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ABSTRACT: Background: Reference intervals are
a fundamental tool for characterizing the health
status in a given population and play a central role
in defining diagnostic values in clinical applica-
tions.  Estimation of the conditional distribution of
a variable, as the body mass index (BMI), is neces-
sary for providing reference values when there is a
trend as a function of the covariate. 

Subjects and Method: We studied 1453 boys and
young between 5 and 16 years old measured in a
study carried out in the schools of Lleida (Spain).
BMI conditional distributions with age have been
derived using a new parametric method based on
the one proposed by Sorribas et al. [Stat. Med.
(2000) 19:697-713]. This method is based on S-dis-
tributions as a parametric model for the distribu-
tion and uses maximum likelihood estimation of the
conditional distribution.

Results: The methods commonly used for esti-
mating reference curves are based on a smoothing
of sample quantiles using different techniques.

However, these methods do not provide information
on the conditional distribution of the target vari-
able. Our method provides an estimation of such
distribution and the corresponding reference curves
for the quantiles as a function of a covariate, in our
case age. 

Conclusions: The suggested methodology pro-
vides appropriate reference quantiles for the BMI.
Our results allow characterizing the change in dis-
tribution within the age range considered. Besides
describing a raise in BMI with age, we observe an
increase in dispersion around puberty. This must be
considered when using BMI as a diagnostic vari-
able.

KEY WORDS: Standard growth curves. Refer-
ence intervals. Conditional distribution.

INTRODUCTION

Estimation of percentile values – standard
curves – for a variable of interest as a function of a



given covariate is a fundamental tool for defining
appropriate reference ranges of the target variable
in a given population. In many growth studies, the
covariate of interest is age and the dependent vari-
ables are either weight, height (Summika et al.
2001), or other growth-related variables as bone
mineral density (Xu et al. 1997). In all cases, the
main objective is to obtain smoothed curves of the
quantiles. Once obtained, these curves allow to in-
terpolate reference ranges at any desired value of
the covariate. The methods currently used in ana-
lyzing cross-sectional data provide a non-paramet-
ric estimate of the corresponding quantile values.
As a result, we obtain smoothed curve computed
from the sample quantiles without explicit refer-
ence to the variable distribution (Bonellie et al.
1996; Cole et al. 1992,1998; Healy et al. 1998; Pan et
al. 1990; Royston, 1991; Royston et al. 1991; Tango,
1998; Wright et al. 1997). 

Although these techniques provide useful results,
a method for characterizing the conditional distri-
bution of the dependent variable for each value of
the covariate would be more appropriate. With such
a method we would be able of parametrically de-
scribing the trend on the underlying distribution as
a function of the covariate. From these results, com-
putation on quantiles would be straightforward.
Furthermore, we could use the derived conditional
distributions for other purposes. For instance, we
could generate random samples of the target popu-
lation in simulation studies. 

From a practical point of view, the estimation of
the conditional distribution of a biometric charac-
teristic, like weight, height or concentration of a cer-
tain analytic value, could be approached from differ-
ent perspectives. The most commonly used
procedure is to transform the original variable, so
that the resulting variable approaches normality.
Age-related percentiles on the transformed variable
are then obtained by estimating the parameters of
the resulting normal distribution. Using these re-
sults, age-related percentiles on the original vari-
able are finally computed by an inverse transforma-
tion. 

Although this procedure produces good results in
many cases, it has some potential limitations when

applied to the problem we are facing. First, the
same transformation for all the ages can be inappro-
priate or wrong. In such a case, it may be difficult to
derive a consistent transformation and a subse-
quent statistical model that can be used for interpo-
lating reference intervals for any age. Second, there
is no guaranty that a suitable transformation exists
for all ages. As a solution, different semi-parametric
methods based on a Kernel estimation of the densi-
ty function have been proposed and they can pro-
vide some help. However, their implementation and
use are complicated (Rossiter, 1991). Third, inde-
pendently of the method used, the problem of appro-
priately describing the observed trend remains. The
procedure based on a family of distributions known
as S-distribution is an alternative that provides a
practical solution to these problems (Voit, 1992; Voit
et al. 1994, 1995; Balthis et al. 1996; Sorribas et al.
2000). 

The S-distribution is a parametric family of dis-
tributions that can be used as a general parametric
model for univariante data (Voit, 1992). Within this
family, we can obtain a proper S-distribution for the
collected data without the need of any assumption
on the shape and other characteristics of the un-
known underlying distribution. The properties of
the S-distribution family assure that the estimated
distribution is a valid approximation to the true dis-
tribution (Voit, 1992; Sorribas et al., 2002). Besides,
as the S-distribution family can accommodate any
shape in unimodal distributions, it is particularly
appropriated for describing an observed trend as a
function of a covariate (Voit et al. 1994, 1995; Balth-
is et al. 1996; Sorribas et al. 2000). Recently, we de-
veloped a method for estimating standard curves
based on S distributions in cross sectional studies
(Sorribas et al. 2000). This method provided excel-
lent results when compared with the usual non-
parametric methods.

The goal of the present work is to present an im-
provement of this methodology by introducing a
new strategy of defining the groups of age and by
using a novel numerical likelihood estimation
method to obtain the S-distribution parameters. We
show the utility of this approach in the establish-
ment of the reference values (percentiles) of the
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body mass Index (BMI) conditional to age. As a re-
sult, we will obtain a parametric model for the con-
ditional distribution of BMI as a function of age.
This model can be used to interpolate the distribu-
tion of this variable for any age of the studied range
and for computing the required quantiles.  

DATA SET AND METHOD

Subjects
Male children, with age between 5 and 16 years

old, selected from the schools of the city of Lleida
(Spain) have been studied. Determinations of
weight and height for the BMI calculation were car-
ried out by an experienced team, assuring homoge-
neous measurement conditions. Each boy’s age was
calculated from his birth date to the day of measure-
ment. The collection of data was part of a wider
cross-sectional study carried out by the Servei de
Salut Pública de la Paeria in a public health survey
within a joint research project between La Paeria
(Lleida’s City Council) and the Biostatistics and
Biomathematics group of the Departament de Cièn-
cies Mèdiques Bàsiques of the Universitat de Lleida
(Spain). The data were collected between May of
1999 and May of 2000.

Method: The S-Distribution as a parametric
model for univariate and unimodal continuous
random variables

Fitting a distribution to data requires knowing
the underlying distribution. Otherwise, we should
explore a group of distributions, and select the one
that provides a better fit to the observed data. Since
the choice of any of the possible distributions is
somehow arbitrary, we could consider fitting fami-
lies of statistical distributions that include different
particular distributions with specific characteristics
as particular cases (Johnson and Kotz, 1970). How-
ever, these families are too complicated for their
generalized use. Alternatively, the default option
consists on adjusting a normal distribution to the
data after an appropriate data transformation. The
most common method for the reference intervals
calculation, consist on using a Box-Cox transforma-
tion and then to fit a normal distribution to the

transformed data (Horn et al. 1998). 
The family known as S-distribution is a practical

alternative to obtain a parametric model for the da-
ta without the need of assuming a particular distri-
bution. This family is defined by a differential equa-
tion where the cumulative distribution function, F,
is the independent variable (Voit, 1992): 

dF
dX

= α (F g – F h ) F(X0 ) = F0 (1)

with   α > 0 and  h > g . Parameters g and h are
related with the shape of the distribution, while  α
is inversely related with its spread. The initial val-
ue is a parameter of localization. In practice, it is
common to take the median as X0, which corres-
ponds to a value of F0 = 0.5 . The mean, variance or
any desired moment must be computed by numeri-
cal methods as there is not an algebraic expression
relating them to the parameters (Voit and
Schwacke, 1998). In that sense, interpretation of S-
distribution parameters in terms of moments is not
as straightforward as in classical distributions. To
simplify, we will indicate a certain S-distribution as
S[F0, X0 ,α, g,h] .

The main advantage of this family of distribu-
tions is that it offers a parametric model for uni-
modal continuous variables. Classical distributions
can be accurately represented as S-distributions
with well defined parameters. For instance, normal
distributions are represented as S-distributions
with parameters g = 0.690923, h = 2.885386 and 
α = 0.84307σ −1 (Voit, 1992). Furthermore, S-distribu-
tions include distributions that do not correspond to
any of the well-known distributions used in statis-
tics. In that sense, the S-distribution provides a
general parametric model able of fitting empirical
data, even if we ignore the underlying distribution
(Voit, 1992, Sorribas et al., 2000, 2002). 

An important characteristic of this distribution
family is the existence of practically equivalent dis-
tributions with different parameters (Sorribas et al.
2000). If we consider an S distribution
S [ F0, X0 ,α, g, h], the density has a maximum at

Fm = ( h
g )

1h-g
with a value of fm = α (F g

m – F h
m) . Then,

a practically equivalent S distribution can be ob-
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tained by choosing a new value of any of the parame-
ters, say g, and by calculating the new parameters to
have the same Fm and fm values as in the original
distribution. This property allows a great flexibility
since we can modify the parameters of an estimated
distribution obtaining an essentially equivalent dis-
tribution that maintains the adjustment to the ob-
served data. This property is fundamental for the
method that is presented in this work. 

In the next section of this paper we will first out-
line a maximum-likelihood method (MLE) for ob-
taining S-distribution parameter estimates. Next,
we will introduce a modification of our previous pro-
cedure (Sorribas et al., 2000) for obtaining condition-
al distributions using S-distributions as a paramet-
ric model. Then, we will use an example of the body
mass index (BMI) data to demonstrate the utility of
this method. We will also calculate smooth quantile
curves or percentiles based on the S distribution pa-
rameter trend obtained with our method. 

RESULTS

Fitting an S-distribution to observed data  
We can fit an S-distribution to observed data by

using a numeric procedure that provides the maxi-
mum-likelihood estimation (MLE) of the parameters
(Voit, 2000). In the original method, only the shape
parameters g and h were obtained by MLE, while es-
timation of X0 and α requires a complementary
least-squares procedure. Here, we present a new
numeric procedure that provides a MLE for all the
parameters simultaneously. Briefly, this new method
is implemented as follows:

1. Consider the data set: {X1 ,...,Xn}, and a set of
initial values for the unknown parameters:  θ1 =

{F0, X0 ,α, g,h}1. It is convenient to fix a value of
F0 = 0.5 , so that the starting value X0 will be
the median. With that, there are four parame-
ters to estimate.

2. Compute the corresponding value of F(X1 ) = F1

for each data point using the corresponding set
of parameters. To do that, we integrate equa-
tion (1) from  X0 until the desired X1 .

3.Once the F1 values are computed, we can easily
calculate the likelihood as:

L =
n

Π
i=1

f (X1 ) = 
n

Π
i=1

α (Fi
g

– Fi
h)

4. To obtain the MLE estimation, run a maximiza-
tion procedure repeating steps 2 and 3 and
changing the parameter values until a maxi-
mum for the likelihood is reached. We have
used Mathematica© to implement this proce-
dure through the built-in function FindMini-
mum.

Figure 1 shows different examples to appreciate
the performance of this method. In each case, data
have been simulated from a given distribution by a
random generation procedure. Using the numerical
MLE method, we have fitted an S distribution to the
simulated data, obtaining the distribution indicated
by a discontinuous line. In all cases, the method
yields appropriate estimates. The flexibility shown
by the S-distribution to fit data sets with very differ-
ent shapes is a fundamental property that will pro-
vide an appropriate tool for deriving conditional dis-
tributions as a function of a covariate.

Estimating conditional distributions    
Conditional distributions could be estimated for

each age using data corresponding to a given age-
group. However, this procedure would provide the
best fit in each group, but would provide neither a
smooth trend for the whole data set nor a method for
interpolating the conditional distribution between
ages. In order to obtain an appropriate trend, a
method based on S-distributions was suggested (Voit
et al. 1994, 1995; Sorribas et al. 2000). This proce-
dure consists on estimating a tendency in the S-dis-
tribution parameters, so that we can obtain interpo-
lation functions for each parameter. Once obtained,
it is immediate to compute the corresponding condi-
tional distribution for any value of the covariate.
However, although this approach provides good re-
sults in the situations tested (Sorribas et al. 2000),
there are some steps that can be modified to obtain
better results. 

In this paper, we introduce two improvements on
the original method. First, we modify the procedure
for defining the groups of age. Second, we use the
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MLE method indicated above for parameter estima-
tion. Third, we use the property of equivalence be-
tween different S-distributions for obtaining the fi-
nal trend in parameters. 

As a first step, we select the age groups assuring
that intra-group dispersion doesn’t exceed a certain
level. To achieve this, the first group of age is select-
ed beginning with the youngest subject, and in-
cludes subjects that surpass their age in less than a
given value. This value must be adjusted in practice
to assure an adequate group composition. This
choice is somehow arbitrary and must be adjusted
in a problem dependent basis. The goal is to obtain
sufficiently homogeneous groups in terms of the de-
pendent variable maintaining a sufficient number
of individuals in each group. In our case, we shall
use a limit of 0.55 years as we obtain homogeneous
groups and a minimum of 45 subjects in each group.
The second group then begins in the 15th individual
and ends with the individual that surpasses their
age as maximum 0.55 years. The third group begins
in the 30th individual and follows the same rule.
Each resulting group will be represented by its av-
erage age, calculated according to the individuals
included in the group. This strategy assures that
groups are overlapped with a smooth transition
among different groups. Although this strategy in-
creases the number of groups, results are better
than defining age groups a priori. In Figure 2 the
data (2a) and the groups resulting from the referred
procedure (2b) are shown.  

Once the groups are built, we must estimate the
trend in distributions so that a smooth description
can be derived. As indicated above, we shall use a
modification of the method previously described
elsewhere (Sorribas et al. 2000). The reader is re-
ferred to this paper for further details on the under-
lying rationale of this method. The steps for obtain-
ing the desired conditional distributions are:

1. Estimate the median of BMI for each group.
Then we fit a polynomial function to data, us-
ing the mean age of each group as independent
variable. The resulting polynomial is used to
smooth the value of the median of each age
group. These values are used as initial values

of the corresponding S-distribution for each
group.

2. We estimate the parameters α, g, h by MLE for
each age group. With that, we obtain the best
S-distribution for each group. this estimation
must be refined to obtain a smooth change in
distribution providing the best results for the
whole data set.

3. The estimated α values, calculated in the pre-
vious point, are then represented as a function
of age and a polynomial is fitted to this data.
The resulting  polynomial is used to smooth
the values of α in each group.

4. The estimated g values, calculated in point 2,
are represented as a function of age. A polyno-
mial is fitted to this data. The resulting polyno-
mial is used to smooth the values of g in each
group.

5. Using the α, g, h values estimated by MLE as a
reference and the new parameter cvalues esti-
mated by the interpolations made in steps 3rd
and 4th, new h values are recomputed in each
age group, in order to obtain a final distribu-
tion similar to that obtained by MLE. With
that strategy, we will obtain distributions
closed to the optimal MLE with a defined trend
for the initial value and the parameters α, g, h.

6. The h values estimated in the previous point
are finally represented for each age group. A
polynomial is fitted to this data. The resulting
polynomial is used to smooth the h values in
each group. In this step, we obtain new distri-
butions for each group that differ from the op-
timal MLE. However, the resulting set of dis-
tributions show a defined trend that describes
the observed tendency in the whole data set. In
this step, we sacrifice some accuracy in each
group to obtain a smooth descripition of the
overall trend. This is done by a fine tuning of
the distribution of each group to obtain an ap-
propriate correspondence with its neighbor-
hoods.

7. The desired age-specific quantiles are calculat-
ed using the resulting S-distributions in each
age. This distribution is calculated from the in-
terpolation polynomials obtained in the points
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Figure 4. Quantile curves computed from distributions fitted by maxi-
mum-likelihood. The fitting procedure of an S-distribution for each
group provides a non-smoothed quantile curve that reflects the variabil-
ity for each sample. Smooth curves require a readjustment of the
parameters to account for the age-related trend.
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1, 3, 4, and 6.
This algorithm was implemented in a Mathemat-

ica© notebook and the entire process is automatical-
ly computed once the age groups are established.
We are currently working in a C++ program that
will perform all the required computations and that
will be available for public use upon request to the
authors. 

Estimating BMI conditional distribution as a
function of age

The previous procedure has been applied to our
data set. Following this procedure, the interpolation
polynomial for the medians of BMI as a function of
age, Figure 3a, was:

X0(x) = 15.978 – 0.407x+0.0763x2

Using the values of this polynomial, the S-distri-
bution parameters, corresponding to the different
age groups, were estimated by maximum-likeli-
hood. Figure 4 shows the quantile curves corre-
sponding to this estimate. Obviously, results accu-
rately describe the variation in the different groups
without providing a smooth model. In the Figure 5
we can see some examples of the fitted distributions
(continuous curve).

In order to smooth the calculated percentiles, the
parameters α , g, h were smoothed according to the
procedure described above. The conditional distri-
bution of the BMI depending on the age (x) is then
obtained as a S-distribution with parameters:

X0(x) = 15.978 – 0.407x+0.0763x2

α (x) = 4.610– 0.436x+0.0145x2

g(x) = 2.044– 0.250x+0.0119x2

h(x) = 2.634– 0.282x+0.0856x2

Figure 3 (b-c-d) shows the results of the smooth-
ing of the parameters for the entire age range.

As we can see in Figure 5, the loss of fitting
caused by the smoothing (conditioned distribution:
discontinuous curves) is not greatly significant.

Finally, the resulting reference percentiles for
the BMI are computed using the interpolation poly-

nomials. These percentiles can be obtained by using
the inverse S-distribution:

dX
dF

= 
α (F g – F h ) X(F0 ) = X0 (2)

and integrating from F0 until the desired probabili-
ty value (Voit, 1992). The S-distribution parameters
will be selected for each age by using the interpola-
tion polynomials obtained above. The quantile solu-
tion derived by Hernàndez-Bermejo and Sorribas
(2001) can also be used in computing the desired
quantiles as an alternative to numerically integrat-
ing the inverse S-distribution. When applied to the
entire age range, we obtain smooth curves as a
function of age (Figure 6). As a comparison, these
curves are shown together with the sample per-
centiles calculated on each age group. Our proce-
dure produces an interpolation of these sample per-
centiles and provides a way for obtaining the
conditional distribution of BMI for any value of age
within the considered range.

A global assessment of the reference percentiles
in these figures reveals an increasing dispersion for
values of BMI between 10 and 14 years, dispersion
that diminishes in upper groups, from 15 years.
These results are consistent with known results on
the evolution of BMI around puberty (see for in-
stance Wang et al. 1999).

DISCUSSION

The methodology developed in this paper for esti-
mating the trend of change in distribution allows
characterizing the variation of the distribution of
the target variable in the studied population. When
applied to the study of the BMI in a sample of chil-
dren of different ages, the resulting trend describes
the events related to growth between 5 and 16
years, with an increase in dispersion towards obesi-
ty values at ages corresponding to pre-puberty and
puberty stadiums. This is in accordance with other
studies showing the influence of pubertal status on
growth-related variables. The observed trend con-
firms differences between maturation degrees due
to hormonal changes and nutritional habits. These
variations must be taken into account when using

1
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BMI values in assessing the development status of a
child. 

The method proposed in this work is of general
application for estimating the conditional distribu-
tions for variables of clinical or biological interest.
This method can be applied to any continuous uni-
modal variable that shows a trend as a function of a
covariate, not necessarily the age. The S-distribu-
tion based method provides an alternative to using
non-parametric methods, such as bootstrap estima-
tion of the conditional percentiles. Previously pub-
lished results showed that our method produced
comparable results to those obtained by smoothing
methods on sample percentiles (Sorribas et al.,
2000). However, the method developed in this paper
provides additional information, as we obtain a
parametric conditional distribution that can be used
to compute the desired percentiles or for any other
purpose. Extension to include multimodal variables
is under investigation.

A possible improvement of the procedure pro-
posed in this paper consists on using the results of
this method as initial estimates of an algorithm of
maximization of the global likelihood. From this ini-
tial estimation, the procedure must search for the
optimum set of parameters corresponding to the in-
terpolation polynomials used to smooth the parame-
ters as a function of age. A preliminary study of this
new strategy indicates that it may provide some im-
provement of the results of the procedure presented
in this paper, although calculation effort is in-
creased considerably. 
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