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Abstract

Background: Reference interval estimation is an important issue in clinical laboratories. Present methods are based either on data transformation or
on non-parametric approaches.
Methods: We present a new technique based in a family of statistical distributions known as GS-distributions that provide a suitable model for
continuous unimodal variables. We compare, both by simulation studies an on actual data, the reference intervals estimated by using non-
parametric methods and data transformations suggested by the IFCC and those obtained by fitting a GS-distribution. Simulated data are generated
from various distributions to evaluate the accuracy of these methods. In each case, confidence intervals for the resulting reference intervals are
obtained by bootstrap.
Results: In all the cases, the GS-distribution based method provides comparable or more accurate results than the non-parametric methods. In most
cases, the proposed method produces better results than those obtained by transforming the original data.
Conclusions: Our results suggest that the method for computing reference intervals based on GS-distribution is a valid alternative for the current
non-parametric methods.
© 2006 Elsevier B.V. All rights reserved.
Keywords: Reference intervals; Statitical distributions; Reference range
1. Introduction

Reference intervals (RI) play an important role in clinical
practice as they are required for assessing the health status of
patients. Furthermore, they are a basic tool of clinical labo-
ratories, both in quality control and in providing reference
values according to the protocols used in each case. An RI is
typically defined as the range comprised between the 2.5 and
97.5 percentiles of the data distribution from a given reference
population. Accordingly this interval estimates the expected
values that would contain the 95% of the subjects of the
considered population. Guidelines for appropriately estimating
Abbreviations: GSD, GS-distribution; TST, Two-stages transformation
method; NP, non-parametric method; HDM, Harrell–Davis method; RMSE,
Root Mean Square Error.
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RI include rules for subject selection, data validation, outlier
detection, and indications on the appropriate statistical compu-
tations [1]. In particular, the target reference population should
be clearly defined. In general, the reference population is any
population defined according to precise inclusion criteria and
it does not always correspond strictly to a healthy population
[2]. For instance, in a given clinical application the target
population could be those patients of a given age range that
present a severe status of a given disease.

From a statistical point of view, the available approaches for
RI estimation include non-parametric methods [3–5], robust
methods [6–8], transformation methods [9–11], and different
variants of these basic methodologies (see Ref. [12] for a
review). From a practical point of view, it is common to follow
the NCCLS (National Committee for Clinical Laboratory
Standards) recommendations and obtain nonparametric refer-
ence intervals using a sample size of at least 120 subjects [1].

The development of the different methods indicated
above arises from the lack of information on the underlying

mailto:albert.sorribas@cmb.udl.es
http://dx.doi.org/10.1016/j.cca.2006.12.010


72 J. Trujillano et al. / Clinica Chimica Acta 379 (2007) 71–80
distribution. Otherwise, the computation of the corresponding
RI would be straightforward once the appropriated parameters
for the distribution were obtained from the sample data. When
no reasonable information is available on the underlying
distribution, one may consider using a transformation that
provides a new variable with know distribution. For instance,
an appropriate Box–Cox transformation can convert the actual
variable in a new variable with normal distribution [10,11]. RI
would then be estimated on the transformed variable; a reverse
transformation would provide the required RI on the original
variable. In many cases, a simple logarithmic transformation is
used [13,14]. However, this may not be appropriate for most
situations and alternative transformations should be consid-
ered. Although this is a suitable technique, there is no
guarantee that this transformation exists for a given set of data
[15]. Furthermore, even when the appropriate transformation
can be found, the back transformation may be impossible, due
to out-of-bounds problems with interpolated values. Non-
parametric methods provide a highly recommended alternative
in those cases.

The problem of estimating a RI would be greatly
simplified if a general parametric model could be defined.
Then, the problem would be reduced to obtain the appropriate
parameters according to the data and to assess the goodness-
of-fit. Once the particular instance of the distribution is fitted,
RI would be obtained by a simple computation. With this
Fig. 1. Examples of GSD. In all cases the median is equal to 100. Parameters α, g, k,
0.1, 12.0, 2.0.
possibility in mind, we developed the GS-distribution (GSD)
[16]. This is a family of distributions defined as:

dFðxÞ
dx

¼ aFðxÞgð1−FðxÞkÞg Fðx0Þ ¼ 0:5 ð1Þ

where F(x) is the cumulative. This family has three
parameters that account for the shape of the resulting
distribution (g, k, γ). Thus, these parameters are responsible
for the skewness and kurtosis of the resulting distribution.
Parameter α is related to the spread of the distribution, and x0
corresponds to the median of the distribution and fixes the
initial conditions of the differential equation. For simplicity,
we shall indicate a given GSD as GSD[x0, α, g, k, γ]. Some
examples of the flexibility of the GSD are shown in Fig. 1.

The GSD is a parametric family that results from a gene-
ralization of the S-distribution [17–19] and it is more flexible than
classical parametric models and hence is better for modeling data
observed in practice [16]. Using this family, we can fit a GSD to
unimodal data without further assumptions on the actual un-
derlying distribution. As any continuous unimodal distribution
can be accurately represented as a GSD, this assures that we can
always obtain an estimated distribution that fit the data. In most
cases, the resulting fit is comparable to the one we would obtain
if the true distribution was known. In that sense, the GSD is
a practical tool for obtaining a distribution that explains the
γ are: (A) 0.1, 1.0, 1.0, 1.0; (B) 0.1, 0.5, 1.0, 3.0; (C) 0.1, 2.0, 5.0, 2.0; (D) 0.01,
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observed data. In practice, GSD parameters must be estimated
from data by a numerical maximum likelihood procedure [16,20].

In this paper we suggest using the GSD as a parametric model
for computing RI. In theMethods section wewill first discuss the
use of GSD and the computation of quantiles and RI from a
given instance. Then, we shall present the methods for fitting a
GSD to data. In the Results section, we will investigate the
performance of this method on simulated and actual data. To do
that, we will compare the RI obtained by our method to those
obtained by the common non-parametric and transformation
methods. Our results will show that the GSD basedmethodology
provides a practical alternative to the current methods.

2. The GS-distribution as a statistical model for univariate
distributions: definition and computation of reference
intervals

TheGSD is defined as a five parameter family of distributions
that arises from recasting known distributions using a represen-
tation of the form

f ðxÞ ¼ dF
dx

¼ WðFÞ ð2Þ

This representation has been used by different authors leading to
quantile-based families of distributions [21–24]. We found that
Table 1
Results of simulation studies comparing various approaches for estimating the 97.5t

Sampling distribution True 97.5th
percentile

Sample size

120

RMSE

Chi-square(4) 11.1
NP 10.7 (1.23) 1.313
TST 10.8 (0.91) 0.964
HDM 11.4 (1.19) 1.213
GSD 10.9 (0.87) 0.929

Chi-square (8) 17.5
NP 17.4 (1.30) 1.310
TST 17.3 (1.02) 1.054
HDM 17.8 (1.22) 1.236
GSD 17.3 (1.19) 1.310

Chi-square (12) 23.3
NP 22.7 (1.65) 1.769
TST 23.0 (1.38) 1.435
HDM 23.7 (1.64) 1.684
GSD 23.0 (1.37) 1.431

Gaussian (70, 10) 89.6
NP 88.7 (2.13) 2.294
TST 89.0 (1.73) 1.820
HDM 89.9 (1.99) 2.020
GSD 89.0 (1.65) 1.812

pH⁎ 7.54
NP 7.54 (0.01) 0.019
TST 7.55 (0.01) 0.015
HDM 7.55 (0.01) 0.017
GSD 7.54 (0.02) 0.015

Entries are means of 1000 simulations together with SD (in parentheses). Data are g
GSD[7.36,9.77,0.88,1.66,0.80] obtained by fitting actual data. (NP) Nonparametric ap
Davis. (GSD) GS-Distribution method. (RMSE) Root mean squared error.
the representation in Eq. (1) is the simplest form within this class
that includes different known distributions (exponential, uni-
form, symmetric Beta, some F distributions, logistic, gene-
ralized logistic, and a few others) as particular cases Table 1 in
Muiño et al. [16] includes other distributions that are a particular
case of the GSD. A detailed analysis of the parametric space
defined by those distributions and the limit relationships be-
tween various distributions justifies using this generalization
(see Muiño et al. [16] for details).

The GSD defined in Eq. (1) provides a flexible family of
distributions for modeling continuous unimodal univariate
data. The overall properties and methods corresponding to
this family are discussed elsewhere [16]. Here, we shall
briefly provide the main results needed for RI estimation.
First, given a set of parameters, a quantile F − 1(q) = xq can
be obtained as:

xq ¼ x0 þ
B0:5k ;qk

1−g
k ; 1−g

� �

ak
ð3Þ

where Bz1,z2(a,b) is the incomplete Beta function [see Ref.
[16] for a justification of this expression]. Using this result,
computation of a 95% RI is straightforward, since it cor-
responds to computing x0.025 and x0.975. As a matter of fact,
h percentile

180 300

RMSE RMSE

11.0 (1.04) 1.043 11.0 (0.84) 0.845
10.9 (0.85) 0.876 11.0 (0.65) 0.680
11.3 (0.98) 1.000 11.2 (0.78) 0.789
10.9 (0.85) 0.872 11.0 (0.63) 0.654

17.4 (1.30) 1.310 17.4 (1.03) 1.043
17.3 (1.02) 1.054 17.3 (0.82) 0.852
17.8 (1.22) 1.236 17.6 (0.97) 0.969
17.4 (0.99) 1.032 17.5 (0.80) 0.830

23.2 (1.48) 1.483 23.3 (1.18) 1.187
23.1 (1.16) 1.194 23.1 (0.93) 0.956
23.6 (1.37) 1.397 23.5 (1.10) 1.107
23.1 (1.16) 1.191 23.2 (0.91) 0.931

89.4 (1.86) 1.871 89.4 (1.63) 1.705
89.1 (1.43) 1.505 89.2 (1.16) 1.228
88.9 (1.69) 1.703 89.6 (1.38) 1.388
89.2 (1.41) 1.471 89.3 (1.14) 1.184

7.54 (0.01) 0.015 7.54 (0.01) 0.012
7.54 (0.01) 0.012 7.54 (0.01) 0.010
7.54 (0.01) 0.014 7.54 (0.01) 0.011
7.54 (0.01) 0.012 7.54 (0.01) 0.009

enerated from the indicated distributions. The pH⁎ values are generated from a
proach. (TST) Two-stages transformation method. (HDM)Method of Harrel and
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once a set of parameters is identified, we can obtain any RI
of probability (1−α) by computing:

xa=2 ¼ x0 þ
B0:5k ;ða=2Þk

1−g
k ; 1−g

� �

ak

xð1−a=2Þ ¼ x0 þ
B0:5k ;ð1−a=2Þk

1−g
k ; 1−g

� �

ak
ð4Þ

Then, from a practical point of view, the bottleneck for RI
estimation using a GSD will be parameter estimation from
data. This can be achieved by a maximum likelihood
procedure as indicated in the appendix. Estimated GSD on
different data sets are provided in Figs. 2 and 6.
Fig. 2. Fitting a GSD to samples from a. χ4
2 distribution (dotted line). (A) Theoretical

theoretical distribution with sample size n=120), theoretical distribution and fitted d
2.1. Computational procedures

GSD computations require integrating Eq. (1). Further-
more, a numerical maximization procedure is needed for para-
meter estimation by maximum likelihood. We have defined
a set of functions in Mathematica© (version 5.1) that im-
plements all the required computations. Integration is obtained
by using NDSolve. Numerical optimization is obtained by
using FindMinimum. Simulations use the built-in procedures
in Mathematica©. Simulated data sets from a GSD are ob-
tained by generating a sample of random numbers from 0 to 1
and by applying the quartile equation (Eq. (2)). All figures are
generated in Mathematica© by using the built-in graphical
functions.
distribution (B, C, D, E and F) histogram of the sample data (simulated from the
istribution (continuous line).



Fig. 3. Simulation study. Comparison of RI obtained by various methods: (NP)
Nonparametric method. (TST) Two-stages transformation method. (HDM)Method
of Harrel and Davis. (GSD) GS-Distribution method. Computations correspond to
1000 bootstrap samples for each sample size. Samples are generated from: (A) χ4

2;
(B) N(70, 10).
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3. Comparison of RI estimation methods

3.1. Simulation studies

The proposed method based on the GSD is compared with three other well-
established methods for RI estimation. (i) The nonparametric (NP) approach
based on the order statistics [12]; (ii) the Two-Stage Transformation (TST)
recommended by the International Federation of Clinical Chemistry (IFCC )
[25,26]; and (iii) the weighted percentile method of Harrell and Davis (HDM)
[3]. In each case, bootstrap estimations for the RI limits are obtained. As a
measure of performance for a given procedure for estimating the required
percentiles we shall compute the root mean squared error (RMSE) defined as in
Ref. [27]:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðTp−QpðiÞÞ2

n

vuuut
ð5Þ

where, Tp is the true p-th percentile, Qp(i) is the estimated p-th per-
centile in sample i, and n is the number of samples. This measure will
be used for comparison purposes as it allows ranking the studied proce-
dures [5].

As a first approach, we compared the performance of different methods
of RI estimation by a simulation study (Tables 1 and 2). Random samples
were generated both from Chi-square distributions, normal distribution and
from GSD. The Chi-square distribution has been extensively used to
model the range of unimodal positively skewed data that are generally
Table 2
Results of simulation studies comparing various approaches for estimating the 2.5th percentile

Sampling distribution True 2.5th
percentile

Sample size

120 180 300

RMSE RMSE RMSE

Chi-square (4) 0.48
NP 0.57 (0.14) 0.168 0.50 (0.12) 0.116 0.49 (0.09) 0.092
TST 0.54 (0.13) 0.141 0.53 (0.10) 0.117 0.51 (0.07) 0.080
HDM 0.51 (0.13) 0.131 0.49 (0.11) 0.106 0.48 (0.08) 0.083
GSD 0.52 (0.12) 0.125 0.50 (0.99) 0.106 0.49 (0.07) 0.071

Chi-square (8) 2.18
NP 2.40 (0.39) 0.451 2.22 (0.30) 0.303 2.21 (0.23) 0.236
TST 2.35 (0.32) 0.356 2.28 (0.24) 0.258 2.26 (0.18) 0.198
HDM 2.24 (0.34) 0.348 2.19 (0.27) 0.271 2.19 (0.21) 0.212
GSD 2.31 (0.32) 0.346 2.23 (0.23) 0.242 2.21 (0.18) 0.183

Chi-square (12) 4.40
NP 4.62 (0.54) 0.584 4.46 (0.46) 0.462 4.45 (0.36) 0.363
TST 4.57 (0.46) 0.485 4.54 (0.36) 0.386 4.52 (0.28) 0.303
HDM 4.38 (0.49) 0.499 4.40 (0.41) 0.415 4.41 (0.33) 0.325
GSD 4.51 (0.45) 0.468 4.48 (0.36) 0.368 4.45 (0.28) 0.283

Gaussian (70,10) 50.4
NP 51.1 (2.25) 2.372 50.4 (1.97) 1.974 50.4 (1.53) 1.539
TST 50.8 (1.94) 1.999 50.7 (1.55) 1.601 50.6 (1.20) 1.237
HDM 49.9 (2.22) 2.268 50.1 (1.82) 1.837 50.2 (1.41) 1.424
GSD 50.7 (1.94) 1.983 50.6 (1.54) 1.574 50.5 (1.19) 1.203

pH⁎ 7.11
NP 7.12 (0.03) 0.036 7.11 (0.03) 0.031 7.11 (0.02) 0.024
TST 7.12 (0.03) 0.030 7.11 (0.02) 0.024 7.11 (0.02) 0.019
HDM 7.10 (0.03) 0.036 7.11 (0.03) 0.029 7.11 (0.02) 0.022
GSD 7.11 (0.03) 0.030 7.11 (0.02) 0.024 7.11 (0.02) 0.018

Entries are means of 1000 simulations together with SD (in parentheses). Data are generated from the indicated distributions. The pH⁎ values are generated from a
GSD[7.36,9.77,0.88,1.66,0.80] obtained by fitting actual data. (NP) Nonparametric approach. (TST) Two-stages transformation method. (HDM)Method of Harrel and
Davis. (GSD) GS-Distribution method (RMSE) Root mean squared error.



Fig. 4.Comparisonof estimatedpercentiles: (TST)Two-stages transformationmeth-
od. (GSD) GS-Distribution method. In each case, 1000 samples of size n=120 are
generated from: χ4

2. True percentile 97.5 (11.14). N(70, 10). True percentile 97.5
(89.6).

Fig. 5. Comparison of 90% confidence intervals for RI. Confidence intervals are est
estimated by: (NP) Nonparametric method. (TST) Two-stages transformation metho
(n=120) are generated from: (A) χ4

2; (B) N(70, 10).
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encountered in clinical studies [4]. Following this strategy, we have used
this distribution with different degrees of freedom to generate simulated
data sets to test the methods for RI estimation. We have also considered
data sets generated from a normal distribution and data from a GSD[7.36,
9.77, 0.88, 1.66, 0.80], that accurately represents a sample of actual pH
values. In each case, 1000 samples with 120, 180, 240 and 300 values
were generated.

Our results show that the GSD method provides accurate estimations with
a standard deviation and an RMSE that are lower than those obtained by the
other methods. As the sample size increases, the RMSE of all methods
decrease (Fig. 3). The NP method is clearly worst in all conditions, while the
GSD method is close to the TST results in almost all conditions. However, the
GSD yields slightly better results. Only in the samples from the Chi-square
distribution the HDM methods yields better results than the GSD. Results are
similar by using Chi-square distributions of various degrees of freedom (not
shown).

It is instructive to compare the results for the TST and GSD methods
sample by sample (Fig. 4). Comparison of the estimated 97.5th percentile in
samples from a Chi-square and a normal distribution shows that both methods
tend to give similar results. Results are similar for the 2.5th percentile. In
terms of performance, the GSD based method can be considered as equivalent
to a TST. However, the GSD method provides an estimation of the distri-
bution, which is an advantage for additional computations. Furthermore the
GSD overcomes some of the potential disadvantages of the TST method,
especially in those cases in which a back transformation to the original
variable is not possible.

If we focus on individual samples, we observe that all methods produce
similar results but with slightly different accuracies. In Fig. 5 we show the result
of estimating the 90% confidence intervals for the percentiles. In each case the
results correspond to 200 bootstrap samples. We choose this approach since no
closer form confidence intervals for reference interval endpoints is available for
all the compared methods [12]. For samples generated from a Chi-square
distribution, all methods produce slightly biased estimations, with greater
variances for the NP and HDM methods (Fig. 5A). For the samples generated
from a normal distribution, the results are more similar between all methods
(Fig. 5B).
imated by bootstrap (200 samples for each data set). The RI for each data set is
d. (HDM) Method of Harrel and Davis. (GSD) GS-Distribution method. Data
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3.2. Application to clinical data

Clinical data were obtained from a data base of the Intensive Care Unit in
the Hospital Universitario Arnau de Vilanova de Lleida (1997–2002). This
database includes measurements on clinical and laboratory variables collected
when the patient enters the Unit. The study goals include estimation of RI for
the reference population of incoming patients. People older that 75 and
younger than 16 were excluded. Patients with previous records on pathology
were also excluded. The final sample includes 861 patients.

As an application to show the performance of the GSD method, we have
selected six clinical parameters that presented different shapes. In each case, we
fit a GSD as a first step before computing the RI (Fig. 6). As expected, we obtain
good fits in all cases. The agreement between the fitted distribution and the
sample data is shown for variables Creatinine and Leukocytes in Fig. 7. In the
case of Creatinine, the TST method is not able of providing an appropriate
transformation (Fig. 7B), while the GSD provides an accurate representation of
the original data (Fig. 7C). Both the TST and GSD provide suitable models for
Fig. 6. GS-distributions fitted to actual data. The pdf of the fitted distribution is show
0.015, 1.55]. (B) Leukocytes (×109/L). Fitted GSD[13.04, 0.99, 0.94, 0.20, 1.08]. (C
Nitrogen (BUN) (mmol/L). Fitted GSD[14.72, 0.71, 0.73, 0.13, 0.87]. (E) Serum Sod
[7.36, 9.77, 0.88, 1.66, 0.80].
the variable Leukocytes (Fig. 7E–F). From these results, one expects similar
results for the RI obtained by both methods in the case of the Leukocytes, but
different results for Creatinine.

RI for the selected clinical variables were obtained by the four methods
(Table 3). Results are similar for all methods in the case of Urea Nitrogen, Serum
Sodium and pH, with slight difference in some cases for the NP method. Again,
we obtain confidence intervals for all the percentiles by bootstrapping the
samples. TSTand GSD produce similar results in all cases, except for Creatinine.
As stated before, this can be justified because the TST does not provide a valid
transformation for this variable.
4. Discussion

Reference intervals, either in the general healthy popula-
tion or in a given subgroup defined by a pathology, age range,
n by a continuous line. (A) Creatinine (μmol/L). Fitted GSD[97.78, 26.41, 1.16,
) Platelets count (×109/L). Fitted GSD[169.79, 0.44, 0.84, 0.02, 0.94]. (D) Urea
ium (mmol/L). Fitted GSD[139.28, 13.40, 1.52, 0.04, 1.13]. (F) pH. Fitted GSD



Fig. 7. P–P plots of data sets of Fig. 5. (A, B, C) Creatinine; (D, E, F) Leukocytes. In each case, the P–P plots represent: (A) and (D) Raw data compared to normal
distribution. (B) and (E) Transformed data compared to normal distribution. (C) Raw data compared with the fitted GSD[97.78, 26.41, 1.16, 0.015, 1.55]. (F) Raw data
compared with the fitted GSD[13.04, 0.99, 0.94, 0.20, 1.08].
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etc., provide a valuable decision-making tool for clinicians
and are fundamental in clinical laboratories [28–30]. The
various strategies that can be used for estimating RI provides
appropriate results, although do not yield an estimation of the
distribution [13,31,32]. The GSD method presented in this
paper introduces a new perspective. By using a general
family of distributions we are able of providing a suitable
estimation of the RI and a distribution model for the corres-
ponding population. This may be an advantage when it comes
to define RI in terms of a covariate [19,20]. Furthermore,
once a GSD is fitted to a given data set, this can be used for
complementary computations [16]. For instance, we could
compute Receiver Operating Characteristic (ROC) curves by
fitting a GSD to a data set of healthy subjects and to a data set
of pathological subjects. Then, following the methodology
already presented elsewhere [18], we can easily obtain a ROC
curve.

The GSD method can provide a valuable alternative to
other existing methods for RI estimation. Our results show
that, at the worst, it is almost equivalent to the TST method,
with the added value of providing an estimation of the
underlying distribution. The GSD can be easily extended to
deal with cases in which a mixture of different populations is
present (work in preparation). Furthermore, GSD could be
used to define hypothesis tests that are an alternative to non-
parametric methods. We are investigating these possibilities
to define a general framework for data modeling based on
GSD.
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Appendix A. Parameter estimation in GSD

When a GSD is used as a parametric model for data one may
be concern by issues regarding overparametrization. In the GSD
family the number of parameters is the minimum that guaran-
tees to include a number of distributions as particular cases in a
simple function of F(x). In some cases, the number of para-
meters can be reduced. For instance, symmetric distributions
requires only three parameters, as for symmetric distributions
g=γ and k=1, i.e. GSD(x0,α,g,1,g). If one knows that the
underlying distribution is normal, then two parameters should
suffice. In that case, the normal distribution is approximated by
a GSD[x0,α,0.8379,1,0.8379]. Thus we need to estimate only
two parameters.



Table 3
95%Reference intervals (with 90% confidence intervals) for diverse variables of
the data base (861 intensive care patients)

2.5th percentile 97.5th percentile

Creatinine
(μmol/L)

NP 55.2 (51.8–57.1) 359.7 (340.1–373.4)
TST 51.2 (48.3–56.1) 370.6 (333.9–407.5)
HDM 55.4 (52.0–56.7) 359.4 (335.9–378.8)
GSD 53.7 (51.3–56.2) 377.3 (360.3–439.4)

Leukocytes
(×109/L)

NP 2.80 (2.40–3.57) 35.7 (32.0–38.3)
TST 3.36 (2.97–3.76) 34.1 (32.0–36.2)
HDM 2.96 (2.47–3.55) 35.1 (32.8–37.4)
GSD 3.33 (2.96–3.73) 35.1 (32.7–37.4)

Platelets
(×109/L)

NP 63.2 (61.1–66.8) 407.7 (364.6–401.3)
TST 65.8 (62.0–68.6) 383.4 (374.7–426.2)
HDM 64.3 (61.3–67.0) 405.4 (385.1–424.8)
GSD 66.7 (63.8–69.6) 393.3 (377.6–409.9)

Urea Nitrogen
(mmol/L)

NP 5.02 (4.64–5.42) 36.1 (34.6–37.1)
TST 5.02 (4.64–5.41) 34.3 (33.2–35.3)
HDM 5.02 (4.65–5.42) 35.7 (34.6–36.8)
GSD 5.01 (4.64–5.04) 34.6 (33.6–35.3)

Serum Sodium
(mmol/L)

NP 128.5 (127.5–129.6) 150.6 (148.0–152.9)
TST 128.1 (127.0–129.1) 151.6 (150.4–152.9)
HDM 128.6 (126.7–129.4) 150.9 (148.7–153.2)
GSD 128.2 (127.1–129.2) 150.8 (149.7–152.0)

pH NP 7.11 (7.08–7.14) 7.55 (7.54–7.56)
TST 7.11 (7.09–7.13) 7.54 (7.53–7.55)
HDM 7.11 (7.08–7.13) 7.55 (7.54–7.56)
GSD 7.11 (7.09–7.13) 7.54 (7.53–7.55)

(NP) Nonparametric approach. (TST) Two-stages transformation method.
(HDM) Method of Harrel and Davis. (GSD) Method of GS-Distribution.
Results are expressed as the mean and the 5th and 95th percentiles of 200
bootstrap samples in each case.
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A maximum-likelihood estimator for the GSD parameters
can be obtained according to the following procedure. In the case
of a GSD, the likelihood can be written as:

L ¼ j
n

i¼1
f ðxiÞ ¼ j

n

i¼1
aFðxiÞgð1−FðxiÞkÞg ð6Þ

Taking logarithms, we obtain the log likelihood as:

LogðLÞ ¼ naþ
Xn
i¼1

gLogðFðxiÞÞ

þ
Xn
i¼1

gLogð1−FðxiÞkÞ

ð7Þ

Unfortunately, maximum-likelihood estimators cannot be ob-
tained analytically from this expression. In that case, a numerical
procedure is needed. Computation of the log likelihood requires
obtaining the value of F(xi) for each sample value. This must be
numerically computed by integrating Eq. (1) from x0 to xi. Once
these values obtained, substitution into Eq. (7) produces the
corresponding log likelihood for a set of parameters. Using this
strategy, the parameter estimation proceeds in an iterative
manner until Log(L) is maximized for a set of parameters. As an
example, Figs. 2 and 6 provide some examples of fitting GSD to
simulated and actual data. In all cases, the fitted distribution
provides a proper representation for the data.

Confidence intervals for the GSD parameters and quantiles
must be obtained by bootstrapping. For a sample data of size n
boostrap samples are obtained by selecting n data points from
the original sample with replacement. This is repeated a number
of times to obtain a set of bootstrap samples. Then, a GSD is
fitted to each of those samples. Using the different GSD so
obtained, we form lists of the different parameter values and
compute the desired quantiles for each distribution. The confi-
dence intervals of each parameter and quantile are obtained by
computing the 2.5 and 97.5 quantile values of each list.
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