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Abstract

The choice of the best-suited statistical distribution for modeling data is not a trivial issue. Unless
a sound theoretical background exists for selecting a particular distribution, one will usually resort to
testing various candidates and select a distribution based on its fit to the observed data. While this is a
legitimate strategy, it is more objective and efficient to define a sufficiently general family that can be
used for this purpose. This approach has a long tradition in statistics, and resulted in various families
of distributions, most notably Pearson’s. Given such a family, modeling a data set requires estimating
the appropriate parameters within this family and assessing the resulting fit. As a contribution to
this methodology, the Generalized S-distribution is introduced here as a new family of distributions
that can serve as statistical models for unimodal continuous distributions. The article begins with a
description of the rationale for defining this family. It then discusses its basic properties and introduces
a numerical procedure for determining appropriate parameters using maximum likelihood estimation.
Finally, the paper illustrates the distribution and methods with several examples.
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1. Introduction and motivation

The search for families of distributions that can be used as models for empirical data has
a long tradition in statistics. The premier example is probably the Pearson family, which
contains a number of distributions as special cases (for details see Pearson and Hartley,
1972). Pearson distributions are based on a differential equation

dy

dx
= y(� − x)

a + bx + cx2 , (1)

where y is the density function. For specific parameter values, one obtains various known
distributions. For example, b=c=0 and a > 0 characterizes the normal distribution. Pearson
type I distributions correspond to b2/4ac < 0 and include the beta distribution. Pearson type
VII distributions correspond to b2/4ac = 0 and c > 0 and include Student’s t distribution.
Pearson type IV distributions, which correspond to 0 < b2/4ac < 1, can represent data
distributions with heavy tails and are useful, for instance, for modeling financial and risk
management data (Nagahara, 1999). A recent illustrative example of using Pearson’s curves
for obtaining a distribution for observed data can be found in Podladchikova et al. (2003).

An alternative method for obtaining a model for empirical data was proposed by Johnson
(1949). Building upon his ideas, a generalized Johnson family was defined as the set of
translation functions comprising any of the forms

Z = � + � log

(
X − �

� + � − X

)
, � < X < � + �, (2)

Z = � + � log

(
X − �

�

)
, (3)

Z = � + � log

(
X − �

�
+
√(

X − �

�

)
+ 1

)
, (4)

where �, �, �, and � are parameters, and Z is the standard normal. In practice, the appropriate
transformation is obtained by finding the density that matches certain moments or by finding
the density that matches certain quantiles (see for instance Hill et al., 1976).

As an alternative to families based on densities, various authors have suggested families
based on quantiles (Turner and Pruitt, 1978; Parzen, 1979; Kamps, 1991; Morgenthaler and
Tukey, 2000; Jones, 2002, 2004).Yet another alternative was presented by Voit (1992), who
proposed a family of distributions known as S-distribution, which has its roots in systems
theory (Savageau, 1982). It is defined as

dF(x)

dx
= �

(
F(x)g − F(x)h

)
, F (x0) = F0, (5)

where F(x) is the cumulative and the parameters satisfy � > 0 and h > g. The initial con-
dition at x0 is equivalent to the F0-quantile. In many applications, F0 is set equal to 0.5 so
that x0 is the median. Interpreting the left-hand side of Eq. (5) as density, one sees that the
density is expressed as a function of the cumulative. This type of functional relationship
will be important in the following sections.
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Simple rearrangement of (5) leads to the alternative form

dF(x)

dx
= �F(x)g

(
1 − F(x)k

)
, F (x0) = F0, (6)

with k > 0, which is better suited for the generalization proposed in the following. Fur-
thermore, this form will be useful for relating the S-distribution with other closely related
representations based on quantiles (see below). For simplicity of discussion, we shall use
F to indicate F(x).

As an example, one obtains the S-distribution representation of the exponential as follows.
The exponential cumulative is

F = 1 − e−�x . (7)

Differentiation of F yields

dF

dx
= �e−�x = �(1 − F), (8)

which exhibits the form of an S-distribution with g = 0 and k = 1. In a similar manner the
logistic distribution

F = 1

1 + e−(x−�)/�
⇒ 1 − F

F
= e−(x−�)/� (9)

can be written in S-distribution form as

dF

dx
= e−(x−�)/�

�
(
1 + e−(x−�)/�

)2 = 1

�
F(1 − F). (10)

The generalized exponential distribution defined by Gupta and Kundu (1999) is also included
within the S-distribution family. In this case, the cumulative is

F = (1 − e−(x−�)/�)�, (11)

and

dF

dx
= �

�
F (�−1)/�

(
1 − F 1/�

)
. (12)

Except for these cases, the S-distribution does not contain other familiar distributions as
special cases, but it has been shown in several analyses that it closely approximates most
traditional distributions. This facility, which applies to classical continuous as well as dis-
crete distributions often with excellent accuracy (Voit, 1992; Voit andYu, 1994;Yu and Voit,
1995), identifies the S-distribution as a rather general means for classifying distributions
and data, not based on the mathematical formulation of densities but on the basis of shape.
Its flexibility, combined with its simplicity of representation, is particularly useful for data
modeling and for the development of novel methods of semi-parametric analysis (Balthis
et al., 1996; Sorribas et al., 2000, 2002).

The S-distribution has some limitations. First, the number of distributions that are ex-
actly represented by S-distributions is limited to the three cases above, and other standard
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Table 1
Exact representation of statistical distributions as GS-, S- or Q-distributions

Distribution GS S Q

� g k �

Uniform (a, b) 1/(b − a) 0 1 0 − +
Exponential (�) � 0 1 1 + +
Generalized
Exponential (�, �,�) �/� (� − 1)/� 1/� 1 + −
Logistic (�,�) 1/� 1 1 1 + +
beta(1, b) b 0 1 (b − 1)/b − +
beta(b, 1) b (b − 1)/b 1 0 − +
F2,m 1 0 1 (2 + m)/m − +
Fn,2 n2/4 (n − 2)/n 2/n 2 − −
All cases, except for the Generalized Exponential and the Fn,2, are included in the Q-distribution, while the
S-distribution only includes the exponential and the logistic as special cases.

distributions, notably the normal, are not subsumed in this form. Second, the S-distribution
family includes only one symmetric distribution, namely the logistic with g = 1 and k = 1.
Third, the S-distribution family does not readily accommodate distributions with extremely
heavy tails, although moderately heavy tails are possible. Finally, S-distributions cannot
model finite right tails, as they appear, for instance, in the Beta distribution.

The S-distribution shows formal resemblance with the Q-distribution family, which is
defined in terms of quantiles (Turner and Pruitt, 1978; Parzen, 1979; Kamps, 1991; Jones,
2002). This family has appeared in various contexts (see for instance Jones, 2004, and
references therein) and can be expressed as:

dx

dF
= 1

�
F−g(1 − F)−�, x (F0) = x0 (13)

with � > 0. Inversion of (13) leads to

dF

dx
= �Fg(1 − F)�, F (x0) = F0. (14)

A number of distributions with analytical cumulative functions can be exactly represented
within the Q-distribution family (see Table 1). However, as in the case of S-distributions,
there are exceptions such as the generalized exponential, which cannot be represented within
the Q-distribution form. Another example is the Fn,2 distribution, which is recast as

dF

dx
= n2

4
F (n−2)/n

(
1 − F 2/n

)2
, F (x0) = F0. (15)

This distribution is close in structure to both the S- and the Q-distributions, but it is not a
special case of either one.

The similarity between S- and Q-distributions and the results shown in Table 1 suggest a
straightforward extension that subsumes both families. It has the form

f (x) = dF

dx
= �Fg

(
1 − Fk

)�
, F (x0) = F0 (16)
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and ameliorates some of the limitations of the parent distributions, while retaining the
advantages of a single, simply structured differential equation. We will demonstrate that this
generalization approximates common univariate distributions with even greater accuracy
than the Q- and S-distributions. Furthermore, it is better capable of representing symmetric
distributions, distributions with finite tails and distributions with very heavy tails. In the
following, we give precise definitions for this new family and discuss its basic properties
and practical benefits for data modeling and analysis.

2. Generalized S-distribution

2.1. Definition

Based on the motivation in the previous section, we define the generalized S-distribution
(GS-distribution) as follows:

Definition 1. The GS-distribution is a continuous, univariate distribution with density

f (x) = dF

dx
= �Fg

(
1 − Fk

)�
, F (x0) = F0. (17)

The admissible parameters for the GS-distribution are constrained by the condition

dF

dx
�0 for F ∈ [0, 1], (18)

which necessitates that g and k be positive (real) in order to avoid indetermination at F = 0.
Similarly, since

(
1 − Fk

)� = 0� at F = 1, it follows that � > 0. According to these results,

Fg
(
1 − Fk

)� �0 for F ∈ [0, 1], which requires � > 0.
If we slightly restrict our considerations to F ∈ (0, 1), then g and � may be any real

numbers. Notable special cases with g = 0 or � = 0 arise when we represent some classical
distributions as exact cases of GS-distributions (see Table 1 and Section 2.3 for details.)
Moreover, negative values of g and � are allowable, and thus the GS-distribution includes,
for instance, Pearson’s type I(J) and I(U) distributions as special cases (see Section 2.5).

Remark 1. The GS-distribution can be seen as a location-scale family. Specifically, x0 is
the location parameter corresponding to the F0-quantile. In many practical cases, it is useful
to set F0 = 0.5, which corresponds to specifying the median as x0. Like the S-distribution,
the GS-distribution emphasizes the median, which is determined by the initial value of the
differential equation, rather than the mean. Nonetheless, the mean of the GS-distribution
can be characterized analytically, as is shown in Appendices B and C.

Parameter � is a scale parameter that plays a similar role as in the S-distribution family
(see Voit, 1992; Voit and Schwacke, 1998). It may be written as the product of a scale
parameter � and a normalizing constant c that depends on g, k and � and renders f a density
(see Appendix D for details), i.e.

� = c(g, k, �)/�. (19)
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The parameters g, k, and � are shape parameters that make this family very flexible in
shape. We shall address this point when we discuss the relationship between GS-distribution
parameters and moments (see Section 2.5).

Remark 2. For a given xi , the corresponding value of F (xi) is obtained by integrating (17)
from x0 to xi . For this purpose, one may use any integrator, such as the NDSolve procedure
in Mathematica. In cases where the right or left tail is finite (see Section 2.6), one must
assure that the integration is terminated at the x value that corresponds to the 0th percentile
(in the case of a finite left tail) or the 100th percentile (finite right tail).

Remark 3. The GS-distribution has five parameters, namely �, g, k, �, and the initial con-
dition x0 for a given F0), while some of the other families, such as the Pearson family or the
Johnson curves discussed in the Introduction, require four or even fewer parameters. In the
GS-distribution, the need for five parameters arises to incorporate the exact cases of the S-
and Q-distributions, and to expand these families to include other special cases such as the
Fn,2 distribution, in the form of a dF/dx equation. Furthermore, as it is shown in Section
2.3, the shape parameters (g, k, �) are required to properly approximate a given distribution
as a GS-distribution. The x0 parameter is required as a position parameter, and � is required
as a scaling parameter (see Appendix D).

Remark 4. The GS-distribution defined in (17) includes the S-distribution family as the
special case �= 1, and the Q-distribution family as the special case k = 1. Furthermore, it is
formally related to the generalized logistic growth function suggested by Tsoularis (2002)
and to families of growth functions proposed by Savageau (1980) and Voit (1990).

2.2. Symmetric GS-distributions

In any symmetric distribution

P (X�x0 − �) = P (X�x0 + �) ∀��0, (20)

where x0 is the median, i.e. F (x0) = 0.5. To derive conditions for symmetry in a GS-
distribution, it is useful to consider the “F .f plane,” where f is plotted against F (Fig.
1). Specifically, the density may be written as fF (p) = f

(
F−1(p)

)
; in other words, the

value fF (p) corresponds to the value of the density at the point x = F−1(p). Defining
P (X�x0 − �) = p, we can thus write

P (X�x0 − �) = p =
∫ x0−�

−∞
f (x) dx =

∫ p

0
fF (F ) dF . (21)

On the other hand, since P (X�x0 + �) = 1 − p, we can write

P (X�x0 + �) = p =
∫ +∞

x0+�
f (x) dx =

∫ 1

1−p

fF (F ) dF . (22)
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Fig. 1. F .f plane. The GS-distribution pdf corresponding to the logistic distribution is expressed as a function of
the cdf. This plane is helpful in discussing the symmetry conditions for any GS-distribution. The shadowed areas
represent the integrals indicated in the figure. Symmetry involves the equality of those areas for any value of p.

Thus, symmetry condition (20) may be formulated generically as (see Fig. 1)∫ p

0
fF (F ) dF =

∫ 1

1−p

fF (F ) dF ∀p ∈ [0, 0.5]. (23)

In the case of a GS-distribution, this corresponds to

�
∫ p

0
Fg
(

1 − Fk
)�

dF = �
∫ 1

1−p

Fg
(

1 − Fk
)�

dF ∀p ∈ [0, 0.5]. (24)

Introducing a change of variable, y = Fk , the area under fF between two values p1 and p2
is

�
∫ p2

p1

Fg
(

1 − Fk
)�

dF = �

k

∫ pk
2

pk
1

y(g+1−k)/k(1 − y)� dy. (25)

Using this result, symmetry condition in (24) becomes

�

k

∫ pk

0
y(g+1−k)/k(1 − y)� dy = �

k

∫ 1

(1−p)k
y(g+1−k)/k(1 − y)� dy. (26)

These integrals correspond to incomplete � functions, which allow us to write the symmetry
condition as

Bpk

(
g + 1

k
, 1 + �

)
= B

(
g + 1

k
, 1 + �

)
− B(1−p)k

(
g + 1

k
, 1 + �

)
. (27)

These results are the motivation for the following theorem.
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Theorem 1. A symmetric GS-distribution is characterized by k = 1 and g = �.

Proof. The incomplete � function has the following property:

Bz(a, b) = B(a, b) − B1−z(b, a). (28)

Hence, with z=pk and taking into account (27), it follows that symmetry in a GS-distribution
requires

B1−pk

(
1 + �,

1 + g

k

)
= B(1−p)k

(
1 + g

k
, 1 + �

)
, (29)

which necessitates

1 − pk = (1 − p)k ∀p ∈ (0, 0.5) (30)

and thus k = 1. Furthermore, one can write the generalized incomplete � function as

Bz1,z2(a, b) = B1−z2,1−z1(b, a). (31)

Hence, if k = 1, the following equality must hold:

B0,p(g + 1, 1 + �) = B1−p,1(1 + �, g + 1). (32)

Symmetry also requires

B0,p(g + 1, 1 + �) = B1−p,1(g + 1, 1 + �). (33)

Thus, for symmetric distributions, one obtains

g + 1 = � + 1 ⇒ g = �. � (34)

Remark. The symmetry condition is easy to understand if one realizes that F and 1 − F

have the same exponent, so that the approach of the density toward 0 is the same in both
tails.

2.3. Approximation of classical distributions as GS-distributions

The GS-distribution contains as exact special cases the distributions indicated in Table 1.
In other cases, particular parameter settings in the GS-distribution provide highly accurate
approximations of traditional distributions. To assess the quality of the GS-, S-, and Q-
distributions approximations, we consider parameters that minimize the Hellinger distance
between two densities

(
	1, 	2

)
:

H
(
	1, 	2

)=
[∫ ∞

−∞

(
	1/2

1 − 	1/2
2

)2
dx

]1/2

, (35)
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Table 2
Parameter values of GS-distribution approximations of classical distributions and corresponding Hellinger dis-
tances H

Distribution � g k � HGS HS HQ

N(0, 1) 1.232 0.8379 1.000 0.8379 4.38 × 10−3 4.30 × 10−2 4.38 × 10−3


2
12 0.304 0.665 0.762 0.921 6.80 × 10−3 3.45 × 10−2 1.34 × 10−2


2
23 0.215 0.722 0.782 0.892 8.10 × 10−3 4.97 × 10−2 1.45 × 10−2


2
12,5 0.233 0.689 0.714 0.903 6.58 × 10−3 6.15 × 10−2 1.42 × 10−2

Weibull (20, 1) 19.02 0.943 1.36 0.676 1.16 × 10−3 6.72 × 10−3 3.12 × 10−3

t5 1.682 1.069 1.000 1.069 7.53 × 10−3 2.43 × 10−2 7.53 × 10−3

t15 1.488 0.893 1.000 0.893 5.47 × 10−3 2.07 × 10−2 5.47 × 10−3

F32,12 4.350 0.686 0.554 1.014 1.33 × 10−3 2.4 × 10−3 6.14 × 10−3

F32,32 5.421 0.723 0.606 1.004 1.52 × 10−3 1.79 × 10−3 5.38 × 10−3

HGS: GS-distribution approximation. HS: S-distribution approximation. HQ: Q-distribution approximation. As
the Hellinger distance measures the distance between two densities, a lower value indicates a better approximation.
Fig. 2 provides some examples of the fit of classical distributions by GS-distributions. 
2

12,5 is the non-central 
2

distribution of 12 degrees of freedom and non-centrality parameter 5.

as described in Voit (1992). In this formulation, 	1 represents the target density and 	2 the
corresponding GS-, S-, or Q-distribution approximation. The Hellinger distance is chosen
here because it is a global measure of agreement between 	1 and 	2. Of course, we could
also use other distances, such as the largest difference (in absolute value) between 	1 and
	2.

As Table 2 indicates, the GS-distribution provides excellent representations of traditional
distributions with fits that are superior to those obtained with the corresponding S- or
Q-distributions. The quality of approximation may be best appreciated in Fig. 2 where we
show the agreement between the cumulatives of classical distributions, their approximations
as GS-distributions, and the corresponding Q–Q plots. Details of the software used for
obtaining the numerical results are provided in Appendix A.

When classical distributions are represented as GS-distributions, limit relationships be-
tween distributions are preserved. A good example is provided by distributions correspond-
ing to a GS-distribution with k=1, which includes the important case of symmetric distribu-
tions. Fig. 3 illustrates some results in the g − � plane for k =1. First, consider the approach
of Student’s t toward the normal as the number of degrees of freedom tends to infinity. Each
GS-distribution that approximates a specific t distribution corresponds to one point on the
line g = �, which is situated above the normal. With increasing degrees of freedom these
points move closer toward the representation of the normal. Similarly, F2,m and Beta(1, b)

approach the exponential, and the symmetric Beta approaches the point corresponding to
the normal. In addition to GS-distributions that correspond to classical distributions, the
g − � plane for k = 1 contains infinitely many other symmetric distributions. For instance,
GS-distributions with (g, �) > 2 have infinite mean, and those with (g, �) > 1.5 have infinite
variance, as we will discuss is Section 2.5. Consequently, the GS-distribution that approxi-
mates the Cauchy distribution has (g = �) > 2 and k = 1. Above these values we would find
GS-distribution representations of stable distributions without established names (data not
shown).
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Fig. 2.Approximation of classical distributions with GS-distributions. For each distribution, parameter values of the
corresponding GS-distributions were computed by minimization of the Hellinger distance (see text for details).
In all cases, the correspondence between the original distribution and its approximation as GS-distribution is
excellent. Insets are Q–Q plots. (a) 
2

4; (b) Weibull (3, 4); (c) F32,32; (d) Lognormal (0, 0.4).

If we restricted our analysis to the k = 1 plane, we could conclude that the Q-distribution
family would be a sufficient representation. However, while the plane k = 1 contains many
of the distributions in Table 1, cases like the generalized exponential, the Fn,2, and many
S-distributions are not included. These distributions require k = 1/a, k = 2/n, and k = real,
respectively, and are thus situated outside the k = 1 plane. Furthermore, 
2 distributions
are fitted with higher accuracy if k < 1 rather than k = 1 (see Table 2). The positions
of 
2 distributions are shown in Fig. 4. Starting with the exponential distribution, the 
2

distributions with increasing degrees of freedom approach the normal, which as a symmetric
distribution is situated in the k = 1 plane. These results and the limit relationships between
Fn,m distributions and the 
2

n distribution led to the prediction that Fn,m distributions should
also be characterized by k < 1. This was indeed confirmed by fitting these distributions
with GS-distributions (Table 2). For similar reasons, non-central t distributions are located
below the k < 1 plane (data not shown.) Finally, other distributions such as the lognormal
also require k < 1 (data not shown).

Taken together, these results provide justification and support for an extension of S- and
Q-distributions to the GS-distribution. This extension requires an extra parameter in either
case, but we will show that this additional parameter does not compromise the utility of the
resulting family or issues of parameter estimation from observed data.
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Fig. 3. Some classical distributions represented as GS-distributions with k = 1. The relationships between dis-
tributions are preserved when represented as GS-distributions: (a) Cauchy distribution; (b) Logistic; (c) Normal;
(d) Exponential; (e) Uniform; (f) Starting at point a and moving toward point c, one locates t distributions with
increasing degrees of freedom; (g) Symmetric Beta, starting with Beta, which corresponds to the uniform, and ap-
proaching the normal; (h) Beta(1, b), starting with Beta(1, 1), which corresponds to the uniform, and approaching
the exponential distribution; and (i) F2,m with increasing m, starting at � = 2 and approaching the exponential.

2.4. Quantiles for GS-distributions

Except for special cases, the GS-distribution does not have an analytical solution for its
cumulative. However, it is possible to solve for quantiles, as it was demonstrated for the
S-distribution family (Hernández-Bermejo and Sorribas, 2001).

Theorem 2. Any quantile F−1(q) = xq of a GS-distribution can be computed as

xq = x0 +
BFk

0 ,qk ((1 − g)/k, 1 − �)

�k
. (36)

Proof. It is again useful to subject the GS-distribution in Eq. (17) to a variable transforma-
tion of the type y = Fk (Tsoularis, 2002). This yields

dy

dx
= �ky(g+k−1)/k(1 − y)�, (37)

which is separable:∫ yq

y0

(�k)−1y(1−g−k)/k(1 − y)−� dy = (
xq − x0

)
. (38)

The integral on the left-hand side of this equation corresponds to the generalized incomplete
Beta function By0, yq((1 − g)/k, 1 − �), divided by (�k), and Eq. (36) follows. �
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degrees of freedom, the corresponding GS-distributions approach the normal (see text for details).

2.5. Computing moments

Moments of a GS-distribution are obtained as indicated in the following theorem.

Theorem 3. The jth moment mj of a GS-distribution may be computed as

mj =
∫ 1

0

(
x0 + 1

�k
BFk

0 ,qk

(
1 − g

k
, 1 − �

))j

dq. (39)

Proof. The jth moment of a random variable is defined as

mj =
∫ +∞

−∞
xjf (x, �) dx =

∫ 1

0
x(q)j dq, (40)

where x(q) is the value of the variable that corresponds to F(x) = q. When the random
variable is GS-distributed, x(q) can be computed from Eq. (36). Direct substitution into
(40) leads to (39). �

Some practical results for computing means and for relating the parameter � with the
variance are provided in Appendices C and D. As stated in Appendix D (Remark 3), the jth
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Table 3
Selected moments computed from GS-distributions that correspond to classical distributions

Moment order F2,30 F2,100 �(3, 1) �(1, 3)

1 1.07143 1.02041 0.75 0.25
2 2.47253 2.12585 0.60 0.10
3 9.27198 6.78463 0.50 0.05
4 50.5744 29.4984 0.428571 0.0285714
5 379.308 163.88 0.375 0.0178571
6 3793.08 1117.36 0.3333 0.0119048
7 49784.2 9094.82 0.3 0.00833
8 853443 86617.3 0.27272 0.00606
9 1.92925×107 950678 0.25 0.004545

10 5.76074×108 1.18835×107 0.23076 0.003496

All results are exactly the same as those obtained from the original distributions.

moment of a GS-distribution exists and is finite if (g, �) < (1 + 1/j). As a consequence,
a GS-distribution has infinite mean if (g, �) > 2 and infinite variance if (g, �) > 1.5 (see
some examples in Figs. 8 and 9.) Table 3 shows examples of moments, computed from
Eq. (39), for several distributions that can be represented exactly as GS-distributions and
whose parameters fulfill the requirement for finite moments through 10th-order (moments
up to m10 exist if (g, �) < 1.10.) In all cases, Eq. (39) returns precisely the same value as
the corresponding moment-generating function for the reference variable.

The results in Fig. 4 show that the (g, k, �) parameter space of the GS-distribution covers
a wide variety of shapes. A complementary point of view on the flexibility of the GS-
distribution family may be provided by a characterization of the third and fourth moments
of the distributions as suggested by Pearson and Hartley (1972). Fig. 5 exhibits typical
curves that relate the GS-distribution parameters to �1 = �2

3/�
3
2 and �2 = �4/�

2
2, where �j

is the central moment of order j. The figure also indicates the regions corresponding to each
type of Pearson curve and the GS-distributions covering these regions. Some special cases
are worth discussing in more detail. Curve (e) includes the special case of the exponential
(point E in the figure) with � = 1 and k = 1. Starting with the exponential (g = 0), curve (e)
approaches the logistic (point L, g = 1) and continues toward distributions of type IV, for
increasing values of g over 1. Curves (a1)–(a3) show the effect of increasing the value of k
for a fixed value of �. A similar effect would be observed for the other cases if we changed
the value of k.

Curve (b) includes the special case of the normal distribution (point N). For g values
lower than those corresponding to the normal we obtain type I distributions. For values of
g higher than those corresponding to the normal we obtain type IV distributions. Finally,
cases (c) and (d) correspond to special cases with � = 0 and � = −1. In (c) the distributions
move from type I distributions for negative values of g to the uniform (point U) for g=0 and
the exponential for g = 1 (point E), respectively. From point U to point E, curve (c) is very
close to type IX distributions. Case (d) includes type I(U) distributions for negative values
of g. Fig. 5 does not include cases with g or � over 1.25, which is the limit for computing
the 4th-moment in GS-distributions.
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k = 3.0, � = −1.0, g from −10.4 to 0.95. The direction of increasing values of g is indicated by an arrow. In each
case, the g values are those providing, approximately, values of �1 and �2 within the considered range.

Using the first four moments and setting x0 equal to the median, it is possible to obtain
the GS-distribution parameters (�, g, k, �) by a numerical procedure. First, one computes
the mean, variance, skewness, and kurtosis of the data. Then, one searches for the optimal
(�, g, k, �) values that result in computed moments that are as close as possible to the
observed mean, variance, skewness, and kurtosis by using an optimization algorithm such
as the FindRoot procedure in Mathematica. Due to numerical problems this approach does
not always converge to a solution. This may be related to the variability of sample moments
that compound the numerical procedure. We are currently working on refinements of the
numerical methods that deal with this problem. In the samples in which a solution is reached,
the final parameter values provide similar fits as those obtained by maximum-likelihood
estimation (data not shown.).
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2.6. Finite and infinite tails of GS-distributions

The GS-distribution family allows for cases with finite or infinite tails. The following
theorem establishes conditions on g and � that lead to finite tails.

Theorem 4. A GS-distribution has a finite left tail if g < 1. It has a finite right tail if � < 1.

Proof. The quantile equation defined in (36) states

xq = x0 + 1

�k
BFk

0 ,qk

(
1 − g

k
, 1 − �

)
.

The left tail can be characterized as

xq=0 = x0 + 1

�k
BFk

0 ,0

(
1 − g

k
, 1 − �

)
. (41)

To evaluate this expression, recall the following properties of the incomplete � function:

Bz,0(a, b) = −Bz(a, b) if Re(a) > 0, (42)

Bz,0(a, b) = ∞ if Re(a) < 0. (43)

Thus, if g < 1 the zeroth quantile is given by

xq=0 = x0 −
BFk

0
((1 − g)/k, 1 − �)

�k
(44)

and the GS-distribution has a finite left tail. Otherwise, if g > 1, xq=0 is infinite. In this case,
the left tail is infinite.

For the case of the right tail, we find

xq=1 = x0 + 1

�k
BFk

0 ,1

(
1 − g

k
, 1 − �

)
. (45)

Considering the property

Bz,1(a, b) = B(a, b) − Bz(a, b) if Re(b) > 0, (46)

one concludes that a GS-distribution with � < 1 has a finite right tail that is given as

xq=1 = x0 +
B((1 − g)/k, 1 − �) − BFk

0
((1 − g)/k, 1 − �)

�k
. (47)

Furthermore, considering the relationship

BFk
0 ,1

(
1 − g

k
, 1 − �

)
= −B1−Fk

0 ,0

(
1 − �,

1 − g

k

)
, (48)

and the properties in Eqs. (42–43), one finds that a GS-distribution has an infinite right tail
if � > 1. �
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Remark 1. The existence of finite tails is of practical relevance for computations involving
GS-distributions. For instance, integration below the left endpoint when g < 1 leads to
computational errors. The same problem appears for the right endpoint when � < 1. This
is especially important for implementing algorithms for maximum-likelihood estimation,
since the parameter search may lead to distributions that have finite tails and thus exclude
some data points. The implementation of optimization routines must take this into account.

Remark 2. Distributions with heavy right tails correspond to cases with � > 1. As stated
in the previous section, when � > 1.5 we obtain GS-distributions with infinite variance.
Similar results apply for heavy left tails, which are associated with values of g exceeding 1.

3. GS-distributions as models for univariate data

In many practical applications the distribution underlying observed data is unknown (e.g.,
see Sorribas et al., 2000). As an alternative to naively assuming a particular distribution,
the GS-distribution can be employed as a rather general model that closely approximates
the unknown distribution. This section illustrates the use of the GS-distribution with two
applications. First we discuss parameter estimation from a set of observed data. We will
show that the fitted GS-distribution provides a valid parametric model that permits further
analyses, such as the computation of moments and quantiles. For a second example, we
focus on data with very long tails, which are difficult to represent by any of the common
distributions. Very long tails may arise in various practical applications. A typical example
is the distribution of resource use or length of stay associated with diseases like HIV/AIDS
(e.g. Simpson and Itzler, 1996). Most individuals with the disease require baseline check-
ups and medication at an annual cost of a few hundred or a few thousand dollars. However,
some individuals contract secondary infections, which require substantial treatment and
sometimes extended hospital stays. This type of situation results in a high peak close to
zero and an extreme, thin tail reaching into thousands of dollars. Another example was
presented by Lu et al. (1998), who tested the effect of tissue plasminogen activator on the
recovery from stroke. In this case, the distributions of lesion volume in treatment and control
groups, measured by computer tomography, had high peaks close to zero and very long tails,
which complicated the analysis because of obvious non-normality. Even various Box–Cox
transformations could not normalize these data. We will show that GS-distributions can
accommodate these types of long-tailed datasets.

We will also demonstrate that the GS-distribution provides a tool for generating random
samples from distributions with unusual shapes or unknown origin. This task must be solved,
for instance, in risk assessments based on Monte Carlo simulations, where input variables
to a risk scenario are affected by a variety of factors that prevent a theory-based justification
of a particular distribution type.

3.1. The GS-distribution as data model: maximum-likelihood estimation

Given a set of observations x1, x2, . . . , xn, the parameters of a GS-distribution can be
obtained with a numerical maximum-likelihood procedure. This method is based on ideas
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developed for the S-distribution (Schwacke, 2000; Voit, 2000; March et al., 2003) and
provides excellent results. Briefly, the method consists of the following steps:

(1) Select a starting set of parameters (F0, x0, �, g, k, �).
(2) For each xi compute the corresponding F (xi) = Fi value using the parameter set. This

Fi value is typically obtained by integrating the GS-distribution differential equation
from x0 until xi .

(3) Considering that the likelihood in the case of a GS-distribution can be expressed as:

L =
n∏

i=1

f (xi, �) =
n∏

i=1

�F
g
i

(
1 − Fk

i

)�
, (49)

compute the log-likelihood function as

log(L) = n log(�) + g

n∑
i=1

log (Fi) + �
n∑

i=1

log
(

1 − Fk
i

)
. (50)

(4) Search for the parameters that maximize the log-likelihood.

It the case of a GS-distribution, a numerical procedure must be used for finding the parameter
values maximizing log(L). Given a F0 (usually 0.5), we obtain the

(
x̂0, �̂, ĝ, k̂, �̂

)
values

that maximize the log-likelihood using an optimization routine. Specifically, we have used
the FindMinimum procedure in Mathematica after defining the appropriate routine for
computing the log-likelihood.

As an illustration of the estimation method we present some examples of fitting a GS-
distribution to data sets. First, we generated random samples from N(0, 1) and fitted a
symmetric GS-distribution using the procedure outlined above. The results are consistent
with the normal distribution obtained by estimating � and � (Fig. 6). In all cases tested, the
GS-distribution yielded a close approximation to the original distribution. Similar results
were obtained by computing the first four moments and by applying the method described
in the last paragraph of Section 2.5.

As a second example, consider the GS-distributions corresponding to a data set on 24-
h urea excretion in elderly males admitted to an intensive care unit (ICU) (Fig. 7). The
original data were recorded as part of a larger study for assessing the mortality in the ICU
of the University Hospital in Lleida (Spain). In the absence of further information about the
underlying distribution, the GS-distribution provides a useful, parametric default model for
further data analyses.

Confidence intervals for parameters of the fitted distributions could be obtained, in princi-
ple, by computing the Fisher information matrix, whose inverse would provide an estimate
of the variance of the estimates. However, in the case of a GS-distribution this matrix must
be obtained by approximate numerical methods, which may lead to unstable estimations and
thus to inappropriate confidence intervals. As an alternative, we suggest using a bootstrap
procedure. Table 4 shows an example of the performance of this method. After generating a
random sample of a given distribution, we generated 300 bootstrap samples and fitted a GS-
distribution to each sample. Then, we computed the mean and the corresponding confidence
intervals using the 300 estimates of each parameter. To appreciate the quality of the fit, we
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Fig. 7. GS-distribution fitted to data of urea excreted over a period of 24 h in a sample of 78-year-old
men (N = 65). (a) Frequency histogram and GS-density, (b) Sample cdf and estimated GS-distribution cdf.
Inset is a Q–Q plot comparing the fitted GS-distribution and the observed data. The fitted distribution is
GS

[
F0, x0, �, g, k, �

]= GS[0.5, 51.49, 0.086, 0.668, 0.403, 0.783].

computed the estimation for several quantiles. The results in Table 4 demonstrate that we
appropriately recover all original quantiles. Table 4 includes the corresponding estimation
of the mean and variance, which are computed, for each bootstrap sample, using the method
introduced in Section 2.5.
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Table 4
Fitting a GS-distribution to a data set

Parameter Actual value Mean of bootstrap samples 95% Confidence interval

x0 100.0 100.0 (99.6, 100.3)
� 1 0.95 (0.77, 1.12)
g 1 1.06 (0.90, 1.18)
k 1 1.09 (0.64, 1.63)
� 1 0.94 (0.74, 1.15)

Quantile Actual value Mean of bootstrap samples 95% Confidence interval

0.05 97.05 96.60 (95.71, 97.27)
0.10 97.80 97.54 (96.91, 98.09)
0.50 100.00 99.97 (99.63, 100.26)
0.90 102.20 102.01 (101.61, 102.44)
0.95 102.94 102.64 (102.12, 103.13)

Moment Actual value Mean of bootstrap samples 95% Confidence interval

Mean 100.0 99.83 (99.48, 100.14)
Variance 3.27 3.64 (2.68, 4.87)

Data were generated by selecting a random sample from a GS[0.5, 100, 1, 1, 1, 1] with N =120. Parameter values
were obtained from fitting 300 bootstrap samples. Moments were computed as indicated in Section 2.5 for each
bootstrap sample after fitting the GS-distribution parameters.

3.2. Fitting heavy-tail distributions

When data are distributed with heavy tails, it may be difficult to find an appropriate
statistical model. In such cases, families of heavy-tailed distributions, such as the Pearson
type IV (Nagahara, 1999) or those discussed by Morgenthaler and Tukey (2000), may
provide suitable solutions. The GS-distribution also provides a suitable model for this kind of
data. For an illustrative set of examples, we first generated data from known GS-distribution
with heavy tails. Using the simulated data, we recovered the original distribution with
acceptable accuracy, except for some data points at the end of the long tails (Fig. 8). The
quality of the obtained fit is assessed in each case by a Q–Q plot.

As an actual example, we used cost data drawn from a large dataset of hospital admissions
in 27 US States, describing patients that were admitted for heart failure or heart valve
replacement. The data were provided by Dr. Kit N. Simpson of the Medical University
of South Carolina. For illustration purposes, we defined two age groups and fitted GS-
distributions to the observed data (Fig. 9). The fitted distributions provide an acceptable fit,
except at the very end of the long tail. The estimation results show that the fitted parameters
are very similar for both groups, which suggests testing if the same distribution could fit both
data sets simultaneously. This is accomplished by using the likelihood ratio test after fitting
the same distribution to both samples. The fitted parameters for the common distribution
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Fig. 8. GS-distribution fitted to simulated data with heavy tails. Q–Q plots (insets) illustrate the quality of fit.
Data are simulated from the following distributions GS

[
F0, x0, �, g, k, �

]
: (a) GS [0.5, 0.0, 2.0, 0.8, 1.0, 1.4],

(b) GS [0.5, 100.0, 0.1, 0.2, 12.0, 1.9], (c) GS [0.5, 0.0, 2.0, 1.2, 1.0, 0.8], (d) GS [0.5, 0.0, 0.2, 1.5, 1.0, 1.5].
In all cases n = 400.

are: x0 = 684.97, � = 0.0092, g = 0.850, k = 0.775, � = 1.611. As a result of the test,
we can admit a single distribution for both groups (p = 0.955).

3.3. Random sample generation using GS-distributions

GS-distributions can be used to generate random samples of univariate unimodal dis-
tributions of many shapes. This is accomplished in two steps. First, we obtain a random
sample of an uniform distribution on (0, 1) and then transform each random number q in
this sample by xq = F−1(q), which for the GS-distribution corresponds to applying Eq.
(36). Our results demonstrate that samples obtained with an approximating GS-distribution
are nearly equivalent to samples that were obtained from the original, approximated dis-
tribution. Since Eq. (36) applies to all GS-distributions, all we need to do is find suitable
GS-distribution parameters for a given distribution and use this equation for generating the
required sample. Moreover, one may employ GS-distributions that do not have an analog
within the realm of known distributions. For example, one may define a set of qi values and
their corresponding xq and fit a GS-distribution, which can then be used for generating ran-
dom samples that approximately agree with the chosen quantiles. Representative examples
of random samples from GS-distributions are shown in Fig. 10.
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Fig. 9. GS-distributions fitted to cost data associated with patients admitted to a hospital for heart failure or
valve replacement. Cost data of this type are characterized by very long tails (see text for details). (a) Age
group: 50 to 55 years (n = 475). Estimated: GS [0.5, 668.4, 0.010, 0.839, 0.746, 1.634]; (b) Age group: from
55 to 60 years (n = 642). Estimated: GS [0.5, 685.0, 0.009, 0.850, 0.775, 1.611]. For each group we include
a Q–Q plot and a figure showing the % quantile error between the adjusted GS-distribution and the sample
quantile.
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Fig. 10. Random samples of size 5000 obtained from GS-distributions. Parameters for the correspond-
ing GS-distributions, expressed as GS

[
F0, x0, �, g, k, �

]
, are: (a) GS [0.5, 100.0, 0.1, 0.3, 3.0, 1.5]; (b)

GS [0.001, 0, 100, 1.5, 1.0, 4.0], n = 10, 000. The vertical axis is truncated to make visible the right tail points.
Data shown in the figure span up to the 97% percentile. The maximum value of the sample is 4.28 × 107; (c)
GS [0.5, 100, 0.1, 0.2, 12.0, 1.3]; (d) GS [0.5, 125.0, 0.1, 1.2, 5.0, 1.3].

4. Conclusions

The proposed GS-distribution family has several interesting properties. First, it includes
as special cases various statistical distributions for which the cumulatives have a closed
form. Second, other classical distributions can be closely approximated by GS-distributions.
These approximations are more accurate than those based on the S-distribution or the Q-
distribution families, which are special cases of the GS-distribution with one less parameter.
Third, the GS-distribution can be used to model observed data, when the true underlying
distribution is not known.

Our results suggest that the GS-distribution might be a good candidate for a rather general
distribution family that can be used for a variety of applications.As a non-standard example,
reference intervals can be obtained for an unknown distribution after fitting the appropriate
GS-distribution to data. This procedure is an alternative to the use of transformations or non-
parametric estimations (cf. Sorribas et al., 2000). The performance of the GS-distributions
for these classes of problems remains to be assessed in detail, but the results presented
here indicate that the GS-distribution might provide a practical alternative to conventional
methods. As another example, hypothesis testing may be based on GS-distributions and a
likelihood ratio test. In this case, the resulting methods will provide interesting parametric
alternatives to standard non-parametric approaches. Preliminary results on median tests
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indicate that the GS-distribution method may be more powerful than the non-parametric
alternative. Finally, all methods developed for S-distributions can be easily extended to
GS-distributions and are expected to yield more accurate results. Examples here are the
estimation of conditional distributions (Sorribas et al., 2000; March et al., 2003) and the
evaluation of receiver operating characteristic curves (Sorribas et al., 2002).
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Appendix A. Computational implementation

All routines required for obtaining the numerical results of this paper have been imple-
mented in a package using the Mathematica (Wolfram, 1999) programming language.

We used built-in Mathematica functions to compute Beta functions, numerical integra-
tion, generate random numbers, etc. Parameter estimation through maximum-likelihood
uses the FindMinimum function of Mathematica. The GS-distribution was integrated using
the NDSolve function for computing the Fi values in the maximum-likelihood estimation
routine.

In the future, we plan to implement all procedures in C++. This will speed up some com-
putations and result in a set of reusable routines for those interested in using GS-distributions
within other programs. This program will be available soon at www.udl.es/Biomath/GSD.

All figures were also obtained with Mathematica.

Appendix B. Computing means in GS-distributions

As a particular consequence of Theorem 3, the mean of a GS-distribution can be obtained
as

E(X) = m1 = x0 + 1

�k

∫ 1

0
BFk

0 ,qk

(
1 − g

k
, 1 − �

)
dq. (B.1)

This equation can be simplified for g < 2 and � < 2 according to the following theorem.

Theorem B.1. If g < 2 and � < 2, the mean of a GS-distribution can be computed as

E(X) = m1 = x0 + 1

�k

(
BFk

0 ,1

(
1 − g

k
, 1 − �

)
− B

(
2 − g

k
, 1 − �

))
. (B.2)

http://www.udl.es/Biomath/GSD
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Proof. With the variable transformation u = qk , Eq. (B.1) becomes

E(X) = x0 + 1

�k2

∫ 1

0
u1/k−1BFk

0 ,u

(
1 − g

k
, 1 − �

)
du. (B.3)

Using the following property of the integral of a generalized incomplete Beta function
(http://functions.wolfram.com/06.20.21.0008.01)∫

zc−1
2 Bz1,z2(a, b) dz2 = 1

c

(
zc

2Bz1,z2(a, b) − Bz2(a + c, b)
)

. (B.4)

Eq. (B.3) becomes

E(X) = x0 + 1

�k

[
u1/kBFk

0 ,u

(
1 − g

k
, 1 − �

)
− Bu

(
2 − g

k
, 1 − �

)]1

0
. (B.5)

This equation leads to indeterminate results for some parameter values. First, when we
evaluate this equation at u = 0, the result is undefined for g�2. In this case, B0((2 − g)/k,

1 − �) = ∞ because B0(a, b) = ∞ if Re(a) < 0. Furthermore, using the hypergeometric
function 2F1(a, b; c; z) (Abramowitz and Stegun, 1972; see also the section of the General-
ized Hypergeometric Function in http://mathworld.wolfram.com, and references therein),
and the property

Bz1,z2(a, b) = 1

a

(
za

22F1(a, 1 − b; a + 1; z2) − za
12F1(a, 1 − b; a + 1; z1)

)
. (B.6)

(http://functions.wolfram.com/06.20.26.0004.01) the term u1/kBFk
0 ,u((1−g)/k, 1−�) can

be expanded for u = 0 as

k0(2−g)/k
2 F1((1 − g)/k, �; (1 − g)/k + 1; 0)

1 − g

− k01/kF 0
1−g
2 F1

(
(1 − g)/k, �; (1 − g)/k + 1; Fk

0

)
1 − g

. (B.7)

The second term of this expression is equal to 0, while the first term is equal to ∞ if g�2.
Thus, if g�2, Eq. (B.5) becomes ill-defined: E(X) = x0 + ∞ − ∞.

Second, the hypergeometric function 2F1(a, b; c; z) converges conditionally if

−1 < Re(c − b − a)�0,

and z �= 1. In (B.7), this condition is

−1 < (1 − �) < 0 ⇒ � < 2.

Thus, when g < 2 and � < 2, Eq. (B.5) reduces to (B.2). �

Remark 1. In some cases, Eq. (B.2) cannot be used because it leads to undefined terms.
The situation arises for GS-distributions with � = 1, which correspond to S-distributions,
or for � > 1 and (1 − g)/k = 1. These particular cases are discussed in Appendix D, along
with well-defined expressions for the means.

http://functions.wolfram.com/06.20.21.0008.01
http://mathworld.wolfram.com
http://functions.wolfram.com/06.20.26.0004.01
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Remark 2. As a consequence of Theorem B.1, when g or � are greater than 2, the mean
becomes −∞ or +∞.

Remark 3. It can be proved that the jth moment exists and is finite if (g, �) < (1 + 1/j).
The same applies for central moments �j = E((X − E(X))j ). Thus, a GS-distribution has
an infinite mean if (g, �) > 2, and infinite variance if (g, �) > 1.5. As expected, in Figs. 3
and 4 the common distributions considered have values of g and � below these limits. The
Fn,2 distributions, which have � = 2, do not have finite variances. The Cauchy distribution,
which has infinite mean and variance, is approximated by a GS-distribution with (g, �) > 2.
Finally, it is worth indicating that skewness, defined as �3/�

3/2
2 is finite for (g, �) < 1.33,

while kurtosis, defined as �4/�
2
2 is finite for (g, �) < 1.25.

Appendix C. Computation of means of a GS-distribution in special cases

Means of GS-distributions are computed in general as shown in Theorem 3 and Eq.
(39). Furthermore, Theorem B.1 provides simplified computations for most cases where
(g, �) < 2. This part of the Appendix discusses special situations where direct application
of Theorem 3 leads to ill-defined quantities.

If g < 2 and � < 2, Theorem B.1 shows that the mean of a GS-distribution can be computed
as

m1 = x0 +
BFk

0 ,1((1 − g)/k, 1 − �) − B((2 − g)/k, 1 − �)

�k
. (C.1)

The direct computation of the mean encounters problems in cases where the Beta function
becomes infinite. Recalling that

B(a, 0) = ∞,

B(0, b) = ∞, (C.2)

and that � > 0 and k > 0 by definition, it is immediately clear that B((2 − g)/k, 1 − �) is
infinite in the following cases:

(1) � = 1,
(2) (2 − g)/k = 0, which will never occur if g < 2.
The case � = 1 causes problems since the generalized incomplete BFk

0 ,1((1 − g)/k, 0) is
also equal to ∞, which implies m1 = x0 + ∞ − ∞.

Case I: �=1. This scenario is of particular interest, because it constitutes the special case
of an S-distribution. One can resolve issues of indetermination by recalling (B.6) that

Bz,q(a, b) = qa

a 2F1(a, 1 − b; a + 1; q) − za

a 2F1(a, 1 − b; a + 1; z). (C.3)
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Using this relationship transforms the general quantile (36) into

xq = x0 + 1

�k
×
[

kq(1−g)

1 − g 2F1

(
1 − g

k
, 1; 1 − g

k
+ 1; qk

)

−kF
(1−g)
0

1 − g 2F1

(
1 − g

k
, 1; 1 − g

k
+ 1; Fk

0

)]
. (C.4)

Consequently, substitution of (C.3) into Eq. (B.1)) leads to

m1 = x0 −
BFk

0
((1 − g)/k, 0)

�k

− 1

�k

∫ 1

0

u(2−g)/k−1

1 − g 2F1

(
1 − g

k
, 1; 1 − g

k
+ 1; u

)
du, (C.5)

where u = qk . If we consider the property:

∫
yw−1

2F1(e, r; t; y) dy = ye

w 3F2(e, r, w; t, w + 1; y) (C.6)

(http://functions.wolfram.com/07.23.21.0003.01) Eq. (C.5) can be written as

m1 = x0 −
BFk

0
((1 − g)/k, 0)

�k
+ �((2 − g)/k) − �((1 − g)/k)

�k
, (C.7)

where � is the digamma function (Abramowitz and Stegun, 1972).
Case I.a: �=1, g =1. If �=1 and g =1, Eq. (C.7) is ill-defined because: (1) �(−n)=∞

if n ∈ N , which occurs when g = 1; and (2) BFk
0
(0, 0) = ∞ since B(−n, b) = ∞ if n ∈ N .

In this case, the quantile equation is

xq = x0 +
BFk

0 ,qk (0, 0)

�k

= x0 + Log
(
qk
)− Log

(
1 − qk

)− Log
(
Fk

0

)+ Log
(
1 − Fk

0

)
�k

, (C.8)

which reduces to

m1 = x0 + �Euler − Log
(
Fk

0

)+ Log
(
1 − Fk

0

)+ �(1/k)

�k
. (C.9)

http://functions.wolfram.com/07.23.21.0003.01
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In this equation, �Euler is Euler’s constant and has the approximate value 0.57722 (Abramowitz
and Stegun, 1972).

Case I.b: � = 1, (1 − g)/k = −1. When � = 1 and (1 − g)/k = −1, the expression (C.7)
is ill-defined since �(−n) = ∞ if n ∈ N and BFk

0
(−n, b) = ∞ if n ∈ N . In this case, the

quantile equation becomes

xq = x0 +
BFk

0 ,qk (−1, 0)

�k

= x0 + −q−k + F−k
0 + Log

(
qk
)− Log

(
1 − qk

)− Log
(
Fk

0

)+ Log
(
1 − Fk

0

)
�k

,

(C.10)

which reduces to

m1 = x0 + �Euler + F−k
0 + (1/(k − 1)) − Log

(
Fk

0

)+ Log
(
1 − Fk

0

)+ �(1/k)

�k
.

(C.11)

In this equation, a value k = 1 would lead to problems. However, this case is not possible
since (1 − g)/k = −1 together with k = 1 would imply g = 2, and we are only considering
GS-distributions with g < 2.

Case I.c: � = 1, (1 − g)/k = 1. In this sub-case, the quantile equation reads

xq = x0 +
BFk

0 ,qk (1, 0)

�k
= x0 + Log

(
1 − Fk

0

)− Log
(
1 − qk

)
�k

, (C.12)

and the mean is

m1 = x0 + �(1/k + 1) + �Euler + Log
(
1 − Fk

0

)
�k

. (C.13)

Case II: � > 1, (1 − g)/k = 1. This is a special case that leads to indetermination in (C.1)
because of the term

BFk
0 ,1(1, 1 − �) = −01−� + (1 − F0)

1−�

1 − �
. (C.14)

In this case, the quantile equation can be simplified to

xq = x0 +
BFk

0 ,qk (1, 1 − �)

�k
= x0 +

(
1 − Fk

0

)1−� − (
1 − Fk

)1−�

�k(1 − �)
, (C.15)

and we obtain

m1 = x0 +
(
1−Fk

0

)1−�
k

1−� − 
(1/k)
(1−�)

(2+1/k−�)

�k2 . (C.16)

Symmetric GS-distributions. k = 1, g = �. This case is well defined but permits a simplified
expression for the mean. Specifically, one may write

m1 = x0 + BF0,1(1 − g, 1 − g) − B(2 − g, 1 − g)

�
, (C.17)
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which can be rewritten as

m1 = x0 + BF0,0.5(1 − g, 1 − g) + B0.5,1(1 − g, 1 − g) − B(2 − g, 1 − g)

�
.

(C.18)

Using the properties of the Beta function:

B(a, b) = 
(a)
(b)


(a + b)
, (C.19)

and


(z + 1) = z
(z), (C.20)

one immediately proves that

B(1 − g, 1 − g)

2
= B(2 − g, 1 − g). (C.21)

These results and the property

B0.5,1(1 − g, 1 − g) = B(1 − g, 1 − g)

2
(C.22)

reduce the general expression for the mean of a symmetric GS-distribution to the much
simpler formula

m1 = x0 + BF0,0.5(1 − g, 1 − g)

�
. (C.23)

Appendix D. Relationship between parameter � and the variance of a GS-
distribution

Results of fitting GS-distributions to well-known classical distributions suggest that
parameter � is inversely related to the variance of the variable. For instance, in the case of
a normal distribution, we empirically find that � equals 0.282095/�. Eq. (39) leads to the
following result:

Theorem D.1. The parameter � of a GS-distribution is inversely proportional to the square
root of the variance.

Proof. The variance of a random variable is given as Var(X)=m2 −m2
1. According to Eq.

(39), the second moment may be computed as

m2 =
∫ 1

0

(
x0 + 1

�k
BFk

0 ,qk

(
1 − g

k
, 1 − �

))2

dq, (D.1)

which can be expressed as

m2 = x2
0 + 2x0

�k
C1 + 1

�2k2 C2
2 , (D.2)
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with

C1 =
∫ 1

0
BFk

0 ,qk

(
1 − g

k
, 1 − �

)
dq, (D.3)

C2
2 =

∫ 1

0

(
BFk

0 ,qk

(
1 − g

k
, 1 − �

))2

dq. (D.4)

Furthermore, m2
1 can be expressed as

m2
1 = x2

0 + 2x0

�k
C1 + 1

�2k2 C2
1 . (D.5)

These results yield

Var(X) = m2 − m2
1 =

(
C2

2 − C2
1

)
�2k2 ⇒ � = c(g, k, �)√

Var(X)
. � (D.6)

Remark 1. The proportionality constant c(g, k, �) is a function of the parameters g, k, and
�. From (D.6), c(g, k, �) can be expressed

c(g, k, �) = �
√(

m2 − m2
1

)
. (D.7)

Remark 2. For an alternative proof, which was originally presented for the S-distribution,
but applies to the GS-distribution as well, see Voit and Schwacke (1998).
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