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Received 12 September 2006; accepted 13 December 2006
Published online 23 December 2006 in Wiley InterScience (www.interscience.wiley.c
om). DOI 10.1002/bit.21316
ABSTRACT: Cooperative and saturable systems are com-
mon in molecular biology. Nevertheless, common canonical
formalisms for kinetic modeling that are theoretically well
justified do not have a saturable form. Modeling and fitting
data from saturable systems are widely done using Hill-like
equations. In practice, there is no theoretical justification for
the generalized use of these equations, other than their
ability to fit experimental data. Thus it is important to find
a canonical formalism that is (a) theoretically well sup-
ported, (b) has a saturable functional form, and (c) can be
justifiably applicable to any biochemical network. Here we
derive such a formalism using Taylor approximations in a
special transformation space defined by power-inverses and
logarithms of power-inverses. This formalism is generalized
for processes with n-variables, leading to a useful mathe-
matical representation for molecular biology: the Saturable
and Cooperative Formalism (SC formalism). This formalism
provides an appropriate representation that can be used for
modeling processes with cooperativity and saturation. We
also show that the Hill equation can be seen as a special case
within this formalism. Parameter estimation for the SC
formalism requires information that is also necessary to
build Power-Law models, Metabolic Control Analysis
descriptions or (log)linear and Lin-log models. In addition,
the saturation fraction of the relevant processes at the
operating point needs to be considered. The practical use
of the SC formalism for modeling is illustrated with a few
examples. Similar models are built using different formal-
isms and compared to emphasize advantages and limitations
of the different approaches.
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Introduction

Mathematical formalisms based on approximated repre-
sentations have a long tradition in science. Application of
approximation theory to obtain a practical non-lineal
approximation to complicated kinetic functions was first
proposed by Savageau in the late 1960s and led to the Power-
Law formalism (Savageau, 1969a,b, 1970). This formalism is
derived by using a Taylor series approximation to a kinetic
function in logarithmic coordinates. In brief, the resulting
representation for a velocity vi that depends on different
metabolites and effectors, X1,. . .,Xn, is

viðXi; . . .XnÞ ¼ g i

Yn
j¼1

X
fij
j (1)

where

fij ¼
@vi
@Xj

Xj

vi

� �
0

(2)

is the apparent kinetic order (local sensibility) of vi with
respect to Xj. The subindex 0 indicates evaluation at a given
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operating point X10,. . .,Xn0. The apparent rate constant gi
is calculated in order to give a velocity vi0 when the
concentrations of all the metabolites are at their operating
point. As it has been shown elsewhere (see for instance
Curto et al., 1995, 1997, 1998b), the kinetic-orders in the
Power-Law formalism are equivalent to the elasticities of
Metabolic Control Analysis (MCA). Mathematical models
based on the Power-Law formalisms have been extensively
used for investigating different classes of problems in
Systems Biology through a set of methods known as
Biochemical Systems Theory (Voit, 2000). Among others,
the most relevant results concern characterizing design
(Alves and Savageau, 2000a,b, 2001; Atkinson et al., 2003;
Hlavacek and Savageau, 1995, 1996, 1997; Savageau, 1974,
1977; Schwacke and Voit, 2004; Wall et al., 2003, 2004) and
operational principles in metabolism (Almeida and Voit,
2003; Alvarez-Vasquez et al., 2004, 2005; Sims et al., 2004;
Vilaprinyo et al., 2006; Voit, 2003; Voit and Radivoyevitch,
2000), identifying network structures (Alvarez-Vasquez
et al., 2005; Alves et al., 2004a,b; Berg et al., 1996; Curto
et al., 1998a,b; Ferreira et al., 2003; Sims et al., 2004; Voit,
2002, 2003; Voit and Riley, 2003; Voit et al., 2006), and
optimizing metabolic pathways in biotechnological appli-
cations (Hatzimanikatis et al., 1996; Thomas et al., 2004;
Torres and Voit, 2002; Voit, 1992). The mathematical
models provided by the Power-Law formalism are suited for
dynamical simulations as well. This allows parameter
estimation from time course data, which is an important
issue in System Biology (Mocek et al., 2005; Polisetty et al.,
2006; Schwacke and Voit, 2005; Voit and Almeida, 2004;
Voit et al., 2004, 2005, 2006).

Recently, other authors have proposed approaches
closely related to the Power-Law formalism. This is the
case of the (log)linear (Hatzimanikatis and Bailey, 1996;
Hatzimanikatis et al., 1998) and Lin-log (Visser and
Heijnen, 2002, 2003) approaches. Although the resulting
mathematical approximations are different, the funda-
mental parameters, MCA elasticities in the case of
(log)linear and Lin-log representations, are equivalent.
However, a recent comparison of methods has introduced
some confusion regarding this equivalence (Heijnen,
2005), and the global advantages of the alternative
formalisms, if any, remain to be established by appropriate
case studies.

In general, the current approximated representations
have a low range of accuracy when saturation and
cooperativity are to be represented. Piece-wise Power-Law
representations can deal with this problem at the cost of
some additional computations (Igoshin et al., 2006;
Savageau, 2002). However, because none of the formalisms
mentioned above provides saturable rate expressions, if a
model needs to include saturation and cooperativity, one
may feel that approximation theory is not appropriate and
thus switch to more complicated kinetic representations.

Under conditions where the rate has a sigmoid
dependence with respect to some substrate(s) or modi-
fier(s), a preferred mathematical function is the Hill
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equation (Hill, 1910). Its most common form is

v ¼ Vmx
nH

KnH
m þ xnH

(3)

In its original derivation, the so-called Hill coefficient nH
corresponds to the number of binding sites in the molecule
that catalyzes the process. Often, when processes are
catalyzed by multi-subunit protein complexes, there is only
one binding site per subunit. In such cases, the theoretical
Hill coefficient would correspond to the number of subunits
in the complex. However, in most cases, the actual
mechanism is different from that for which the original
Hill equation has been derived. Furthermore, in many cases,
cooperativity is weak and the Hill coefficient that is obtained
after fitting Equation (1) to the experimental data is
different from the number of the existing binding sites
(Weiss, 1997). For example, in the original article by Hill
(1910) on the binding of oxygen to tetrameric hemoglobin,
the measured values for nH range from 1.7 to 3.2, well below
the theoretical value of 4. In practice, a measured value of
nH> 1 is taken as an indication of cooperativity in the
underlying mechanism.

Rounding off non-integer values for the Hill coefficient
found while fitting data and using the derived integer as a
measure of the number of binding sites is in general not
correct. The non-integer values cannot be attributed
exclusively to experimental error, because such values also
depend upon the experimental conditions. For example, in
a study on Dictyostelium discoideum mutants, the enzyme
phosphofructokinase (EC. 2.7.1.11) shows a cooperative
kinetics with respect to Fructose-6-P (F6P). The Hill
coefficient for F6P is 2.8 at pH 8.0, 3.8 at pH 7.2, and 3.7 at
pH 6.4 (Santamaria et al., 2002). In a different study, the rate
of hydrolysis of 1-naphthyl phosphate, phenyl phosphate,
and of phosphotyrosine as catalyzed by human prostatic
acid phosphatase (EC 3.1.3.2) was measured and fitted to
Hill equations. The corresponding Hill coefficients vary
between 1.08 and 3.59 depending on the substrate and the
enzyme concentration used in the experiment (see Table I in
Luchter-Wasylewska, 2001).

In all these examples, the Hill equation is used as an
appropriate phenomenological model that provides good
fitting to the available data. When it comes to considering
the simultaneous effect of different metabolites no general
simple model similar to the Hill equation has been derived.
Although some equations that account for reversibility and
include the effect of two modifiers have been derived
(Hofmeyr and Cornish-Bowden, 1997), the Hill equation is
mainly used to capture the cooperative of individual
metabolites at fixed values of all other metabolites that are
involved in the process.

Moreover, cooperativity is not a phenomenon exclusively
related to the number of active subunits (sites) in
multimeric enzymes. Phenomena such as ultrasensitivity,
a special case of cooperativity as an emergent property of a
DOI 10.1002/bit



Table I. Steady-state values for the reference system at different X50

values.

X50

2.5 1 0.4

X1 3.6768 0.9531 0.2898

X2 1.4150 1.3975 1.2105

X3 1.4150 1.3975 1.2105

X4 5.3549 0.7156 0.0244

v1 11.4286 8 4.5714

v2 11.4286 8 4.5714

v3 4.6874 4.6632 4.3809

v4 4.6874 4.6632 4.3809

v5 6.7411 3.3368 0.1905

v6 6.7411 3.3368 0.1905

These are the three operating points for computing the Power-Law,
Lin-Log/(log)linear, and SC approximations. Units are arbitrary.
simple system, arises in pairs of inactive/active (usually
related to regulation by phosphorylation) enzymes that
have simple Michaelis–Menten kinetics (Goldbeter and
Koshland, 1981). Also, signal amplification through cascade
systems can result in cooperativity-like relationships
(Markevich et al., 2004). In addition, it has been suggested
that simple reaction schemes, such as the classical one-
substrate Michaelis–Menten mechanism, can show coop-
erative kinetics if the reaction takes place in micro-
heterogeneous environments (Savageau, 1993, 1995,
1998). In such a situation, the elementary chemical kinetics
description may involve fractional kinetic orders. Finally,
if the enzyme concentration is comparable to the con-
centration of substrate, the common assumptions of the
Michaelis–Menten equation may be invalid in situ (Tzafriri,
2003). This is so because the quasi-steady-state assumption
that allows the derivation of the Michaelis–Menten
expression is violated. Such experimental conditions can
lead to a non-hyperbolic dependence of the rate with respect
to the substrate. Although the mechanism underlying this
situation may be simple, in general it is not possible to
obtain an explicit rate expression that can be fitted to non-
hyperbolic kinetic data. Thus, the use of the Hill equation to
describe the rates of all these processes cannot be justified in
terms of mechanism, although it is a convenient function for
fitting the experimental data (Angeli et al., 2004).

Finding a rationale that justifies (a) using the Hill
equation for fitting any experimental data and (b) extending
the use of the Hill equation to fit data for several variables
simultaneously is, thus, an open question. Such a general-
ized representation would provide a useful tool for modeling
purposes when no alternative kinetic functions were
available. This suggests investigating the problem from
the point of view of approximation theory. Following the
rationale behind the development of the Power-Law
formalism (Savageau, 1969a,b, 1970), in this article we
present a novel approximation leading to a formalism that
complements the properties of the Power-Law representa-
tion. By deriving a Taylor series approximation to a function
of m variables in a space of power-inverse transformations
we obtain a special non-linear representation of the target
kinetic function: the Saturable and Cooperative approxima-
tion (SC formalism). We show that the Hill equation can be
obtained as a special case of the SC formalism, when there is
a single metabolite involved in the process of interest. This
could explain the success of the equation in fitting kinetic
data of processes with unknown mechanisms (Cornish-
Bowden and Koshland, 1975).

The SC formalism can be a practical tool from amodeler’s
point of view. The examples we present suggest that this
formalism may be accurate over a wide range about the
operating point of the local representation. The SC model
could be used in tandem with the Power-Law model in the
following way. The Power-Law model in its S-system
representation can be used for closed form analysis of the
steady-state properties while the SC model can be used for
numerical analysis. For a process that depends upon several
metabolites and regulators, the SC formalism provides a
well-structured representation that can be set-up directly
from a metabolic scheme in a similar way to Power-Law
models and other alternative representations. This is parti-
cularly useful when parts of the problem are represented as a
single aggregated process (for instance a black box, e.g.,
Hooshangi et al., 2005).
The Saturable and Cooperative Formalism:
A Taylor Series Approximation After a
Power-Inverse Transformation

Transformation to the Space of Power-Inverses

Our goal is to develop a mathematical formalism that
provides an accurate representation for the rate of saturable
and cooperative processes that depend on several variables.
These processes may either be elementary reactions, or
aggregated sets of reactions considered as a black box. We
start by considering the rationale behind the Power-Law
formalism within BST. The rate expressions are approxi-
mated using Taylor series after a logarithmic transformation
of the original function and variables. This approximation
becomes a Power-Law representation after a back transfor-
mation to a linear space (see Voit, 2000 and references
therein). Using alternative transformations is theoretically
possible, as far as we can reverse the transformation and
obtain a useful representation (Salvador and Savageau,
unpublished work). One possibility is to use inverse
transformations, as these are commonly used to linearize
simple kinetic rate-laws. The inverse transformation leads to
linear representations in Michaelis–Menten kinetics and has
been extensively used for obtaining the corresponding
kinetic parameters (e.g., Lineweaver–Burk plot):

v ¼ VmS

Km þ S
w ¼ 1

v
¼ Km

Vm

1

S
þ 1

Vm
! w ¼ aþ bS�1 (4)
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A simple inverse transformation does not provide a linear
result for other types of enzymemechanisms. For example, if
we consider the competitive inhibition:

v ¼ VmS

Km 1þ I
Ki

� �
þ S

¼ VmSI
�1

Km I�1 þ 1
Ki

� �
þ SI�1

w ¼ 1

v
¼ Km

Vm

1

S
þ Km

Ki

1

Vm

1

S

1

I�1
þ 1

Vm

(5)

If, in Equation (5), we fix S¼ S0, where the subscript

0 indicates evaluation of this expression at the operating
point, we obtain

w ¼ 1

v
¼ Km

Vm

1

S0
þ Km

Ki

1

Vm

1

S0

1

I�1
þ 1

Vm

! w ¼ as þ bsI
1

as ¼
Km

Vm

1

S0
þ 1

Vm

bs ¼
Km

Ki

þ 1

Vm

1

S0
ð6Þ

If we now fix I¼ I0, we obtain

w ¼ 1

v
¼ Km

Vm

1

S
þ Km

Ki

1

Vm

1

S

1

I�1
0

þ 1

Vm

! w ¼ a1 þ b1S
�1

aI ¼
1

Vm

bI ¼
Km

Vm

þ Km

Ki

1

Vm

1

I�1
0

ð7Þ

Thus, in the case of the substrate, an inverse transforma-
tion leads to a linear function for a fixed value of the
inhibitor. In the case of the inhibitor, an inverse–inverse
transformation is required. This is common to other one-
substrate one-inhibitor simple mechanisms. In terms of
approximating the rate-law, these transformations provide
an accurate representation as far as we do not move too far
away from the selected S0 or I0. Thus, using different
transformations for each variable is an option for obtaining
a useful approximation in the general case.

With this in mind, we explore transformations of the
form zi ¼ x

�ni
i (i.e., a power-inverse transformation) where

ni can be different for each of the metabolites involved in the
considered mechanism. This is a generalization of the
approach used to derive the Power-Law formalism, were all
the variables undertake the same (logarithmic) transforma-
tion.

We start by considering a kinetic function that depends
on m concentration variables (xi,. . .,xm), namely

v ¼ Fðxi; . . . ; xmÞ (8)
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Here, F is a non-linear function that depends on the
underlying mechanism of the process. This function is
monotonically growing with respect to each substrate or
positive effector, while it is monotonically decreasing
with respect to each product or negative effector. Further-
more, F is a rational function that may saturate at different
values for each variable. The saturation value for one
variable will most likely depend on the fixed values that
the other variables take. This set of conditions is common
to most kinetic processes to be considered in metabolic
pathways.

We now approximate F (unknown or not) in a similar
way to that used to derive models under the Power-Law
formalism. We start by transforming the original function
into power-inverse coordinates of the form

w ¼ v�1; zi ¼ x�ni
i ; i ¼ 1; . . . ;m (9)

where ni are real exponents, with values determined to
provide the best transformation of F in terms defined below.
Using this transformation, the resulting functional depen-
dence (G) in the new variables can be written as:

w ¼ Gðzi; . . . zmÞ (10)

We can now use a Taylor series to approximate Equation
(10) at a selected operating point.
First-Order Taylor Approximation in
a Power-Inverse Space

Assume that we are interested in approximating the function
G in the neighborhood of an operational point
z0¼ (z01,. . .,z0m). Then, by means of a standard Taylor
expansion we have:

w ¼ w0 þ
Xm
i¼1

@G

@zi

����
z0

ðzi � z0iÞ þ h:o:t: (11)

Truncating the Taylor expansion at the first order term we
get

w � aþ
Xm
i¼1

bizi

a ¼ w0 �
Xm
i¼1

@G

@zi

�����
z0i

bi ¼
@G

@zi

����
z0

¼ @v�1

@x�ni
i

����
z0

(12)

Hereafter the symbol� shall denote equality to first order
in the sense of the Taylor expansion around the specified
point. Once the transformation is reversed we obtain a
DOI 10.1002/bit



Figure 1. Approximation of a function using the power-inverse transformation.

All functions cross and have the same sensitivity (slope) at the operating point.

Different values of n lead to different saturating values for the approximation functions

(dashed lines). The target function is indicated by a continuous line. The inset figure is

an amplification showing the correspondence of the different approximations at the

operating point.
rational approximation for the rate with the following
non-linear functional form:

v � 1

aþ
Pm
i¼1

bi
x
ni
i

¼

Qm
j¼1

x
nj
j

a
Qm
j¼1

x
nj
j þ

Pm
i¼1

bi
Qm
j¼1;
j 6¼i

x
nj
j

¼
a�1

Qm
j¼1

x
nj
j

Qm
j¼1

x
nj
j þ a�1

Pm
i¼1

bi
Qm
j¼1;
j 6¼i

x
nj
j

(13)

In this approximation the xj are internal metabolites,
regulators, enzymes, or other variables, while a and b are
parameters. To better understand the physical meaning of
the parameters for this approximation, let us consider the
case with a single variable, that is

v ¼ FðxÞ � 1

aþ b
xn

¼ xn

axn þ b
¼ a�1xn

xn þ a�1b
(14)

If n> 0 in Equation (14), v saturates at Va¼ a�1.
Furthermore, the rate will be half of its saturation value
when the concentration of x is x ¼

ffiffiffiffiffiffiffiffi
b=an

p
. The case n< 0

will be discussed together with the m-variable function,
below.

Let us now consider the local sensitivity (kinetic-order in
the Power-Law formalism, elasticity in MCA) of the original
function to changes in the dependent variable at the
operational point, that is

f ¼ @v

@x

x

v

� �
0

(15)

Computing the local sensitivity of Equation (14) we
obtain

f ¼ @v

@x

x

v

� �
0

¼ a�1b n

a�1bþ xn0
(16)

where the subscript 0 indicates evaluation of this expression
at the operating point. Using Equation (16) we can now
rewrite the parameters in Equation (12) as

b ¼ @w

@z

� �
0

¼ @v

@x�n

� �
0

¼ v�1
0 f

xn0
n

(17)

and

a ¼ V�1
a ¼ v�1

0

1� f

n

� �
(18)
Because the space of the transformation is defined by the
value of n, we obtain different approximations if we consider
an inverse transformation with n¼ 1, an inverse square
transformation with n¼ 2, or any other real value for n.
Once we fix the value for n, Equation (14) has the following
properties: (i) it has a value of v0 at the operating point,
(ii) its sensitivity is f at the operating point, and (iii) it will
saturate at v0(1� f/n)�1 (Fig. 1). Thus, choosing a value for
n will fix the saturation value of Equation (14).

If the target function saturates at Vm, the most reasonable
value for n is such that Va¼Vm. This fixes the value of a. Let
p¼ v0/Vm define the fraction of saturation at the operating
point. Then one can prove that

n ¼ f
ð1�pÞ

a�1b ¼ ð1�pÞ
p xn0

(19)

For example, in Figure 1, the function saturates at
Vm¼ 10, leading to p¼ 0.51 and n¼ 3.5 (which are the
values corresponding to the reference curve shown in a
continuous line in Fig. 1). If one chooses different values for
n, the resulting function would saturate at different value
than the reference function.

In the case of a single variable, Equation (14) can also be
written as

v ¼ Vmx
n

ð1�pÞ
p xn0 þ xn

! Vmx
n

K þ xn
(20)

This is formally equivalent to a Hill equation, although
it is derived from a completely different perspective.
Equation (20) arises from a Taylor series approximation
Sorribas et al.: Saturable and Cooperative Formalism 1263
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in a power-inverse transformation space that fulfils three
requisites: (i) it crosses the original function at (x0, v0), (ii) it
has a sensitivity equal to that of the target function at the
operating point, and (iii) it saturates with the same value as
the target function. Furthermore, it is interesting to note
that the expression for n obtained above is formally
equivalent to that formulated by Hill in its seminal article of
1910 (Hill, 1910). The classical definition is:

nH ¼ dLnðfsatÞ
dLnðLÞ

1

ð1� fsatÞ
(21)

Where fsat is the fractional saturation of the protein and L
is the concentration of the free ligand. In terms of an enzyme
reaction, and using the nomenclature introduced in our
article, we can write:

nH ¼ dLnðpÞ
dLnðxÞ

1

ð1� pÞ ¼
ð1=VmÞdv

dx

x

v=Vm

1

ð1� pÞ

¼ dv

dx

x

v

1

ð1� pÞ ¼
f

ð1� pÞ (22)

Hence, the use of a truncated Taylor series in a power-
inverse space to derive a non-linear approximation of the
unknown target one-substrate function produces a Hill-like
representation. Thus, our derivation provides a theoretical
justification for the success of the Hill equation in fitting
experimental data as it shows that the equation is a non-
linear approximation to the underlying unknown rate-law.

The case with m variables can be discussed using similar
arguments to those for the one-variable case. Consider
Equation (13). If all variables are at the operating point
except xk, we can write

v ¼
a�1

Qm
j¼1

x
nj
j

Qm
j¼1

x
nj
j þ a�1

Qm
i¼1

bi
Qm
j¼1
j 6¼1

x
nj
j

�!ðx10;...;xk;...;xm0Þ Vkx
nk
k

Kk þ xnkk
(23)

Vk is the saturating value of v when xk!1 and all the other
variables are at their operating point values in the case n> 0.
If n< 0, that is when xk is an inhibitor, then Vk is the value of
v when xk! 0. Thus, if we define

pk ¼ v0=Vk

fk ¼
@v

@xk

xk
v

� �
0

(24)

we obtain:

nk ¼
fk

ð1� pkÞ

Kk ¼
ð1� pkÞ

pk
xnkk0

(25)
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Furthermore

bk ¼
@w

@zk

� �
0

¼ @v�1

@x�nk
k

� �
0

¼ v�1
0 fk

xnkk0
nk

(26)

The parameters for the other (m� 1) variables in
Equation (11) can be easily derived using a similar
procedure. The information needed to calculate the
parameter values is contained in the flux and metabolite
concentrations at the operating point, and in the saturation
fractions for each relevant metabolite. The value for a�1 is
such that the value of Equation (13) equals the operating
point value of the flux when all the variables take their
nominal operating point values (see below).
First-Order Taylor Approximation
in a Logarithmic Transformation of a
Power-Inverse Space

The accuracy of the previous approximation can be further
improved if we apply a logarithmic transformation to the
power-inverse space. Because the power-inverse transfor-
mation does not guarantee a linearization of the target
function, we can further transform it to logarithmic
coordinates, thus obtaining a transformation that may be
more appropriate for linear approximation. Our starting
point is the equality

logðwÞ ¼ logðGðz1; . . . zmÞÞ (27)

with similar notation to Equation (10). Now making use
of Proposition 1 in the Appendix on this expression, we
get:

logðGðz1; . . . ; zmÞÞ

� logð ~G1ðz1ÞÞ þ logð ~G2ðz2ÞÞ þ . . .þ logð ~GmðzmÞÞ

þ ð1�mÞlogðGðz01; . . . ; z0mÞÞ (28)

where ~GiðziÞ � Gðz01; . . . ; z0;i�1; zi; z0;iþ1; . . . ; z0mÞ for all
i¼ 1,. . .,m. Proposition 2 (Appendix) can be used to convert
Equation (27) into:

logðGðz1; . . . ; zmÞÞ

� logð~G1ðz01Þ þ ~G0
1ðz01Þðz1 � z01ÞÞ

þ logð~G2ðz02Þ þ ~G0
2ðz02Þðz2 � z02ÞÞ þ . . .

þ logð~Gmðz0mÞ þ ~G0
mðz0mÞðzm � z0mÞÞ

þ ð1� mÞlogðGðz01; . . . z0mÞÞ
DOI 10.1002/bit



which can be written as
logðGðz1; . . . ; zmÞÞ � log Gðz01; . . . ; z0mÞ þ
@G

@z1

����
z0

ðz1 � z01Þ
 !

þ log Gðz01; . . . ; z0mÞ þ
@G

@z2

����
z0

ðz2 � z02Þ
 !

þ � � �

þ log Gðz01; . . . ; z0mÞ þ
@G

@zm

����
z0

ðzm � z0mÞ
 !

þ ð1�mÞlogðGðz01; . . . z0mÞÞ

¼ log Gðz01; . . . ; z0mÞÞ1�m
Ym
i¼1

Gðz01; . . . ; z0mÞ þ
@G

@zi

����
z0

ðzi � z0iÞ
 ! !

ð29Þ
Proposition 3 in the Appendix allows us to approximate
Equation (28) as:

w ¼ Gðz1; . . . ; zmÞ � ðGðz01; . . . ; z0mÞÞ1�m
Ym
i¼1

Gðz01; . . . ; z0mÞ þ
@G

@zi

����
z0

ðzi � z0iÞ
 ! (30)

This is the foundation for a second kind of approxima-
tion, which is also based on a first-order Taylor expansion
around an operating point. When the changes of variables
are reversed, the result is an approximation in terms of
functions that can be concisely written in the form

v �
V
Qm
i¼1

xnii

Qm
i¼1

ðKi þ xnii Þ
(31)

Where V, Ki, and ni are real-valued constants. Following
the same arguments and notation used previously, we have

ni ¼
fi

ð1� piÞ

Ki ¼
ð1� piÞ

pi
xnii0

V ¼ v0

Qm
i¼1

ðKi þ xnii0Þ

Qm
i¼1

xnii0

(32)

For the general case, it is easily proven that Equation (13)
is a particular case of Equation (31). As both approxima-
tions use the same information, that is: the operating point
values of concentrations and fluxes, the local sensitivities,
and the saturation fraction for each variable at the operating
point, the approximation in Equation (31) is more general.
Thus, hereafter, we use this approximation, unless otherwise
stated. We call it Saturating and Cooperative formalism (SC
formalism). In the next section, we present some examples of
its use and further discuss its potential advantages.
Using the SC Formalism as a Modeling Tool

Mainly, the SC formalism can be very useful in situations in
which we need to define a rate-law for a saturable process
but no detailed information exists about the underlying
mechanism. A Taylor approximation to the unknown
function in transformed coordinates, first used to derive a
Power-Law formalism (Savageau, 1969a,b, 1970; Voit,
2000), provides a solution by considering the operating
point values and the sensitivity (kinetic order) of the rate
with respect to the relevant variables. The SC formalism
requires a supplementary piece of information: the saturat-
ion fraction of the process with respect to the relevant
variable.

As an illustrative example, consider a process that has a
kinetic order f¼ 1.2 at the operating point x0¼ 10, with
v0¼ 3. Using this information, the Power-Law approxima-
tion to the rate of the process is

v ¼ 0:19 x1:2 (33)

If we use the SC formalism given in Equation (31) we
obtain the following result, which depends on the value for
the saturation fraction (p)

n ¼ f

ð1� pÞ ¼
1:2

1� p

K ¼ ð1� pÞ
p

xn0 ¼
ð1� pÞ

p
10n

Vm ¼ v0=p ¼ 3=p

v ¼ 3=p x1:2=ð1�pÞ

ð1� pÞp101:2=ð1�pÞ þ x1:2=ð1�pÞ

(34)

In Figure 2 we compare both representations for different
values of the saturation fraction. It is important to note that
the same information leading to a given Power-Law
representation leads to different saturating approximations
because different values for the saturation fraction p change
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Figure 2. SC representation at different saturation fractions. Using the same

information at the operating point, we obtain different representations in function of

the saturation fraction considered (Continuous lines. Value of p from 0.1 (upper line) to

0.8 (lower line) in 0.1 steps). The Power-Law representation is indicated by a dashed

line.
the resulting SC representation but not the Power-Law
representation. By taking into account the saturation
fraction, the SC results in a Hill-like representation that
exhibits cooperativity and saturation.

For illustrative purposes, assume that we determine that
at the operating point p¼ 0.5. In this case, Equation (34)
becomes:

n ¼ f

ð1� pÞ ¼
1:2

1� 0:5
¼ 2:4

K ¼ ð1� pÞ
p

xn0 ¼
ð1� 0:5Þ

0:5
102:4 ¼ 251:9

Vm ¼ v0=p ¼ 3=0:5 ¼ 6

9>>>>=
>>>>;

! v

¼ 6x2:4

251:19þ x2:4
(35)

This representation can now be used in a model for
computational and numerical goals. The mathematical
derivation of the SC formalism ensures that this is a
theoretically sound approximation to the unknown rate
function and that both share the same sensitivity at the
selected operating point and the same saturation for x!1.

Let us consider now a process that depends on more than
one variable. Assume that the process depends upon one
substrate X1 and one inhibitor X2 and that (X10, X20)¼
(10, 2), v0¼ 5, and f1¼ 0.5, f2¼�0.8 at the operating point.
Kinetic orders could have been estimated by any of the
methods established for either BST or MCA (see for instance
Voit, 2000). Finally, assume that the saturation fractions
have been determined to be p1¼ 0.7 and p2¼ 0.5. Using this
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information, we obtain:

n1 ¼
0:5

1� 0:7
¼ 1:67 n2 ¼

�0:8

1� 0:5
¼ �1:6

K1 ¼
1� 0:7

0:7
101:67 ¼ 19:89 K2 ¼

1� 0:5

0:5
2�1:6 ¼ 0:33

(36)

and V¼ 14.29. Then, the function we shall use to model this
process is:

v ¼ 14:29 X1:67
1 X�1:6

2

ð19:89þ X1:67
1 Þð0:33þ X�1:6

2 Þ (37)
Parameter Estimation

Parameter estimation is a central issue in any formalism. In
our case, we have shown how to calculate the parameter
values once we have measures for: (i) the operating point
values of the dependent variables and fluxes, (ii) the local
sensitivity (kinetic orders or elasticities), and (iii) the
saturation fraction. The values for the dependent variables
and fluxes at the operating point can be experimentally
measured. As stated above, local sensitivities can be
determined by the methods used by BST and MCA for
obtaining kinetic orders (elasticities). Estimations of the
saturation fractions require additional experiments. In any
case, if the operating point and the elasticity are known, we
can consider different values of the saturation fraction and
obtain alternative representations. We can then analyze the
effect of different saturation fractions on the model
behavior.

There are alternatives to estimate the parameters using the
information of a single given operating point. We can
instead use non-linear regression to obtain the parameters
from a series of measurements that sample a given range of
metabolite values (Hernández-Bermejo et al., 1999, 2000).
The wide use of the Hill equation as a phenomenological
model corresponds to this alternative. As an example of this
approach, consider the mechanism shown in Figure 3.

If the usual simplifications of classical enzyme kinetics
hold, this mechanism corresponds to the rate-law

v ¼ VmS

Km þ S 1þ I
Ki

� � (38)

For illustrative purposes, consider the following para-
meter values: Vm¼ 10, Km¼ 5, Ki¼ 3, and the operating
point: S0¼ 2, I0¼ 1. Under these conditions, we obtain the
following SC representation

v ¼ 8:21 S1I�1

ð3:75þ S1Þð0:095þ I�1Þ (39)
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Figure 3. Uncompetitive inhibition mechanism. ks are elemental rate constants.

E, free enzyme; ES, enzyme-substrate complex; ESI, enzyme-substrate-inhibitor com-

plex; P, product.
Now assume that an experimental data series is available.
We have simulated such a series by generating noisy data
points for different values of S and I. The noise was
introduced by adding a random number from a normal
Figure 4. Approximating an uncompetitive mechanism with the SC formalism. The kin

surface using the saturating approximation at the operating point S0 ¼ 2, I0 ¼ 1. b: Error surfa
distribution with mean 0 and standard deviation 0.2.
Adjusting a two-variable SC representation to this data
series with non-linear regression we obtain

v ¼ 8:40 S0:98I�0:99

ð3:16þ S0:98Þð0:18þ I�0:99Þ (40)

As expected, both representations are different and
approximate with different accuracy the actual rate-law
(Fig. 4). Both strategies use different information. The
operating point characteristics are exactly represented by the
first strategy, although the overall error in approximating a
wider range of variation of the velocity is greater than the
one corresponding to the least-squares strategy (see
Hernández-Bermejo et al., 1999, 2000 for details). In
practice, the least-squares strategy will provide a better
approximation to the actual rate-law in the considered range
because it uses information over the whole range of variation
of the involved the variables.

The accuracy of the representation provided by the SC
formalism depends on the selected operating point. In the
etic parameters for the uncompetitive mechanism are: Vm¼ 10, Km¼ 5, Ki¼ 3. a: Error

ce using the saturating approximation obtained by mean-squares (see text for details).
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case of the example used above, we can find the optimal
point for making the minimum error when representing the
target rate-law by the SC formalism. The optimal operating
point is obtained through the following procedure:
1. S
Fig
squ

12
elect a point.

2. C
ompute the SC approximation at this point.

3. C
ompute the squared sum of errors (SSE).

4. R
un a minimization procedure until an operating point

that minimizes SSE is found.

In our example, we obtain the best operating point at
S0¼ 7.33, I0¼ 3.20. When we use the operating point values
to estimate the parameters for the SC representation and
then calculate the accumulated error of that representation
with respect to the actual function over a range of substrate
from 0 to 14, and a range of inhibitor from 0 to 14, we get an
accumulated error with SSE¼ 4.1463. When we use the data
points within the considered region to estimate the
parameter values for the SC representation using non-
linear regression and we calculate the accumulated error of
that representation with respect to the actual function over
the same range we get a SSE¼ 4.0998 (Fig. 5). Figure 5
makes it clear that the error increases rapidly for the
parameter values estimated using a given operating point as
the concentrations of substrate and inhibitor at the
operating point decrease. On the contrary, the error of
the least-squares approximation has a fixed value inside the
concentration region used to estimate the parameters, when
parameters are calculated using the SSE minimization
strategy. This is so because all points within that region are
used to estimate the parameter values. As a rule of thumb,
non-linear regression would be preferable to estimate
parameter values because it takes into account information
over a range of the state space. Nevertheless, the choice
ure 5. Approximating an uncompetitive mechanism with the SC formalism at diffe

are error as a function of the selected operating point, (b) Contour plot identifying th
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between either strategy will depend upon the available
information.

The SC formalism also provides a practical representation
for cases in which no alternative kinetic formalism is
available. Assume that the reactions shown in Figure 3 take
place in an environment of restricted diffusion, for instance
a membrane. In such conditions, it has been suggested that
the elemental reactions may have fractional kinetics that are
different from those observed in free diffusion (Savageau,
1993, 1995, 1998). Under conditions that restrict diffusion,
we assume the following mechanism:

dES

dt
¼ k�i ESIþ k1S

gsðET� ES� ESIÞge

� ðk2 þ ki þ k�1ÞES
dESI

dt
¼ kiI

giESges � k�iESI

ET ¼ Eþ ESþ ESI ð41Þ

Here, we have considered that the bimolecular reactions
follow fractional kinetics with exponents that can be
different from one. If this is so, the quasi-steady-state
equations of the mechanism cannot be solved explicitly.
Assume a case where the values for the elemental rate
constants are: k1¼ 2, k�1¼ 0.1, ki¼ 0.2, k�1¼ 0.1, k2¼ 3.
The fractional kinetic orders for the elemental mechanisms
are: ge¼ 1, gs¼ 2.8, gi¼ 3.5, ges¼ 1. Assume also that ET¼ 5.

We can now use the kinetic rate-law for the classical
uncompetitive inhibition mechanism and Equation (31) to
approximate the rate of production of P. We estimate the
parameters for both equations from the data points. Figure 6
shows that the SC formalism provides a more accurate
approximation to the pseudo-experimental data points than
the use of the classical enzyme kinetics rate expression. This
is so because, although the mechanism corresponds to
rent operating points. The kinetic parameters are the same as in Figure 4. a: Sum of

e optimal point.
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Figure 6. Fractional kinetics reflect an environment of restricted diffusion. Dots represent rate of product formation obtained by numerical computation using the equations

for the detailed enzyme mechanism (see text), under different concentrations of substrate and inhibitor. a: Fitting obtained with the classical uncompetitive formalism. b: Fitting

obtained with the SC formalism.
uncompetitive inhibition, the existence of fractional kinetics
does not conform to the assumptions that allow the
derivation of the classical rate expression.
Use of Approximate Representations to
Build Mathematical Models for Systems
Biology Applications

The possibility of obtaining different approximate repre-
sentations to an unknown kinetic function leads to some
confusion regarding which alternative should be used in a
given application. The use of different nomenclature and the
lack of an appropriate comparison (e.g., in Heijnen, 2005)
introduces a high level of noise to an issue that should be
centered on technical arguments. If we focus on a system’s
representation and dynamic simulations, two different
approaches are now widely used: the Power-Law formalism,
in either its S-system or Generalized Mass Action (GMA)
forms, and the Lin-log or (log)linear representations. In this
article, we provide an additional possibility with the SC
formalism.
In order to illustrate the differences and similarities
between the different approximations, we shall focus on an
example that helps clarifying the limitations of the various
representations. The Lin-log and (log)linear representations
are fundamentally equivalent when enzyme concentrations
are constant. This is the case in the example below.
Therefore, we shall refer to them as Lin-Log/(log)linear from
now on. Although more elaborated models and compar-
isons are required to generalize the statements regarding the
advantages of using each of the formalisms, this simple
example highlights some differences that are worth bearing
in mind. Consider the model shown in Figure 7. The rate
of each process in that model is described using kinetic
equations that we assume accurate (see Appendix). We then
derive the system of differential equations that describes the
dynamical behavior of the system, using (a) the accurate
equations, and (b) each of the alternative formalisms to
approximate those equations. We do the approximations at
three different operating points (see also the Appendix).
Then we compare the steady-state prediction of each of the
formalisms and the resulting time courses to those for the
original model under various conditions.
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Figure 7. Metabolic network with one positive feedforward and a negative

feedback. All enzymes follow a Michaelis–Menten kinetics except those correspond-

ing to v2 and v5 that follow an Irreversible General Hyperbolic modifier kinetics and an

Irreversible Hill kinetics with one modifier, respectively. The kinetic expressions are

given in the Appendix.
The steady-state predictions obtained with each of the
formalisms are compared with the reference steady-state
curve in Figure 8. Clearly, the SC formalism can accurately
predict the results almost independently of the operating
point. When the operating point corresponds to low values
of the independent variable, all the approximations produce
worst predictions than the SC formalism. With the para-
Figure 8. Steady-state curves of the dependent variables for the model in Figure 7 as a

particular parameter values selected. Lines: reference model (dark line), S-System (light line

light line). The approximations were built at three different operating points (X5 equal to
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meters chosen for the reference model, the system has no
finite steady-state solution for high values of the indepen-
dent variable. The SC also captures this important feature,
while all the other alternative representations predict a finite
steady-state. The S-system and the Lin-log/(log)linear
models are equivalent with regards to the steady-state
calculations, predicting the same straight line in log–log
coordinates. Although the S-system model focus on
aggregated fluxes, and the Lin-log/(log)linear model is
build without aggregation by using a different function
for each velocity, the particular structure of the Lin-log/
(log)linear approximation leads to the same steady-state
solution as the S-system model. This observation, that can
be easily shown analytically, demonstrates that some of the
arguments against the S-system form and in favor of the Lin-
log/(log)linear approach were not appropriately founded
(Heijnen, 2005). The GMA model generates a steady-state
curve that predicts a non-linear dependence of the steady-
state concentrations upon the values of the independent
variables in log–log coordinates. These predictions, in the
example, are more accurate than those generated using the
S-system and Lin-log/(log)linear models. The generalization
of this conclusion would require further investigation as
previous analysis suggested that the S-system form can
sometimes be more accurate (Voit and Savageau, 1987).
function of the independent variable (X5). Results for X2 and for X3 are equal due to the

), GMA (slim dark line), Lin-Log/(log)linear (dashed light line), and SC formalism (dashed

2.5, 1, and 0.4, from top to bottom rows).
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Figure 9. Dynamic response for the system of Figure 7 as the concentration of

the independent variable (X5) changes from 1 to 4. Lines follow the same pattern as in

Figure 8.
The SC formalism is also able to capture an important
qualitative feature of our example. The reference model
shows a characteristic steady-state curve: the slope of the
curve changes sign for different values of X5. Of all
representations, only the SC formalism can predict all these
changes.

The dynamic response of the reference model has also
been analyzed in order to compare the accuracy of each of
the formalisms. For large increases in the independent
variable, the SC is the only model that accurately reproduces
the reference time-course (Figs. 9–11). Furthermore, all
other alternative representations predict a decrease in X2 and
X3, where both should increase. Although the time-course
of the Lin-log/(log)linear model is similar to that of the
S-system model, it is instructive to analyze the evolution of
the rates of each reaction (Figs. 10 and 11). The Lin-log/
(log)linear formalism fails in appropriately reproducing the
Figure 10. Changes in the rates of the reference system as the concentration of th

variables are the corresponding concentrations at steady-state of X5 equal to 1. Lines fo
changes in rates, predicting negative rates when the
metabolites have values well below the operating point.

Although more general comparisons are needed, the
present example shows that the SC formalism extends the
accuracy of the local representation provided by Power-Law
models and may be seen as a complementary representation.
In that sense, the predictions resulting from the analysis of S-
system models can further be investigated by exploring, for
example, the effect of different saturation factors by means
of the SC formalism. The obtained results may be more
realistic when it comes to discuss the system response to
large changes.
Discussion

Mathematical models play a central role in the analysis of
complex metabolic networks by providing a tool for
reproducing, understanding, and predicting experimental
observations. They are invaluable for testing hypotheses
about systemic design and operational principles. Identi-
fication of such principles is one of themain goals of Systems
Biology. In pursuing such a goal, models must allow for
testing hypotheses concerning evolutionary processes,
regulatory influences, non-linear behaviors, dynamic
responses, and so on. Thus, the models require the use of
an adequate mathematical formalism that is able to
successfully reproduce important dynamical features of
metabolic networks. Furthermore, as the available experi-
mental information may lack important details on the
underlying mechanisms, the selected formalism should be
able to provide insights under such conditions.

In this work we develop a mathematical formalism that
meets those requirements. The Saturating and Cooperative
formalism is derived as an approximate representation that
provides certain advantages over other existing alternative
formalisms. Themost interesting feature is that, being a local
e independent variable (X5) changes from 1 to 4. The initial values for the dependent

llow the same pattern as in Figure 8.
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Figure 11. Changes in the rates of the reference system as the concentration of the independent variable (X5) changes from 1 to 0.4. The initial values for the dependent

variables are 0.1, simulating the situation where a system that is almost totally in the off state is activated by some external signal. Early rate values for the Lin-Log/(log)linear

approximation are negative, although they recover in the time. Lines follow the same pattern as in Figure 8.
representation derived at a given operating point, it
accounts for cooperativity and saturation. The SC formalism
extends other existing approaches by following the ideas
introduced by the Power-Law formalism. However, the
straightforward algebraic analysis that can be done using S-
systems models in BST is lost in models based on the SC
formalism. Nevertheless, the SC formalism can be seen as a
complementary extension than provides greater accuracy for
numerical simulations. For instance, design principles can
be analyzed using the S-system form of the Power-Law
formalism to identify parameter constraints and optimal
regulatory patterns. The SC formalism can then be used to
explore in depth the resulting predictions in the dynamic
domain by considering both the constraints corresponding
to the local sensitivities and the effect of different saturation
fractions.

In terms of modeling strategies, as we have shown here, a
model based on the SC formalism can automatically be
obtained from the scheme of the target system. Furthermore,
as it happens with the Power-Law formalism as well, no
precise details on the underlyingmechanisms are required to
obtain a model that is able to capture essential features of the
involved processes. This makes the kind of approaches that
use approximation theory an interesting alternative when
complex networks are to be modeled and few kinetic data
are available (see examples of the Power-Law approach in
Alves et al., 2004a,b; Vilaprinyo et al., 2006). This is the case
in almost every system in biotechnology and metabolic
bioengineering.

The use of models built as systems of differential
equations is a requisite for dealing with dynamic data.
The results discussed in this work suggest that the SC
formalism can be specially suited for this task. Our
comparison of alternative approximated formalisms based
on different strategies suggests that the SC performs with
higher accuracy. Although more general comparisons are
needed, our results show that the Lin-log/(log)linear
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formalism has important problems when computing
dynamic changes. Arguments in favor of this formalism
have been based on its appropriateness for approximating a
kinetic function (Heijnen, 2005). However, this formalism
leads to negative velocities when we move towards low
relative values of the metabolites. This produces inap-
propriate predictions. Our results show that the Lin-log/
(log)linear approach cannot be considered a practical
alternative in all cases.

Finally, we want to indicate that parameter estimation
from dynamic data is an important issue that concentrates
many efforts (see Voit et al., 2005 and references therein).
This problem becomes more relevant than ever with the
increasing amount of available metabolomic data. As the SC
formalism is a suitable approximation to non-linear
cooperative and saturating functions, we expect that models
based on this formalism can be used for fitting dynamic data
with better accuracy. This is an unexplored problem that will
concentrate our interest in the near future.

The authors are grateful to A. Cortés from the University of Barcelona

for his advice on the early work of Hill and the use of his equation in

enzyme kinetics. We are also grateful to A. Salvador and E. Voit for

their critical suggestions to an early version of this work. A.S., E.V.,

and R.A. want to acknowledge the financial support of the Spanish

Ministerio de Educación y Ciencia (grant BFU2005-0234). B.H.-B.

would like to thank the other authors and the Universitat de Lleida for

the kind hospitality and financial support provided in 2005 during a

stay in which part of this work was done. RA was supported by a

Ramon y Cajal award from the Spanish Ministerio de Educacion y

Ciencia.

Appendix

Complementary Technical Results

As in the main text, the symbol�will always mean ‘‘equal to
first order’’ in the sense of the Taylor expansion around the
specified operating point.
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Proposition 1: Let f(x1,. . .,xm) be a smooth real function,
and let x0 ¼ ðx01; . . . ; x0mÞ 2 Rm. Then

f ðx1; . . . ; xmÞ � ~f1ðx1Þ þ ~f2ðx2Þ þ . . .þ ~fmðxmÞ þ C (42)

around x0, where

~fiðxiÞ � f ðx01; . . . ; x0;i�1; xi; x0;iþ1; . . . ; x0mÞ (43)

for all i¼ 1,. . .,m, and C¼ (1�m) f(x01,. . .,x0m) is a real
constant.

Proof: We have:

f ðx1; . . . ; xmÞ

� f ðx01; . . . ; x0mÞ þ
Xm
i¼1

@f

@xi

����
x0

ðxi � x0iÞ (44)

while for the restrictions of f:

~fiðxiÞ � ~fiðx0iÞ

þ d~fi
dxi

�����
x0i

ðxi � x0iÞ

¼ f ðx01; . . . ; x0mÞ þ
@f

@xi

����
x0

ðxi � x0iÞ (45)

After this, the equality is demonstrated by direct sub-
stitution. &
Proposition 2: For every smooth and strictly positive one-
variable real function f(x) and for every x02R, we have

logðf ðxÞÞ � logðf ðx0Þ þ f 0ðx0Þðx � x0ÞÞ (46)

in a neighborhood of x0.
Proof: It can be seen that:

logðf ðxÞÞ � logðf ðx0ÞÞ þ
f 0ðx0Þ
f ðx0Þ

ðx � x0Þ (47)

In particular, this equality can also be applied to the
function log( f(x0)þ f0(x0)(x�x0)), and the result leads to
the establishment of the proposition. &
Proposition 3: Let f(x1,. . ., xm) and g(x1,. . ., xm) be two
smooth and strictly positive real functions and let x0¼
(x01,. . ., x0m)2Rm. Then log( f(x1,. . .,xm))� log(g(x1,. . .,xm))
at x0 if and only if f(x1,. . ., xm)� g(x1,. . ., xm) at x0.
Proof: After some standard calculations we have:

logðf ðx1; . . . ; xmÞÞ

� logðf ðx01; . . . ; x0mÞÞ

þ
Xm
i¼1

1

f ðx01; . . . ; x0mÞ
@f

@xi

����
x0

ðxi � x0iÞ (48)

logðgðx1; . . . ; xmÞÞ

� logðgðx01; . . . ; x0mÞÞ

þ
Xm
i¼1

1

gðx01; . . . ; x0mÞ
@g

@xi

����
x0

ðxi � x0iÞ (49)

If log( f(xi,. . .,xm))� log(g(x1,. . .,xm)) at x0 then it is
simple to see that log( f(x01,. . .,x0m))¼ log(g(x01,. . .,x0m)),
namely f(x01,. . .,x0m)¼ g(x01,. . .,x0m). As a consequence
5f¼5g at x0 and therefore f(x1,. . .,xm)� g(x1,. . .,xm)
at x0.

Conversely, if f(x1,. . .,xm)� g(x1,. . .,xm) at x0, then the
proof follows analogous steps but in the reverse order: since
f(x01,. . .,x0m)¼ g(x01,. . .,x0m) and 5f¼5g at x0, then
necessarily log( f(x1. . .,xm))� log(g(x1. . .,xm)) holds at x0.
This completes the proof. &
Reference Model

Kinetic equations for the reference model and
operating point

The reference model (Fig. 7) can be described by the
following set of ordinary differential equations:

dX1

dt
¼ v1 � v2

dX2

dt
¼ v2 � v3 � v5

dX3

dt
¼ v3 � v4

dX4

dt
¼ v5 � v6

The considered kinetics for each of the reactions are:

v1 ¼
16X5

1þ X5
v2 ¼

65 X1

0:3 1þ 0:04
2:5

X3

0:12

� �
1þ X3

0:12 þ
X1

0:3 1þ X3

2:5�0:12
� �

v3 ¼
8X2

1þ X2
v4 ¼

8X3

1þ X3

v5 ¼
58 X2

11

� �3
X2

11

� �3þ 1þ X1
1ð Þ3

1þ63
X1
1ð Þ3

v6 ¼
8X4

1þ X4
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The steady-state solution is computed by numerically
solving the steady-state equations

v1 � v2 ¼ 0
v2 � v3 � v5 ¼ 0
v3 � v4 ¼ 0
v5 � v6 ¼ 0

for different values of the independent variable X5. All the

computations have been performed using Mathematica�.

The resulting operating points for the X5 values of Figure 8

are indicated in Table I.

Power-law approximation (GMA)

The Power-Law model for the reference system is obtained
by defining a Power-Law representation of each vi in the
model. Thus, we have

dX1

dt
¼ g1X

f15
5 � g2X

f21
1 X

f31
3

dX2

dt
¼ g2X

f21
1 X

f31
3 � g3X

f32
2 � g5X

f51
1 X

f52
2

dX3

dt
¼ g3X

f32
2 � g4X

f43
3

dX4

dt
¼ g5X

f51
1 X

f52
2 � g6X

f64
4

where fij ¼ ð@vi
@Xj

Xj
vi
Þ0 and g i ¼ vi0

Qm
j¼1 X

�fij
j0 . The resulting

parameters for each of the operating points in Figure 8 are
indicated in Table II.
Table II. Parameters for the GMAmodel at the different operating points

(Table I).

X50

2.5 1 0.4

f15 0.2857 0.5 0.7143

f21 0.1544 0.4130 0.6951

f23 �0.6813 �0.7065 �0.7378

f32 0.4141 0.4171 0.4524

f43 0.4141 0.4171 0.4524

f51 0.0514 1.4646 1.7386

f52 2.6513 2.8274 2.9901

f64 0.1573 0.5829 0.9762

g1 8.7962 8 8.7962

g2 11.8416 10.3374 12.450

g3 4.0598 4.0556 4.0182

g4 4.0598 4.0556 4.0182

g5 2.5113 1.3897 0.9270

g6 5.1768 4.0556 7.1486

Table III. Parameters for the S-system model at the different operating

points (Table I)

X50

2.5 1 0.4

g15 0.2857 0.5 0.7143

h11 0.1544 0.4130 0.6951

h13 �0.6813 �0.7065 �0.7378

h21 0.0303 0.6109 0.0724

h22 1.7337 1.4224 0.5581

g32 0.4141 0.4171 0.4524

h33 0.4141 0.4171 0.4524

g41 0.0514 1.4646 1.7386

g42 2.6513 2.8274 2.9901

h44 0.1574 0.5829 0.9762

a1 8.7962 8 8.7962

a3 4.0598 4.0556 4.0182

a4 2.5113 1.3897 0.9270

b1 11.8416 10.337 12.4503

b2 6.0178 5.1179 4.4949

b3 4.0598 4.0556 4.0182

b4 5.1768 4.0556 7.1486
Power-Law approximation (S-system)

In the S-system approximation, the differential equa-
tions are defined as a balance of aggregated fluxes of
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synthesis and degradation for each metabolite. In our
example:
dX1

dt
¼ Vþ

1 � V�
1 ¼ v1 � v2

dX2

dt
¼ Vþ

2 � V�
2 ¼ v2 � ðv3 þ v5Þ

dX3

dt
¼ Vþ

3 � V�
3 ¼ v3 � v4

dX4

dt
¼ Vþ

4 � V�
4 ¼ v5 � v6

In the nomenclature of S-systems, the kinetic-orders fij are
called gij is they refer to Vþ

i and hij if they refer to V�
i . The

resulting parameters for each of the operating points in
Figure 8 are indicated in Table III. The model is
dX1

dt
¼ a1X

g15
5 � b1X

h11
1 Xh13

3

dX2

dt
¼ b1X

h11
1 Xh13

3 � b2X
h21
1 Xh22

2

dX3

dt
¼ a3X

g32
2 � b3X

h33
3

dX4

dt
¼ a4X

g41
1 X

g42
2 � b4X

h44
4
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Table IV. Parameters for the S-system model at the different operating

points (Table I).

X50
Lin-log and (log)linear approximation

The basic equations for the Lin-Log/(log)linear model are
the same as for the GMA model, that is, the flux
2.5 1 0.4

n15 1 1 1

n21 1 1 1

n23 �0.8413 �0.8429 �0.8610

n32 1 1 1

n43 1 1 1

n51 2.9990 2.9460 1.8156

n52 3 3 3

n64 1 1 1

K15 1 1 1

K21 0.6713 0.6705 0.6606

K23 3.1799 3.9065 5.0782

K32 1 1 1

K43 1 1 1

K51 0.8664 0.8581 2.3826

K52 21.5452 44.7121 538.252

K64 1 1 1

V1 16 16 16

V2 71.0686 84.2175 104.745

V3 8 8 8

V4 8 8 8

V5 59.0123 115.341 1367.71

V6 8 8 8

p15 0.7143 0.5 0.2857

p21 0.8456 0.5870 0.3049

p23 0.1902 0.1618 0.1431

p32 0.5859 0.5829 0.5476

p43 0.5859 0.5829 0.5476

p51 0.9828 0.5029 0.0424

p52 0.1162 0.0575 0.0033

p64 0.8426 0.4171 0.0238
dX1

dt
¼ v1 � v2

dX2

dt
¼ v2 � v3 � v5

dX3

dt
¼ v3 � v4

dX4

dt
¼ v5 � v6

In that case, as no change in the enzyme levels is
considered, each velocity is approximated by vi ¼
vi0ð1þ

Pm
j¼1 fijLnð

Xj

Xj0
ÞÞ. The corresponding parameters

are, thus, the same as for the GMA model (Table II). The
resulting model is:

dX3

dt
¼ v30ð1þ f32LnðX2=X20ÞÞ � v40ð1þ f43LnðX3=X30ÞÞ

dX4

dt
¼ v50ð1þ f51LnðX1=X10Þ þ f52LnðX2=X20ÞÞ

� v60ð1þ f64LnðX4=X40ÞÞ

dX1

dt
¼ v10ð1þ f51LnðX1=X10ÞÞ

� v20ð1þ f21LnðX1=X10Þ þ f23LnðX3=X30ÞÞ

dX2

dt
¼ v20ð1þ f23LnðX3=X30ÞÞ � v30ð1þ f32LnðX2=X20ÞÞ

� v50ð1þ f51LnðX1=X10Þ þ f52LnðX2=X20ÞÞ
SC approximation

In the SC approximation, each velocity is represented as

vi ¼
Vi

Qm
j¼1

X
nij
j

Qm
j¼1

ðKij þ X
nij
j Þ

At a given steady-state, the parameters of this representa-
tion can be computed from the corresponding sensitivity
( fij) and from the saturation fraction pij (see text for details).
The parameters for the SC approximation at each
operating point are indicated in Table IV. The resulting
model is:

dX1

dt
¼ V1X

n15
5

K15 þ Xn15
5

� V2X
n21
1 Xn32

3

ðK21 þ Xn21
1 ÞðK32 þ Xn32

3 Þ

dX2

dt
¼ V2X

n21
1 Xn32

3

ðK21 þ Xn21
1 ÞðK32 þ Xn32

3 Þ �
V3X

n32
2

K32 þ Xn32
2

� V5X
n51
1 Xn52

5

ðK51 þ Xn51
1 ÞðK52 þ Xn52

3 Þ

dX3

dt
¼ V3X

n32
2

K32 þ Xn32
2

� V4X
n43
3

K43 þ Xn43
3

dX4

dt
¼ V5X

n51
1 Xn52

5

ðK51 þ Xn51
1 ÞðK52 þ Xn52

3 Þ �
V6X

n64
4

K64 þ Xn64
4
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