (c) The theoretical ROC curve (grey line) is compared
with the empirical ROC curve (step line) and with the S-distribution ROC curve (black line). The

dashed lines indicate the 95 per cent con�dence bands computed as indicated in the text.

In a second example, we select two normal distributions as underlying distributions for the
two populations and generate a set of di�erent simulations. Representative results are shown
in Figure 6. The results obtained show that the con�dence bands and the ROC curve are
meaningful when compared to the actual ROC curve. Also, it can be appreciated that the S-
distribution approach yields a smooth ROC curve that is more realistic than the empirical step-
line. Since we use samples of size=50 for both populations, data variability is an important
factor to be considered. As it appears in Figure 6, in some of the data sets data variability
results in inaccurate ROC curves for both the empirical and the S-distribution methods. The
area under the ROC curve (AUC) is an indicator of the test performance and it can be used
to compare the results of di�erent methods on the same data set. In the next section, we
shall discuss how to compute the AUC using the S-distribution approach and then we shall
compare this method with the empirical approach. Additional examples of the performance
of the S-distribution method for computing ROC curves are provided in the simulation study
(see below).

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1213–1235
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Figure 6. Comparison of the empirical method and the S-distribution method for computing ROC curves.
Simulated samples of size n=50 are obtained for diseased and healthy populations. The reference
distributions are: disease N(100,18); healthy N(110,7). The computed ROC curves and the corresponding
con�dence bands are indicated as in Figure 5. The theoretical ROC curve (grey line) is compared with
the empirical ROC curve (step line) and with the S-distribution ROC curve (black line). The dashed

lines indicate the 95 per cent con�dence bands computed as indicated in the text.

2.6. Computation of the area under the ROC curve using the S-distribution method

The area under the ROC curve, AUC, represents the probability of correctly classifying one
diseased and one healthy individual. According to this interpretation, the resulting AUC for

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1213–1235
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a given situation can be used as a measure for evaluating the performance of the stud-
ied variable as a basis for diagnosis. An AUC close to 1 identi�es a variable that will
produce few misclassi�cations. When both populations have the same distribution for the
considered variable no discrimination is possible and we obtain an AUC of 0.5. Between
both extreme situations, the di�erent values allow ranking di�erent variables according to
their performance in classifying diseased and healthy individuals. Although the AUC cri-
teria may be arguable as a method for assessing the performance of a diagnostic test in
all cases, it is widely used in clinical practice and it is an important aspect of ROC
curves.
The AUC can be computed easily as the integral of the ROC curve for FH between 0

and 1. In our case, this may be obtained by adding the equation

dAUC
dFH

=FD; AUC[FH(0)]=FD(0) (14)

to (10).

3. SIMULATION STUDY

3.1. Performance of the S-distribution method compared to the non-parametric and
binormal methods

The performance of the S-distribution method for computing ROC curves can be analysed
by a simulation study. We shall select di�erent distributions as true distributions and gener-
ate random data for each population. Then, each sample will be �tted by an S-distribution
and the corresponding ROC curve and AUC will be computed using the procedure dis-
cussed in this paper. As a reference, the empirical non-parametric method will be used
to compute a step-line approach to the ROC curve. The corresponding AUC is computed
as the Mann–Witney version of the two-sample rank-sum statistic of Wilcoxon
[10; 11].
A comparison of results using both the S-distribution method and the empirical method

is presented in Figures 7–10. In these examples, we show that both methods yield com-
parable results in computing the AUC. In each example, estimated AUC values are com-
pared for a set of 200 data sets. ROC curves estimated using the S-distribution method
and their con�dence bands are included for some representative simulations. According to
this study, we may conclude that the S-distribution method produces AUC values that are
equivalent to those resulting from the empirical method. Since the S-distribution method
produces a continuous ROC curve and a meaningful con�dence band, these results sug-
gest that the S-distribution method can be used instead of the empirical
method.
The binormal method can also be used to obtain a continuous ROC curve. We have com-

pared this method with the S-distribution method in di�erent situations. Figures 11 and 12
present some results in which the binormal method is not appropriate [14]. In those special
cases, the empirical and the S-distribution methods produce reasonable ROC curves, while the
binormal method fails to provide a meaningful result. In the example of Figure 12, the binor-
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Figure 7. Simulation study. The empirical (non-parametric) and the S-distribution methods are compared
using random samples of a given situation in which the underlying distributions are: diseased population
(D) N(100,5); healthy population (H) N(105,5). The top left �gure indicates the two distributions. In
the �gure at the bottom right corner, the AUC results of 200 simulations with sample size of n=50
for each population are presented. Points indicate the AUC computed with the S-distribution (S-D) and
the empirical non-parametric (Empiric) methods. The diagonal line represents equality between both
methods. The vertical and horizontal line indicates the actual value of the AUC computed from the
theoretical distributions (AUC=0:759). Results of 10 simulations out the 200 are included as examples
of the results. The labelling of the axes is the same as in preceeding �gures and is omitted for clarity.

mal method produces almost equivalent AUC values when compared with the other methods.
However, a close look at the ROC curves show that this approach is inadequate in those
cases.
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Figure 8. Simulation study. The same conditions as those of simulations in Figure 7 are used. In this
case, the sample size is n=100 for each population.

3.2. Application of the S-distribution ROC computation method to actual data

As a �nal example, we have applied the S-distribution ROC computation method to a set
of data collected on a database of the Intensive Care Unit (ICU) at the Hospital Arnau de
Vilanova (University of Lleida, Spain). A total of 585 patients (1996–1998 period) that satisfy
the inclusion criteria (stay longer than 72 hours) are studied.
First we evaluate the use of the worst mean arterial pressure (MAP mmHg) during the

�rst 24 hours of admission into ICU as a diagnostic test to identify those patients that would
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Figure 9. Simulation study. The underlying distributions are: diseased population (D)
S[0:5; 102; 0:1; 0:2; 12]; healthy population (H) S[0:5; 105; 0:5; 1; 8]. With these distributions the
value of the AUC is 0.721. The simulation study is made with a sample size of n=100 for each

population. Results are indicated as in Figure 7.

need inotropic agent therapy during the next 48 hours. In the considered sample, 174 patients
of the 585 needed inotropic therapy (disease group). The resulting S-distributions for each
subpopulation and the corresponding ROC curve are shown in Figure 13. Data from each
subpopulation are well described by the �tted S-distributions, yielding a smooth ROC curve
with an AUC of 0.826.
As a second example, we evaluate the performance of the urinary output (cc=day) of the �rst

24 hours of admission in ICU as a diagnostic test for acute renal failure in the next 48 hours. In
the studied sample, 105 patients of the 585 had renal failure within this period (disease group).
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Figure 10. Simulation study. Diseased population (D) S[0:5; 100; 0:1; 0:2; 30]; healthy population (H)
S[0:5; 103; 0:1; 0:5; 30]. With these distributions the value of the AUC is 0.671. The simulation study is

made with a sample size of n=100 for each population. Results are indicated as in Figure 7.

The resulting S-distributions for each subpopulation and the corresponding ROC curve are
shown in Figure 14. In that case, the disease group presents a highly asymmetric distribution
as a consequence of patients with low urine output. S-distributions can accurately represent
this situation and compute the resulting ROC curve. The situation presented in this example,
with a highly asymmetric distribution starting at zero, is representative of the potential of this
technique. Such a situation arises for many clinical parameters and may be di�cult to model
using traditional distributions. In that case, the S-distribution is a good alternative.
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Figure 11. Simulation study. The empirical (non-parametric), binormal (semi-parametric) and the
S-distribution methods for computing ROC curves are compared using random samples of a given
situation in which the underlying distributions are: diseased population (D) S[0:5; 100; 0:1; 0:02; 120];
healthy population (H) S[0:5; 105; 0:1; 0:02; 120]. The top left �gure indicates the two distributions. In
the �gures at the bottom, the AUC results of 200 simulations with sample size of n=100 for each
population are presented. Points indicate the AUC computed with the S-distribution (S-D), empir-
ical non-parametric and binormal methods. The diagonal line represents equality between methods.
The vertical and horizontal line indicates the actual value of the AUC computed from the theo-
retical distributions (AUC=0:871). Results of eight simulations out the 200 are included as exam-
ples of the results. Results are indicated as in Figure 7. Dots are used to identify the ROC curve

obtained with the binormal method.
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Figure 12. Simulation study. The empirical (non-parametric), binormal (semi-parametric) and the
S-distribution methods for computing ROC curves are compared using random samples of a given situ-
ation in which the underlying distributions are: diseased population (D) S[0:5; 102; 0:1; 0:2; 12]; healthy
population (H) S[0:5; 105; 0:5; 1; 8]. The corresponding AUC is 0.721. Sample size for simulations is

n=100 for each population. Results are indicated as in Figure 11.

4. CONCLUDING REMARKS

Although other existing methods provide a useful solution to estimating the ROC curve,
ROC computation using the method suggested in this paper has several advantages. First,
it provides an estimation of the underlying continuous distribution. This estimation, an S-

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1213–1235



ROC CURVE COMPUTATION USING S-DISTRIBUTIONS 1231

Figure 13. Worst mean arterial pressure (MAP) as a diagnostic test for the need of inotropic therapy.
(a) Patients that needed inotropic therapy. Estimated S-distribution S[0:5; 0:83; 42:62; 1:085; 1:189]. (b)
Patients that did not need inotropic therapy. Estimated S-distribution S[0:01; 0:01; 73:78; 1:4025; 1:549].
(c) Comparison of adjusted distributions. (d) S-distributions ROC curve (continuous line) and 95 per
cent con�dence bands (dashed lines) are shown. The step line corresponds to the empirical ROC curve.

distribution, can be used easily for computing quantiles and estimating the corresponding ROC
curve. Second, the resulting ROC curve is smooth and its computation is straightforward from
the estimated distributions. This method takes advantage of the S-distribution ability for data
representation, yielding a useful ROC curve. Our simulation results show that the S-distribution
method produces accurate ROC curves when compared to the expected ones. A complementary
advantage of deriving a continuous ROC curve is the possibility of computing the TPR for
each value of FPR. With that, S-distribution ROC curves can be used for evaluating any
subset of values of the diagnostic test variable. This possibility is an advantage over using
non-parametric approaches.
In this paper we have developed the basic methodology for applying the S-distribution to

the computation of ROC curves, including con�dence intervals and the computation of the
area under the curve. Besides these results, there are some complementary improvements that
can be easily incorporated. For instance, improved con�dence intervals for the ROC curve and
the corresponding AUC could be computed using resampling techniques [26; 27]. The AUC
for two diagnostic tests can then be compared either using the resulting con�dence intervals
or by an appropriate modi�cation of the existing methods [10; 11]. These possibilities will be
developed in a forthcoming paper.
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Figure 14. Urine output at 24 hours as a diagnostic test for acute renal failure. (a) Patients with
acute renal failure. Estimated S-distribution S[0:0001; 0:0001; 0:051; 0:091; 4:09]. (b) Patients without
acute renal failure. Estimated S-distribution S[0:0001; 0:0001; 1:061; 0:9941; 1:173]. (c) Comparison of
adjusted distributions. (d) S-distributions ROC curve (continuous line) and 95 per cent con�dence

bands (dashed lines) are shown. The step line corresponds to the empirical ROC curve.

As a conclusion, we have shown that the S-distribution provides a parametric model for
computing ROC curves based on a continuous diagnostic test and that this approach is a valid
option for computing such curves.

APPENDIX

A1. Quantile computations in S-distributions

A quantile equation for an S-distribution can be obtained as [18]

dX
dF

=
1

�(Fg − Fh) X (F0)=X0 (A1)

This equation can be used for computing the quantile corresponding to a given probability p.
The desired quantile is obtained after numerical integration of (A1) from F0 to p.
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The analytical solution for the quantile equation [22] is an alternative way of computing a
given quantile. In the general case, for a given value of CDF=p, this solution is

Xp=X0 +
p�

��

(
1 +

�p�

�
�[p�; 1; 1 + �=�]

)
− F�0
��

(
1 +

�F�0
�
�[F�0 ; 1; 1 + �=�]

)
(A2)

with �= h− g and �=1− g. � is the Lerch’s trascendent function [30], de�ned as

�[z; s; v]=
∞∑
n=0

zn

(v+ n) s
; |z|¡1; v �= 0;−1;−2; : : : (A3)

The quantile solution indicated in (A2) can take particular forms for some special cases
in the parametric space. These special cases are discussed elsewhere [22]. In practice, (A2)
applies to most relevant cases. Using the analytical quantile solution (A2) it was shown that
an S-distribution with g¡1 has no in�nite left tail. That is, the equation F(X )=0 has a �nite
solution. This property is very important for a correct computation of ROC curves using S-
distributions (see below). For practical purposes, equation (A2) will be used only to compute
values of zero-quantiles in those cases in which g¡1. These zero-quantiles are required for
a correct computation of initial conditions for ROC curve computation. This result is easily
obtained using Mathematica or equivalent programs [22]. Equation (A1) will be used for
computing the required quantiles once the initial conditions are obtained.

A2. Computation of initial conditions

A critical step for correctly computing the ROC curve using the S-distribution method is to
determine appropriate starting points for integrating (10). We shall discuss this problem in
some detail. In practice, the values of gD and gH are critical for an appropriate selection,
since an S-distribution with g¡1 has no in�nite left tail [22]. If for a given probability p, we
denote the quantile solution as F−1(p)=Xp, then g¡1 requires that the equation F−1(0)=Xp
has a solution di�erent from −∞. Considering this result, di�erent cases must be taken into
account:

1. Case I: gD¡1, gH¡1. In this case, we have two zero-quantile values F−1
D (0)=XD(0)

and F−1
H (0)=XH(0). Then:

(a) if XD(0)6XH(0) (Figure A1(a), the starting values are FH =0 and FD(0)=F−1
D

(XH(0)) (case I(a));
(b) if XD(0)¿XH(0) (Figure A1(b), we must �rst compute ps=FH(XD(0)). Then the

starting values are FH =ps and FD(ps)=XD(0) (case I(b)).
2. Case II: gD¡1, gH¿1. Since in this case a solution exists for F−1

D (0)=XD(0) (Figure
A1(c), the starting values are computed as in case I(b).

3. Case III: gD¿1, gH¡1. In this case (Figure A1(d), the starting values are computed as
in case I(a).

4. Case IV: gD¿1. gH¿1. In this case (Figure A1(e)), both distributions have an in�nite
left tail. Since no zero-quantile can be obtained, the solution must be computed by
selecting a su�ciently low value of ps and computing the starting values as in case I(a).
If the left tail is more heavy for the healthy group (Figure A1(f)), it may be more
convenient to select the start point as ps=F(F−1

D (p�)), where p� is a su�ciently small
value. Then the starting values are computed as in case I(b).
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Figure A1. Initial values for ROC curve computation using S-distributions. The choice of an appropriate
initial value for computing the corresponding ROC curve is a critical step. This choice depends on the
value of gD and gH and on the relative situation of the hypothetical zero-quantiles: (a) case I: gD¡1,
gH¡1 and XD(0)¡XH(0); (b) case I: gD¡1, gH¡1 and XD(0)¿XH(0); (c) case II: gD¡1, gH¿1 and
XD(0)¿XH(0); (d) case III: gD¿1 and gH¡1; (e) case IV: gD¿1 and gH¿1; (f) case IV: gD¿1 and

gH¿1. See text for details on the initial values.

As illustration, di�erent examples of ROC curves computed using this strategy are shown
in Figure 4. For practical purposes, all these computations can be performed automatically.
At this stage, we have de�ned a package in Mathematica. In the future, we shall develop a
Visual C++ program for computing ROC curves using this approach.
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