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Abstract: There is a flood of molecular data about many aspects of cellular functioning. This data ranges from sequence 

and structural data to gene and protein regulation data, including time dependent changes in the concentration. Integration 

of the different datasets through computational methods is required to extract biological information that is relevant from 

a systems biology perspective.  

In this paper we discuss how different computational tools and methods can be made to work together integrating differ-

ent types of data, mining these data for biological information, and assisting in pathway reconstruction and biological hy-

potheses generation. We review the recent body of literature where such integrative approaches are used and discuss 

automation of data integration and model building to generate testable biological hypotheses. We analyze issues regarding 

the design of such automated tools and discuss what limitations and pitfalls can be foreseen for the automation and what 

solutions can computer science and biologists provide to overcome them.  

INTRODUCTION 

 Molecular systems biology is a broad discipline in which 
computational methods play a central role. Most researchers 
will agree that molecular systems biology ultimately aims at 
understanding how molecular systems function when they 
are assembled. Thus, pathway and circuit reconstruction and 
mathematical modeling of the corresponding networks, are 
central issues in this research area. Because of its inherent 
diversity, different “origins” are acknowledged for the field 
[1, 2]. 

 From an historical point of view, the use of mathematical 
models and computer simulations in molecular biology can 
be traced at least to the early fifties. Its use appears to have 
been introduced by Britton Chance, Benno Hess, Joe Hig-
gins, David Garfinkel and their colleagues [3-7]. They used 
modeling to achieve a more systemic understanding of the 
processes they were studying experimentally. Such processes 
ranged from the kinetics and mechanism of catalase action to 
glycolytic oscillations [3-7]. In the sixties and seventies a 
few other research groups entered the field, and applied en-
gineering control theory to the study of biological systems 
[8-16]. Also in the sixties, researchers started taking advan-
tage of the computer capabilities for data organization and 
analysis. The work of Fitsch [17-19], and its further devel-
opment by Needleman and Wunsch in 1970 [20] and by 
Smith and Waterman in their seminal 1981 paper [21], 
would set the stage for the bioinformatics revolution that 
took place during the last decade in the twentieth century. 

 This revolution was in all likelihood prompted by an ac-
cumulation of gene sequences and protein sequences and  
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structures. The accumulated data required the development 
of advanced computational tools for their analysis and orga-
nization, leading to the bioinformatics burst. As a conse-
quence of the working capacity of the post-genomic high 
throughput (HTP) techniques and of the capabilities of com-
puter tools, the old reductionism paradigm shifted towards 
an integrative view of the molecular biology problems. Al-
beit not new, this integrative view shifts attention from bio-
informatics into (molecular) systems biology, which is 
sensed as a new frontier in biology. This shift was predicted 
by Bertalanffy and others as early as in 1940 [22]. The cur-
rent recognition of this new paradigm has been fueled, 
among others, by Horishi Kitano and John Doyle [22-28].  

 The size and scope of the accumulated HTP data sets 
have made it impossible for any one person to analyze and 
integrate them all, even if one is only interested in a specific 
molecular biology process on a given organism. However, 
such integration is fundamental to reconstruct the molecular 
networks involved in cellular processes and to obtain a sys-
temic perspective of how those networks function. Thus, 
researchers need tools that assist with processing, filtering, 
organizing, and appropriately displaying the complex infor-
mation that is available. Furthermore, automation of analysis 
and integration is also fundamental for an effective use of 
that information.  

 The increasing availability of computational power and 
storage capabilities, described for example by Moore’s law 
[29], facilitates the creation of CPU-demanding algorithms. 
These algorithms can be used to build software applications 
that can manipulate the different available datasets, integrate 
the information they contain, and display the end result of 
the analysis in a user friendly format. Web based applica-
tions play an important role in making all these software 
tools available to most scientists. Efficient information min-
ing and integration, and an appropriate display of the results 
facilitates in silico reconstruction of the molecular networks 
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that regulate and execute relevant molecular biology proc-
esses.  

 In silico pathway and circuit reconstruction is an impor-
tant area within systems biology, and it has consequences for 
molecular biology, genetics, biotechnology and others. The 
reconstruction ultimately generates hypotheses regarding the 
connectivity and dynamic behavior of pathways and circuits 
that must be validated against experimental predictions data. 
Different types of in silico reconstruction problems exist: 

(1) Identifying the pathways, genes and proc-

esses/functions that are encoded in the entire 

genome of an organism. This provides informa-
tion regarding possible qualitative systemic re-
sponses of the cell. As a first approach to this re-
construction problem, one may map the annotated 
genes onto pre-existing charts of metabolism, 
gene circuits and signal transduction. This action 
may reveal limitations in adaptive responses of 
that organism. For example, if no amino acid bio-
synthetic pathways are found, then this organism 
is not likely to survive in a medium without and 
external amino acid source.  

(2) Reconstructing the detailed reaction network 

that exists within specific pathways or circuits 

(see for example [53-59]). An important aspect in 
this type of research is the reconstruction of novel 
pathways and the identification of new compo-
nents in classical pathways. This is a relevant 
problem because, either in well characterized or-
ganisms or with the sequencing of metagenomes 
[60], many genes of unknown function exist and 
several previously unknown pathways are being 
discovered. This type of reconstruction may allow 
for more precise predictions regarding how spe-
cific parts of the cellular response are regulated 
and executed, facilitating the creation of mutated 
organisms with biotechnological interest.  

(3) Reconstructing regulatory networks in gene 

expression and signal transduction. For exam-
ple, identifying regulatory motifs in DNA will 
provide indication of what transcription factors 
may regulate the expression of different proteins 
and genes that are involved in specific processes 
(e. g. [61-63]). At the metabolic and signal trans-
duction level, reconstruction of the detailed regu-
latory networks for the enzymes in a pathway is a 
requirement for accurate and quantitative predic-
tion of the dynamic cellular behavior in response 
to environmental challenges.  

 In this paper we focus on and review the use of HTP 
datasets for the in silico reconstruction of metabolic path-
ways, signal transduction pathways, and gene circuits.We 
frame the reconstruction in the context of computational mo-
lecular systems biology, an emerging field that merges bioin-
formatics, and computational biology. Within this context, 
we shall discuss the data sets and computational approaches 
that can facilitate that reconstruction. Then, we review the 
literature for work that uses an integrative computational 
approach for this reconstruction and discuss automating the 

integration process. Finally, we discuss the various problems 
that hinder automation of integration and analysis of the data 
sets. We discuss in more details some of the technical as-
pects of the research reviewed in the main paper and provide 
further references to other sources of information in a sup-
plementary appendix.  

WHAT IS OUT THERE? AUTOMATED DATA ANA-

LYSIS IN THE AGE OF OMICS 

 Pathway reconstruction requires integration of knowl-
edge at many different levels. Before discussing this integra-
tion, we briefly characterize each of the various types of 
datasets that are available for in silico reconstruction of mo-
lecular biology pathways. Also, we shall discuss the different 
methods and tools that are more commonly used a) to mine 
these datasets, and b) to extract network information and 
facilitate pathway reconstruction.  

Bibliomic Data 

 Bibliographic data has been accumulating for more than 
a century. Databases such as MEDLINE [64] or the Web of 
Science Citation Index [65] collect and organize data from 
this published literature. Through automated keyword analy-
sis, search engines can identify relevant documents in these 
databases. These documents can be mined for information on 
genes, pathways, and networks of interest. Most of these 
documents concern specific, detailed studies about small sets 
of genes, proteins, RNAs or metabolites within specific or-
ganisms. In many cases, this data provides a detailed func-
tional analysis of many individual genes, using methods that 
are more accurate than those used to obtain HTP data. 

 Manual and electronic literature analysis has been used 
for metabolic reconstruction since researchers started creat-
ing mathematical models for molecular biology processes 
[4]. Currently, literature searches are limited at automatically 
generating a possible network structure for a given molecular 
process, although they can easily identify papers containing 
information that is relevant for the reconstruction of that 
network. In fact, most mathematical models of molecular 
pathways and circuits are based upon information that was 
manually retrieved from literature (for example [66] or [67]). 

 The recent development of tools such as iHOP [68-71] or 
biobibliometrics [71] allows researchers to automatically 
reconstruct networks of genes and proteins from automated 
literature analysis [68-71]. The underlying assumption of 
these methods is that identifying gene and protein names that 
co-occur in the same document(s) generates a network of 
genes/proteins that are functionally related among them. 
These network reconstruction methods have been used as a 
starting point to reconstruct pathways such as the Iron Sulfur 
Cluster (ISC) biogenesis in Saccharomyces cerevisiae [55] 
or to identify genes involved in some types of cancer [72]. 
However, such a network should be viewed as a low level 
reconstruction of the molecular pathways that are involved in 
the processes for which those specific genes are important. 
Further analysis is advisable before one claims that the 
automatically generated network is a complete conceptual 
model of the processes of interest.  

 The largest fraction of the textual scientific information 
contained in a paper is unavailable if one mines Medline 
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exclusively, because the full text of the papers is not in-
cluded in this database. The PubMed, SCOPUS, PLOS, and 
BioMedCentral initiatives are crucial in making full text of 
scientific papers publicly available [73-76]. The ongoing 
efforts from scientific journal to make their contents fully 
available on line also contribute to this effort. There is strong 
awareness that molecular systems biology research will 
greatly benefit if information mining from text can be auto-
mated to a higher degree than it currently is [61, 69, 77].  

Sequence Data, Functional Data, and Structural Data 

 Databases of annotated gene and protein sequences facili-
tate the subsequent functional annotation of new genomes, 
through the use of homology comparisons. Gene or protein 
sequences from different organisms that have very high simi-
larity (homology) are likely to have the same function. Se-
quence data can also be mined to predict a) regulatory re-
gions and open reading frames of genes, b) RNA genes, and 
c) targets for regulation by these RNA genes (see supple-
mentary appendix). The accumulated functional knowledge 
about genes and proteins facilitates the creation of charts for 
metabolism, signal transduction and gene circuit for the dif-
ferent organisms with fully sequenced and annotated ge-
nomes (see for example [78-81]). In such charts, the individ-
ual function of a protein is superimposed onto the particular 
steps where that protein is active. An example where genome 
annotation has been used to reconstruct the full complement 
of metabolic pathways for Lactobacillus plantarum can be 
found in [45, 49]. Sequence based annotation is not possible 
when a new gene is not homologous to any gene of known 
function. However, if structural information can be gathered 
for the protein coded by that gene, structural homology com-
parisons may also facilitate attributing general or specific 
functions to individual genes, for example using classifica-
tions such as SCOP or CATH [82-92]. Knowing the struc-
ture of a protein (or RNA gene) can elucidate the mechanism 
by which these molecules perform their function. Further-
more, having structural templates allows the prediction of 
structures for other homologous proteins.  

 Even when homology is not useful for functional annota-
tion, sequence information can still be used to infer some 
functional information. For example, one can use phyloge-
netic conservation to investigate possible functions of the 
genes. The logic behind phylogenetic conservation analysis 
is as follows. If a set of homologous genes with unknown 
function is present (absent) with other genes of known func-
tion in the same set of genomes, then it is possible that evo-
lution acted simultaneously on that set of genes because 
somehow they share a function. This may with other genes 
of known function allow the researcher to predict that some 
genes are involved in the same processes, although their in-
dividual function may remain uncertain. Such an approach 
has been combined with other lines of evidence, to identify 
the proteins Yfh1 [93] and Grx5 [58] as being involved in 
ISC biogenesis. Another example is the application of 
phylogenetic analysis to the reconstruction of the Coenzyme 
A biosynthesis pathway in different archaeal genomes [94] 
and for the reconstruction of parasite nucleotide biosynthesis 
[95]. A similar method for inferring function is that of find-
ing gene fusion events. Such events imply that two genes 
share common function [96, 97] and maybe even common 

regulation, as appears to be the case for example in the bio-
synthesis of aromatic amino acids in low GC Gram-positive 
bacteria [98]. 

 Sequence based reconstruction of gene circuits can be 
more complex than sequence based reconstruction of meta-
bolic and signal transduction pathways. The reason for this is 
that regulatory sequences in DNA are shorter than coding 
sequences. This creates a lower signal to noise ratio in their 
detection, when compared to identifying a full gene. Identifi-
cation of gene circuits units within a genome can be done for 
example by searching for regulatory motifs or sequence pat-
terns upstream of gene promoters. Confidence in the accu-
racy of the regulatory units predicted by this method is in-
creased by finding that such motifs are phylogenetically con-
served in different organisms [99-108]. This type of analysis 
has been used for example to identify novel targets of the 
Eyeless transcription factor in Drosophila [109], to identify 
transcription factors that regulate human gene expression 
[110], to identify novel gene circuits for amino acid transport 
and glucose in S. cerevisiae [111, 112] or to predict operons 
in Pyrococcus furiosus [113]. An intense research effort to 
understand RNA gene circuits is also under way [114-121]. 
Only when this new layer of regulation is fully understood 
and integrated into the reconstruction efforts, can one have 
full reconstruction of gene circuits. Progress in this area is 
fast and different groups are already reconstructing RNA 
gene circuits in bacteria and other organisms by integrating 
the distinct types of information discussed in this section of 
the review [122-127]. 

Gene Expression Data 

 Different types of mathematical analysis allow research-
ers to infer functional genetic modules and circuits from the 
analysis of high and low throughput gene expression data 
[128-136]. Statistical theory and information theory is exten-
sively used to infer regulatory network structures from gene 
expression data [137-147]. For example, if a gene/protein of 
unknown function is differentially regulated during some 
cellular response, then one might infer that this gene is in-
volved in that response. The set of genes responsive to hu-
man interferon beta [148, 149] or that of genes involved in 
the development of rat central nervous system [150] have 
been reconstituted from microarray data. However, one must 
always keep in mind that post-translational regulation and 
fine tuning of enzyme activities may work to modify the 
importance of changes in gene expression. This may compli-
cate the interpretation of gene expression profiles. 

 Available gene expression data is often static, in the 
sense that it is measured at a specific time during the re-
sponse and no other previous or subsequent measurements 
are available. Static gene expression data, in general, do not 
provide significant information about the specific function of 
a gene in the response. Exceptions might be for example 
situations where only one protein is missing in a circuit or 
pathway that is well known. In such cases, if only one gene 
of unknown function is identified in the expression data, its 
function is likely to be the one that is missing. Alternatively, 
it may be possible to infer sequential action of transcription 
factors in the gene circuit, by using time series data from 
microarray experiments [151-153]. For example, the network 
of gene activation in macrophage response [154], the p53 
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network in human leukemia cell lines [155] and the regula-
tion of galactose biosynthesis [156] have been studied using 
this type of analysis.  

Proteomics Data 

 Proteomics experiments in which measurements of pro-
tein levels and activity are made can also assist in network 
reconstruction. Having such data is important and comple-
mentary to the gene expression data. In fact, proteomic data 
is required to ultimately refine the network structure of cir-
cuits and pathways and assess their functionality in vivo. 
This is so because there are cases in which the levels of the 
protein that is coded by a gene can change in response to 
some stimulus, even though expression of that gene is un-
changed and no interaction with other proteins has been pre-
viously reported. In addition, proteomics analysis may reveal 
changes in the activity of proteins in responses to challenges 
that were previously unknown to affect their activity. This 
kind of information is still lacking for most organisms and 
cell types.  

 Proteomics studies are in their infancy, when compared 
to gene expression studies. Nevertheless, they have been 
used for pathway reconstruction in various cases. HTP pro-
teomic experiments led to the discovery of networks of di-
rect physical interaction between proteins in different organ-
isms [157-172]. Finding which proteins interact physically 
with those of unknown function sheds light upon the proc-
esses in which the later proteins may be involved in, thus 
facilitating the reconstruction of their role in the cell. How-
ever, one should keep in mind that these experiments may 
detect false positive interactions and fail to detect real inter-
actions, due to the experiments being made under inappro-
priate physiological conditions. In addition to detection of 
protein interactions, proteomic approaches have been used to 
a) identify the kinases that are necessary for cell cycle pro-
gression in Drosophila [173], b) reconstruct human phos-
phorylation networks [174], c) reconstruct the network of 
growth factor signaling in cancer cells [175], d) study the 
pheromone response in yeast [176], and e) study signal trans-
duction in plants [177, 178].  

 It is still unfeasible to use large scale proteomic assays to 
measure changes in the activity of the full protein comple-
ment of an organism. However, the development of protein 
chips that identify binding of protein to DNA [179] and al-
low measuring of enzyme activity for whole pathways [180, 
181] suggests that such a goal may be attainable in the fu-
ture. 

Metabolomic Data 

 Metabolomics data can also, in principle, be used to re-
veal information about pathway and circuit connectivity 
[182, 183], to estimate parameter values, and to validate and 
refine models of specific cellular processes [184, 185]. These 
very important points would justify a wide program of me-
tabolomic experiments. Without this kind of measurements, 
validation of mathematical models for specific metabolic 
processes may be difficult. Furthermore, one can infer which 
reactions and which steps causally precede others in a meta-
bolic or signal transduction network, by measuring the 
changes in the concentration of metabolites or signaling 
molecules over time. Such an analysis has been performed to 

predict the sequence of glycolytic reactions [186] and to fur-
ther refine the regulatory network of glycolysis in Lactococ-
cus lactis [184].  

USING MOLECULAR DATA TO PREDICT SYS-
TEMIC BEHAVIOR 

 In the previous section we presented a selection of the 
data that are available for in silico inference and reconstruc-
tion of network and pathway topology. A given network to-
pology should be able to explain the experimental behavior 
of a system, if that topology underlies the process that regu-
lates the biological response being measured. However it is 
often impossible to use common sense for judging how well 
a given network explains some dynamic response, because 
the dynamic behavior of biological systems is non-linear. To 
overcome such a limitation, topological schemas can be used 
to create mathematical models whose dynamical behavior 
can be rigorously analyzed and compared to what is experi-
mentally observed. This validation process is fundamental in 
testing the correctness of in silico pathway reconstruction. 

Building Mathematical Models 

 Mathematical models can be created for networks of dif-
ferent scales. Some researchers are interested in modeling 
the entire metabolic network found in a genome (e.g. [31-
52]. Such models have been analyzed to predict both, growth 
characteristics, and essentiality of genes in different organ-
isms using flux balance analysis (FBA) [35, 38, 39, 46]. Al-
though in mathematical terms FBA models are linear, the 
qualitative predictions of phenotype have so far held for be-
tween 60% and 80% of the genes [39, 46, 187]. These mod-
els inappropriately represent dynamic regulatory effects, 
which could account for some of the erroneous predictions 
(see [188] for details). 

 Smaller scale models that accurately account for dynamic 
regulation are important for testing more detailed hypotheses 
about the functioning of specific processes. For example, the 
regulatory structure of the Iron-Sulfur Cluster biogenesis 
pathway in S. cerevisiae has been validated by comparing 
the dynamic behavior of mathematical models for alternative 
regulatory topologies to experimental results [55]. Similarly, 
models of cell cycle have been validated by comparing its 
dynamic behavior to experimental results [189-191], and 
models of the pentose phosphate pathway have been vali-
dated by predicting the best targets for treatment of meta-
bolic diseases [192-195].  

 Statistical methods can be used how well alternative net-
works can reproduce experimental behavior, if sufficient 
information is available. For example, one can use optimiza-
tion algorithms to determine which network more accurately 
fits the known quantitative behavior of a system [196-198]. 
Qualitative statistical methods should be used for this 
evaluation, if the available experimental data is not quantita-
tive. For example tree decision algorithms have been used to 
analyze the qualitative behavior of signal transduction mod-
eling [199, 200]. 

 Different types of mathematical modeling can be used to 
study the same biological problem. The choice of a particular 
type depends on the level of complexity and details one 
wishes to consider, on the available data, on personal prefer-
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ence, etc. Differential equations, either ordinary (for well 
stirred systems) or partial (for systems with spatial differen-
tiation), are used to define mathematical models that can 
quantitatively simulate the dynamics of a molecular system 
[4, 201]. This type of mathematical approach is still the most 
prevalent choice as a modeling tool, although stochastic ap-
proaches are becoming popular. Alternative approaches are 
further discussed in the supplementary appendix.  

Bottlenecks in Model Building 

 One limitation to the creation of mathematical models is 
that, for many processes, the parameter values are unknown. 
Even when parameter values are available, locating them and 
evaluating if the experimental conditions under which they 
have been measured are appropriate for our modeling pur-
poses is not easy. Furthermore, automatically identifying 
documents from the literature in which such information is 
available is still a task that is hard to automate. Another limi-
tation in creating a mathematical model is when the knowl-
edge about the actual mechanism that underlies many bio-
logical processes is lacking. This makes it impossible to de-
rive classical Michaelis-Menten like expressions for the ki-
netics of those processes. Mathematical representations 
based on approximate formalisms, such as power-law mod-
els, help side-step this lack of information (see supplemen-
tary appendix and [202]). Creating a mathematical model is a 
very work intensive task that is prone to human error. As the 
dimension of a model increases, automated model building 
becomes important in decreasing modeling errors. General 
automated model building is possible only by using struc-
tured and systematic formalisms.  

 Most of these formalisms are mathematical approxima-
tions that simplify the exact kinetic expressions representing 
the dynamical behavior of individual molecular biology 
processes and reduce the dimension of the system of equa-
tions to be solved (for example [203]). Using structured for-
malisms that are based in approximation theory also side-
steps the lack of knowledge regarding mechanism while 
building a mathematical model [204]. These approximate 
representations are accurate over a varying range of values 
about their operating point [205] and they can be invaluable 
as canonical formalisms that facilitate automated generation, 
analysis, and exchange of mathematical models [204]. For a 
review of these ideas see [202]. 

INTEGRATION OF BIOINFORMATICS AND COM-
PUTATIONAL BIOLOGY FOR AUTOMATED NET-

WORK EXTRACTION AND MODEL BUILDING 

 Automatic model building that is based on the topologi-
cal representation of a network requires integration of infor-
mation at different levels. Fig. 1 outlines in a flow chart how 
one can integrate the bioinformatics data mining process to 
the model building process in order to complete the in silico 
reconstruction of networks. In general, the integration needs 
to be highly parallelized, allowing for flexible exclusion of 
one or more types of datasets and for an appropriate interac-
tion with the user. 

Outline of the Integration 

 A first layer of information (sequence data, structural 
data, literature data, gene expression data, proteomics data 

and metabolomics data) available in HTP data sets and pub-
lished material can be integrated to derive a second layer of 
processed data. This second data layer contains information 
about a) gene/protein function and interactions, b) pathway 
and gene circuit topology, and c) parameter values. The sec-
ond layer of data also receives direct experimental inputs at 
different levels. For example, experimentally determined 
parameter values can be directly integrated into this layer. 
The data from the second layer can in turn be integrated to 
generate alternative topological schemas that describe how 
the pathways and circuits of interest may function. Statistical 
algorithms, such as decision tree methods or Bayesian analy-
sis, can be used at different stages of the reconstruction to 
rank the relevance of the information and give users an ob-
jective means of deciding what is the most appropriate in-
formation to include in the reconstruction.  

 The topological schemas can be used either to refine pre-
existing mathematical models or to generate new ones. The 
dynamical behavior of alternative models can then be com-
pared to the experimental behavior of the system. By using 
statistical methods to analyze these comparisons, one may 
objectively rank which schema are more likely to correctly 
describe the topology that underlies the observed behavior. 
(Fig. 2) details how the analysis and integration of the differ-
ent datasets can be accomplished and used for pathway and 
circuit reconstruction. 

The Role of Text-Mining  

 Fig. 2A suggests how literature analysis (bibliomics) can 
be used to generate conceptual models for pathway and cir-
cuit reconstruction. Web crawling robots, using Artificial 
Intelligence (AI) algorithms, can perform automated key-
word and contextual analysis of information contained either 
in literature databases or in live web documents. They can 
also identify lists of genes that appear to be relevant for the 
process of interest and generate a tentative topological net-
work by suggesting functions for those genes. 

 Automated and contextual text analysis may be ex-
tremely important to locate information about parameter 
values and enzyme kinetics and in automatically integrating 
such information into models. However, human intervention 
is still the most accurate way for mining this type of infor-
mation from the literature, which suggests that the need for 
human curation should always be kept in mind during the 
different stages of the reconstruction process. 

 If appropriate standards of model and parameter report-
ing are defined, automated text mining of parameter values 
from the literature may be possible. One must be cautious 
regarding these standards. Many may be tempted to use pa-
rameter values and models that are automatically found, 
without considering the appropriateness of the models for the 
goals one has and the compatibility between different pa-
rameter determinations.  

The Role of Mining “omics”  

 Fig. 2B suggests how functional information, sequence 
information and gene expression information (genomics) can 
be used within a global strategy for pathway reconstruction. 
By processing sequence information one can automatically 
identify genes and proteins that participate in a given process 
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and generate functional information for those molecules. In 
parallel, gene expression data can, in principle, also be used 
to derive some form of causal relationship between changes 
in the expression of the different genes. Besides identify-
ing/confirming genes involved in the processes of interest, 
the information processing shown in Fig. 2B can also be 
used to generate alternative architectures for the topology of 
gene circuits and pathways.  

 Fig. 2C suggests that proteomics and interaction data 
can be used to derive a network of protein and gene interac-
tions. In addition to identifying or confirming previously 
identified proteins, the interaction data can provide addi-
tional hypotheses regarding the previously unknown connec-
tivity in a pathway.  

 Proteomics and metabolomics data can also be used to 
infer the sequence in which different proteins act in a path-
way and how the activity of the different steps is regulated. 
”Omics” data may also contain essential information for 
identifying appropriate parameters for the mathematical 
models [2], as long as structured formalisms are used to 
write the model equations and sufficiently dense time series 
are available in the data. For more information on this sub-
ject see the supplementary appendix and references therein. 

From Bioinformatics to Computational Systems Biology 

Through Model Building 

 Fig. 2D details the final stage of the integration between 
bioinformatics and computational systems biology. The user 
can attribute alternative roles in the network to genes even if 
they have not been automatically assigned to specific reac-
tion steps or regulatory interactions. Once a final set of alter-
native schemas for the pathways and circuits of interest are 
created, the users must decide upon the level of detail that is 
necessary for their research. Automated search of databases 
with pre-existing models can find previously build mathe-
matical models of the reconstructed network, if they exist. 
Once the models are created, they can then be analyzed, 
validated, and refined. The process of model validation, de-
scribed in previous sections, can stimulate new research, 
assisting in the design of experiments that clarify unsolved 
questions and allowing for rational testing of hypotheses 
about the systemic behavior of the network. 

Examples of Bioinformatics and Computational Biology 
Integration in Molecular Biology 

 It is consensual that the use and integration of different 
datasets, combined with mathematical modeling is important 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Integrating the different datasets for pathway reconstruction: An overview. E.I. stands for direct experimental input to a given class 

of data. Different types of primary data can be used and integrated to infer functional information. Functional information can also be ex-

perimentally generated. All the relevant information can be integrated, thus generating conceptual schemas that can be used to generate and 

test hypotheses regarding the behavior of the molecular system of interest.See text for details. 
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Fig. (2). Contd… 
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Fig. (2). Detailed schemes for the data mining of the different datasets for pathway and circuit reconstruction. A – Mining the literature. 

Automated analysis of abstracts and full text of papers can assist in reconstructing functional molecular networks of the cell. B – Mining gene 

expression data and genome sequence. Combining the analysis of gene expression data with that of sequence data, functional networks of 

gene regulation can be generated. C – Mining Proteomics and Metabolomics datasets. Proteomics and metabolomics information can be 

combined to derive protein modules with causal interactions. D – Integrating the data to generate hypotheses and validate models. Integrating 

the data from A, B, and C one can generate mathematical models that can be used to generate and test hypotheses regarding the behavior of 

molecular systems. See text for a more detailed discussion 
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in facilitating and improving the accuracy of in silico recon-
struction of molecular pathways in cells [37, 41, 53-55, 61, 
206-208]. For example, Alves and Sorribas have combined 
the use of literature analysis, phylogenetic profiling, analysis 
of sequences, and protein interaction prediction to recon-
struct the regulatory network of mitochondrial ISC biogene-
sis in yeast [53-55, 58]. Bas Teusink’s group has been devel-
oping a method, AUTOGRAPH, that combines sequence 
homology analysis with the existence of well curated meta-
bolic maps to reconstruct the complete metabolic networks 
of new genomes. They have applied their method to the re-
construction of L. lactis metabolism [41]. Su et al. [209, 210] 
reconstruct both the pathway of phosphate assimilation and 
the gene circuits that regulate the expression of that pathway 
in Synechococcus, by combining genomic information with 
information about interactions between different genes and 
proteins. A combination of literature analysis and microarray 
data analysis has also been used to derive a regulatory net-
work for E. coli and to test the consistency of microarray 
data based predictions [211]. There is an overlap of ap-
proximately 80% between the networks derived by the two 
methods. A reconstruction analysis of the regulatory network 
for the galactose biosynthesis pathway in yeast successfully 
predicts the genes with stronger regulatory influence on the 
pathway. The analysis has also been made by combining 
microarray data and protein interaction data [156]. A combi-
nation of time series analysis of gene expression and in silico 
prediction of transcription factor biding sites has been used 
to define regulatory modules in the inflammatory response of 
the macrophage, suggesting novel roles for the transcription 
factors ATF3 and NRF2 [154]. MAPK signaling pathways in 
the human blood fluke have been reconstructed by integrat-
ing phylogenetic conservation analysis and experimental 
gene expression measurements [212]. An analysis of the 
human phosphoproteome by combining consensus substrate 
motifs with context modeling was used for improved predic-
tion of cellular kinase-substrate relationships [174, 213, 
214]. 

 Currently, the process of combining different datasets to 
generate testable biological hypotheses lacks a well defined 
structure and can only be partially automated. Nevertheless, 
there is constant progress along the road towards such auto-
mation, and for example, both Su et al. [209, 210] and Alves 
and Sorribas [55] propose and apply structured integrative 
approach for network reconstruction in molecular biology. 
An area where integration of bioinformatics and computa-
tional biology may be a powerful tool is that of synthetic 
biology. We will not discuss this subject any further in this 
paper and refer to the literature for reviews on the subject 
[215-221]. 

CHALLENGES TO AUTOMATION IN COMPUTA-
TIONAL SYSTEMS BIOLOGY 

 Automatically integrating the information from the dif-
ferent datasets for pathway and circuit reconstruction in mo-
lecular systems biology is not trivial. The design of a global 
solution for this integration requires careful consideration of 
the goals, challenges, and limitations of the available a) data, 
b) data mining methods, and c) mathematical models.  

 At a first glance, one might think that the amount of data 
being generated by HTP methods is the most difficult chal-
lenge for the integration process. However, enough computa-
tional power is available to deal with this problem and data 
accumulation may not be a major issue. In our perspective, 
the major challenges are likely to be a) the definition of the 
necessary information content for a given type of data, b) the 
development of universal standards for the reporting and 
deposition of that data into databases, and c) the integration 
of information mined from different types of data into a co-
herent whole. It is crucial that the relevant information that is 
needed to address a given biological problem is well orga-
nized and easily accessible. Developing and applying stan-
dards in data reporting plays a central role in facilitating the 
automation of integrative approaches, because the existent of 
regularities in data structure is fundamental for the develop-
ment of efficient computational methods.  

Minimal Information Content and Data Reporting Stan-
dards 

 Achieving consistency in data organization, classification 
and storage into databases is crucial for achieving automated 
data integration. An important step in achieving such consis-
tency is deciding what information to store in databases and 
how to report and organize that information.  

 It is not easy to define the minimal information required 
to describe the validity and scope of the deposited data, be-
cause the relevant information will change depending on the 
problem one wants to address when using the deposited such 
data. In some cases the data will have less than the minimal 
information required to correctly assess the conditions in 
which the experiment was done and the caveats that apply to 
the results. In other cases there will exist an excess of infor-
mation that may be confusing and difficult to organize for 
one’s purpose. An additional problem in comparing similar 
data from different origins is the following. When different 
groups replicate experiments using similar techniques, most 
of the times there are differences either in the exact condi-
tions of the experiment or in the method for data acquisition 
and treatment. This may lead to contradictory results for 
what is apparently the same experiment.  

 If one wants to potentiate automated data mining and 
integration, a uniform language and ontology that can be 
used to report all experiments and data of a given type is 
needed. This ontology and language should contain suffi-
cient information to decide if two data sets replicate the same 
experiment or not. Whatever standard ontologies evolve for 
the different datasets, such classification schemes must a) be 
self consistent, b) be applicable to any organism, c) have the 
fullest possible coverage of biological/experimental func-
tions, d) adapt to new knowledge and information, and e) be 
easily integrated with ontologies for other types of datasets. 

 Several ontologies have been developed to describe the 
different datasets described in the previous sections (for ex-
ample [222-233]). No set of ontologies is yet universally ac-
cepted. However, the Open Biomedical Ontologies (OBO), 
and the Gene Ontology (GO) are becoming de facto stan-
dards in the area [227]. Creating an ontology or a report lan-
guage is not an easy task and the lack of an appropriate ini-
tial structure may compromise future utility. For example, 
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the GO has an uneven amount of information given for dif-
ferent classes of terms at the same depth of classification 
[234], which may become a problem in future. An area 
where information content standards are essential if one 
wants to facilitate automated model building is that of re-
porting parameter values for kinetic and thermodynamic 
experiments (see above section 3 and supplementary appen-
dix). Standard report languages that, to some extent integrate 
relevant ontology information, have been proposed for HTP 
experiments [235], mathematical models [24, 236], gene that 
is expression data [237], mass spectrometry data [http://psi-
dev.sourceforge.net/ms/xml/mzdata/mzdata.html], protein 
interaction data [160], and metabolomics data [225]. It is 
unclear if any of these languages obeys appropriate criteria 
for minimum information content and they are still far from 
being universally applied. However, computer-based algo-
rithms and methods will only be able to automatically cross-
correlate all available information in an efficient and error-
free way when reporting of HTP experiments and data has 
converged to some standard.  

 Imagine that such standards exist and that one wants to 
automatically build the topology of the complete network of 
molecular interactions for an organism. An appropriate clas-
sification of the different data would, in principle: a) orga-
nize all enzymes into metabolic pathways; b) organize all 
signal transduction proteins, into signal transduction path-
ways; and c) organize all transcription factors (TF) and genes 
with binding sites for those TF, into gene circuits (Fig. 3). 
Whenever a new genome is sequenced and annotated, its 
genes can be inserted into the maps, displaying which path-
ways and circuits are present in that specific organism. As 
differences in regulation between organisms are found or 
new pathways and circuits are discovered and reported, the 
classifications and maps themselves can be updated. 

Informational Models for Integrated Data Analysis 

 There are different organizational models that can be 
used to store and integrate molecular biology data. One 
model is that of a central warehouse that stores database in-
formation (e.g. [238-243]). These databases are then linked 
to a server that provides different types of analytical tools. 
These tools allow users to mine and, up to a point, integrate 
information from the databases. Often, these central ware-
houses have a few mirrors distributed over the world wide 
web. Another type of integration service that is often found 
on the internet is the Metaserver. These servers, which usu-
ally analyze one type of data (e.g. [244-266]), submit queries 
to many different central warehouses and then process and 
integrate all the outputs.  

 Another organizational model for information storage 
and analysis is that of distributed sources of information and 
analytical services. Such an approach underlies GRID tech-
nology. At this moment there are at least three GRID-based 
approaches to the development of integrative platforms: Bio-
MOBY [267-271], myGRID [272] or caBIO [273]. They 
rely on different levels of analysis and aim at integrating 
services and databases provided by different providers on the 
web. Such distributed architectures take advantage of the 
decentralized nature of the information and crawl over the 
internet space, identifying and accessing different types of 
data. The data are then pipeline into appropriate services, 

also decentralized and identified over the internet or in a 
central repository of services, to perform the analysis re-
quired by the user. However, there is still a long way to go 
before full automated integration of all available types of 
biological data that are available on the web is achieved. 

 Currently, the semantic web or web 3.0 is under devel-
opment [274]. This new technology is expected to integrate 
information using machine learning methods. The effect of 
such technology in facilitating automated analysis and model 
building in molecular biology is potentially large [274-281]. 

Constraints to Automated Reconstruction of Biological 

Circuits 

 It is a truism that no one can be an expert in everything, 
which makes collaborative work fundamental in an integra-
tive endeavor such as pathway reconstruction in molecular 
systems biology. However, it is also true that sometimes the 
demand for collaborative work placed upon researchers by 
both funding agencies and lack of time to familiarize them-
selves with different areas, rather than enabling research 
synergisms, is a hindrance to the progress of the research. 
Development of a structured integrative approach for net-
work reconstruction and hypotheses evaluation would be an 
important contribution towards increasing the synergism 
among groups interested in different parts of the same bio-
logical problem. 

 Independently of the informational model(s) for data re-
porting, storage and integration, the user interface must be 
designed taking into account the target audience(s) for the 
different services. That audience will potentially be as di-
verse as the entire molecular biology community itself is. 
Hence, an integrative software service must take into account 
users with different expertise and different goals. Therefore, 
a flexible pipeline should exist for data processing and 
analysis. This pipeline should allow for different types of 
reconstruction questions to be asked within the integrative 
architecture. Some users will be satisfied by clicking in but-
tons and obtaining the final result, while other will want to 
manipulate the parameters and algorithms behind the inter-
face for their own purposes and for refining standard analy-
sis. There is a need to provide tools that are sufficiently con-
strained to reduce scientifically unsound use and sufficiently 
flexible to allow expert users to refine methods and data in-
puts. It is possible that the development of different tools for 
the different audiences is the most adequate way to address 
this problem. 

 Furthermore, one must be prepared to allow the users to 
perform different levels of reconstruction and to introduce 
new qualitative and quantitative information based on their 
own expertise. While some will be interested in the static 
reconstruction of pathways and circuits, others will be inter-
ested in the dynamic aspects of that reconstruction. Addi-
tionally, while some will be interested in a broad picture of 
what an organism can do, others will want to pursue a more 
detailed analysis of parts of the cellular response of that or-
ganism and only be interested in AI specific pathways. Thus, 
if one wishes to develop a methodology and implement it in 
a set of tools that can be useful to a wide audience and used 
in a scientifically sound way, one has to take several, some-
times contradictory, constraints into account. Human cura-
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tion is and will continue to be an important part in the proc-
ess, at even when AI development is able to generate tools 
that, to some degree, can replace expert intervention. 

 From a technical point of view, it is unlikely that a single 
research group will be able to come with an all-
encompassing software platform that will allow for such an 
enormous diversity of reconstructions and goals. Thus, one 
of the requirements for such platforms is that they are open 
to external contributions. However, this openness must be 
somewhat more controlled than what is one finds in most of 
the open source projects that exist nowadays. Contributing 
programmers would have to adhere to some programming, 
organizational, and nomenclature standards, in a structure 
similar to that of wikipedia. The reason for such constraints 
is that in many cases there exists both duplication of efforts 
and inconsistent nomenclature even in complementary pack-
ages. An example for both these problems are many pack-
ages for the analysis of HTP data for developed the R plat-
form. 

 Finally, an integrative platform should include some 
form of machine learning algorithms to analyze older 
datasets. It is unlikely that many resources are dedicated to 
reformatting data from previous decades, making that data 
compatible with whatever standards percolate for each type 
of dataset. Trainable machine learning algorithms are cur-
rently the best hope of mining the older data efficiently. This 
is an important challenge for the AI community.  

SUMMARY AND CONCLUSIONS 

 In this work we analyze the in silico reconstruction of 
cellular pathways within the context of molecular systems 
biology. We start with a discussion of the data sets that are 
available for this reconstruction in the post genomic era. We 
describe how systematic integration of the different types of 
information can be used to create mathematical models that 
generate testable biological hypotheses about the functioning 
of the reconstructed system. We then review examples of 
how such data have been integrated to reconstruct pathways 
and obtain a systemic understanding of how those pathways 
work. Finally, we provide a general discussion of how dif-
ferent bioinformatics and computational biology tools can be 
integrated for automated model generation. We are aware 
that a full automation of this process may not be possible. 
However, if we are ever to approach such a goal, at least two 
issues must be addressed: 

a) Better and uniform standards of reporting for the 
different datasets. 

b) Better machine learning methods/artificial intelli-
gence algorithms to facilitate automation of the 
analysis. 

 Any improvement in these areas will translate into a 
more efficient and more accurate network reconstruction and 
facilitate the systemic understanding of molecular pathways 
and circuits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Creating and integrating maps for pathways and gene circuits and applying them to the reconstruction of pathways in a genome will 

enable a better understanding of cellular physiology and behavior. Pre-existing gene circuits, metabolic pathways, transport pathways and 

signal transduction pathways can be used as a template for the assembly of the cellular pathways in newly annotated genomes. New path-

ways that are found in those genomes can be added to the set of pre-existing pathways. See text for a more detailed discussion 
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SUPPLEMENTARY APPENDIX: AVAILABLE DATA-

SETS, ANALYTICAL METHODS AND TOOLS 

 Here we provide a more in depth analysis of the different 
datasets that are available for metabolic reconstruction and 
of the tools that can be used to mine those data sets for in-
formation. 

S.1 Literature Data 

Available Datasets 

 Because thousands of scientific papers are published 
monthly within many areas of molecular biology, it is not 
feasible for anyone to read them all. A digest of the informa-
tion contained in the literature is available on-line, in litera-
ture databases that contain the abstract, title and keyword 
information such as MEDLINE [1], PUBMED [2], Web of 

Science [3, 4] or others [5]. The full text of many papers and 
some books is also available in databases available in journal 
home pages. The information in these databases is organized 
according to strict criteria that facilitate finding papers re-
porting on many different subjects. The various databases 
are associated to diverse search engines that have different 
sensitivities and goals [6-11]. Automated analysis of a natu-
ral text within a given literature database to find specific 
pieces of information (gene names, gene function, parameter 
values, interaction information between individual molecular 
components, etc.) is a rapidly evolving field [12]. Truly 
flexible, multipurpose, and automated network mining from 
the full text of live documents brings enormous added value 
from the literature datasets to molecular systems biology 
research [13-16]. Values for kinetic and thermodynamic pa-
rameters for many different reactions and processes are also 
buried in the literature. Mining for this data has been mostly 
manual, and parameter information stored in databases is not 
in general sufficient to evaluate the usability of such data 
(e.g. BRENDA and enzyme parameters [17-19]).  

Analytical Methods and Tools for Text Mining 

 Natural language processing and mining is developing 
rapidly [3, 6, 20-39]. Currently, several alternative models 
are being used to develop tools that mine the literature. One 
of the models is ontology-based and relies on creating classi-
fications that reduce ambiguity in the text to be mined (e.g. 
[3, 22, 25]). Another model is based upon the existence of 
thesaurus and dictionaries of synonyms [26, 40]. A third 
model, based on machine learning and using a combination 
of ontologies and thesaurus, allows the search algorithm to 
be trained while mining text information (e. g. [20, 21]). This 
should improve the performance of the methods in a near 
future. As a general goal, it is increasingly important to make 
the methods for automated text mining available to the bio-
logical researchers in applications that facilitate the deriva-
tion of biologically relevant information. Some text mining 
tools that fulfill those requirements are already available (e. 
g. [20, 36, 40-48]). For example, they can be used to extract 
network information [41, 42, 44, 47] or protein localization 
[48] from raw text and literature analysis. It would also be 
invaluable to develop specific software applications that al-
low researchers to accurately identify parameter value re-
ports. Ideally, an automated mining of parameter information 

would allow for the identification of organism, reaction, 
units and conditions of parameter determination.  

 It is likely that the major hindrance to a precise and com-
plete mining of the literature information by automated text 
mining tools will be the decades of accumulated literature 
using non-standardized nomenclature and classifications (see 
main text). Possible remediation for these problems are a) 
creating better dictionaries of synonyms, and b) using artifi-
cial intelligence and machine learning methods to increase 
the size of the dictionaries and allow the algorithms to make 
educated guesses regarding correspondence of terms. Part of 
this upgrading of the dictionaries could be done according to 
a combination of machine learning and a “wiki-like” model. 
That is, as users executed their jobs they could provide in-
formation and feedback to the methods regarding new syno-
nyms and correct/incorrect guesses made by the software.  

S.2 Sequence Data 

Available Datasets 

 With the increasing number of genome sequencing pro-
jects that are completed or underway, increasing amounts of 
sequence data are available. Sequence datasets are too nu-
merous to mention. However, a few central repositories con-
tain most of the sequence information, often duplicated 
among the repositories. The NCBI web pages [36-42] and 
the KEGG web pages [43-47] contain annotation informa-
tion for most organisms with fully sequenced genomes. Ex-
pasy [48, 49] also has this information with a focus on the 
proteins. The TIGR institute [50, 51] web pages and the 
DOE Joint Genome Institute [52] web pages also contain 
much of this information. Then, individual genome project 
web pages contain a wealth of functional details regarding 
their genome of interest and its genes. This is the case for 
example of the SGD resource [53, 54] for the yeast Sac-

charomyces cerevisiae, of WormBase for C. elegans [49] or 
FlyBase for Drosophila [50, 51]. There are also databases 
available for RNA genes and gene targets (e. g. [52-55]) as 
well as for regulatory sequences in the genome of different 
species (e. g. [56]).  

Analytical Methods and Tools for Functional Annotation 

of Sequences 

 We will not discuss the computational tools and methods 
used for genome sequencing and annotation. Those inter-
ested can find detailed explanations of the historical evolu-
tion of genome sequencing methods in the paper by Ankeny 
[57] and the references therein. For more recent reviews on 
the subject see [58-61]. 

 Once the genome sequence is completed and assembled, 
one faces the task of finding the open reading frames 
(ORFs). Searching for homology to known genes is one of 
the methods for genome annotation. The de facto standard 
tool for aligning homologous sequences is the BLAST 

alignment program [62]. When no sufficient homology can 
be found, other methods and tools exist to predict ORFs. An 
overview of such methods can be found in [63]. By and 
large, the gene finding methods split into signal finding 
methods or content finding methods. Signal finding methods 
look for elements that signal the beginning and the end of 
genes, such as the ATG codon, or sequences that are recog-
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nized as promoter sequences. However, many other signals 
that can be used for this purpose exist in genomes. These 
signals include for example transcription factor binding sites 
or ribosome binding sites in prokaryotes. Content finding 
methods are based upon finding differences in general statis-
tical properties between coding and non-coding sequences of 
the genome. For example, in a genome the frequency of 
dinucleotides is different in coding and non-coding se-
quences, as is the GC content of the sequence. These differ-
ences can be used to separate the two types of sequences. 
Different gene finding tools use alternative combinations of 
methods to find signals and content, thus improving their 
probability of finding true ORFs [64-70]. The available tools 
for gene finding include GENEMARK [64], SNAP [68], 
Ensembl [71], SPG2 or TWINSCAN (e.g. [67]), among 
many others.  

 Metagenomic sequencing efforts, where the DNA se-
quence of an environment is sequenced and must be assem-
bled, are now emerging [72-76]. Finding genes in these se-
quences is not easy because often one does not know to 
which genome a sequence belongs to. Ideally, the sequences 
should be assembled, whenever possible, into its individual 
genomes which can be analyzed to find genes. However, if 
such assembly is not possible, specialized programs must be 
used to predict genes in large fractions of orphan DNA [77, 
78]. Metagene [69] is an example of a tool developed spe-
cifically for prokaryotic gene finding in metagenomic sam-
ples.  

 Several centralized servers such as Expasy [79], KEGG 
[80-83] or NCBI [84] provide tools that allow researchers to 
infer functional information from sequence data. The infor-
mation made available for any given sequence ranges from 
the actual molecular function of an individual gene/protein to 
the prediction of post translational modifications in a protein 
[77] or the prediction of its location within the cell [85-88]. 
Also, several on-line services provide maps of metabolic 
pathways, gene circuits, and signal transduction pathways 
[89-100]. By superimposing the different genes identified 
within a genome onto those maps, one gains knowledge 
about qualitative aspects of cellular behavior. For example, if 
there are no genes coding for a given amino acid pathway 
within a genome one can expect that the organism will re-
quire that amino acid as a part of its diet. Some tools and 
servers that allow for analysis of phylogenetic conservation 
and congruence studies between genes in sets of fully se-
quenced genomes are also available [101-108]. There are 
also tools available for the analysis of RNA genes and for 
the analysis of regulation by RNA [109-115].  

S.3 Structural Data: Mining for Function 

Available Datasets 

 As is the case for sequence data, the amount of structural 
data for the molecular components of cells is also increasing 
steadily. The whole proteome structural genomics projects 
[116, 117] that are currently under way contribute to this 
increase [118]. There is a central repository of protein and 
nucleic acid structures at the protein databank (PDB) [119]. 
The structures deposited at the PDB include complexes 
formed between proteins and even provide information re-
garding the stoichiometry of those complexes. Many of the 

structures contained in the PDB can also be found elsewhere, 
for example at the NCBI [84]. 

Analytical Methods and Tools 

 Computational methods and tools are necessary from the 
ground up in the analysis of structural data. The most com-
mon ways to obtain protein structure are: 

a) Submitting purified protein crystals to high energy 
radiation bombardment (e. g. X-Ray or neutrons) 
and capturing snapshots of the radiation diffracted 
by the protein crystals. These snapshots are then 
reconstituted into a 3D structure using appropriate 
software [120-125]. 

b) Using NMR technology to take spectral snapshots 
of the protein in solution [126-130], that are then 
reconstituted into a 3D structure using appropriate 
software.  

 Technical details regarding structure determination are 
well beyond the scope of this review. For practical reasons, 
our main focus will be on structure visualization, analysis 
and prediction. Once the proteins structures are available 
they are reported and stored using a specific data format 
[131-133] that includes, among other things, the 3D coordi-
nates of the different atoms in the protein, the native organ-
ism, and the oligomerization state of the biologically rele-
vant form of the protein. An analysis of these structures re-
quires tools for their visualisation. One of the simplest tools 
available is RasMol [134]. This free tool allows the re-
searcher to visualize and do minimal manipulation of the 
structure files. Another free tool is DEEPVIEW [135]. This 
tool is more sophisticated and, for example, it allows for 
point mutations to be introduced into the structure and en-
ergy minimization to be performed. It also allows researcher 
to do their own structural modelling of their protein of inter-
est if the structure has not been determined yet. There are 
alternative methods for structural modelling. The most suc-
cessful can be roughly grouped as follows: 

a) Fold prediction. In some cases, when not enough 
information is available to obtain a 3D structure 
prediction, there are methods that allow the pre-
diction of the secondary structure of a protein 
[136, 137]. Currently, many of the methods used 
for fold prediction are used as intermediate steps 
for obtaining a 3D structure prediction of proteins 
for which there are no known homologues in the 
PDB.  

b) Homology modelling. The researcher has a se-
quence of interest and finds homologues of that 
sequence that have had their structure determined. 
By doing a sequence alignment, the researcher can 
then superimpose the sequence onto the known 
structure, followed by energy optimization. Many 
servers do homology modelling. SWISSMODEL 
[135] and 3DJIGSAW [138] are a few of these. 
To find a list of other such servers one can consult 
the special issues of the journal Proteins that re-
port the CASP (critical assessment of structural 
prediction) results [139-145]. 
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c) Threading. In the absence of homologues with 
known structure, one can thread the sequence over 
a known structure of a protein that one thinks is 
likely to have structural similarity, followed by 
energy minimization. 

d) Ab initio modelling. By using short stretches of 
homology over different protein structures one 
can also create models for the structure of a pro-
tein that has no homologues with a known struc-
ture. Robetta is an example of a server that allows 
researchers to do ab initio modelling from se-
quence [146]. To find a list of other such servers 
see the special issues of the journal Proteins that 
report the CASP results [139-145]. An alternative 
ab initio method is starting with the linear alpha 
helical structure of a sequence and by doing mo-
lecular dynamics simulations study how the pro-
tein folds. However, there is not enough computa-
tional power available to use this approach as a 
standard procedure. 

 The use of in silico protein docking can also reveal de-
tails about how different biological molecules physically 
interact. Interested readers can use different programs and 
servers to perform such docking studies [147-164]. 

S.4 Gene Expression Data 

Available Data 

 Large datasets measuring changes in gene expression for 
entire genomes, under different conditions are accessible for 
many different organisms. These data can be used to infer 
which genes and proteins are important for a specific cellular 
response, thus giving researchers information about the role 
of genes with unknown function. Additionally one can infer 
information regarding the dynamics of the function, which is 
something harder, or even impossible, to do from sequence 
or structural data. Gene expression data is deposited in dif-
ferent databases. The Gene Expression Omnibus (GEO), at 
the NCBI offers the raw data for many of the micro array 
experiments published in the literature [165]. Other general 
databases exist, both for microarray data and for other types 
of gene expression experiments (e. g. [166-171]). There are 
also databases for gene expression for specific human dis-
eases (e.g. [172, 173]) in specific organisms, such as mouse 
[174], Arabidopsis [175] and others.  

Analytical Methods and Tools 

 With the advent of fully sequenced genomes, there came 
the invention of DNA chips and microarrays [176, 177]. In 
microarray experiments, probes that hybridize mRNA for a 
large fraction of the individual genes in a genome are im-
printed onto a slab of material. Cells are grown and subject 
to some stressful condition, which may include mutation. 
Then cells are collected and their mRNAs are purified, am-
plified and hybridized with the probes in the microarray. By 
comparison with a control condition, these experiments re-
veal how much the expression of individual genes changed 
in response to the stress. For a more detailed description of 
microarray experiments see for example [178].  

 Other methods also allow measuring changes in gene 
expression at the whole genome level. Such methods include 

for example SAGE [179, 180] or CAGE [181] experiments, 
where mRNAs are directly amplified and identified in solu-
tion without the need of an imprinted microarray. A variation 
of the classical DNA microarray is the tiling microarray. The 
probes in these arrays are designed to cover entire regions of 
the genome, rather than individual genes [182]. These mi-
croarrays have shown that there are large islands of expres-
sion, for example in the human genome, that are either out-
side the genes or constitute only fragments of those genes 
[182, 183].  

 As is the case with the determination of protein structure, 
computational methods are needed to process the data in 
microarray experiments that measure changes in gene ex-
pression. The determination of change fold for gene expres-
sion in microarray experiments is usually done using differ-
ential measurements of fluorescence or radioactivity. Image 
capture, processing and noise filtering are areas where ap-
propriate algorithms must be used in order to ensure accept-
able data acquisition and normalization [178, 184, 185]. 

 Once the data are collected and organized in its final 
form, then a different set of computational methods is re-
quired in order to determine whether a change in gene ex-
pression is actually significant or whether it can be attributed 
to noise [186-189]. There are no general methods that are 
universally considered as more appropriate to analyze the 
significance of a given change fold. This is an area of inten-
sive research. Microarray data have problems of reproduci-
bility and robustness, which underlines the importance of 
experimental design, replicate experiments and appropriate 
statistical methods as a means to identify significant changes 
in gene expression. 

 There are several tools to analyze microarray gene ex-
pression data and cluster genes according to their changes in 
expression. For example, the tools provided in GEO [165, 
190] can be used to comparing different gene expression 
profiles. TM4 [191] and BASE [192] are examples of soft-
ware platforms that allow for the analysis and comparison of 
gene expression profiles. Bioconductor [193] is a popular 
open source software platform that uses a set of functions 
and procedures written in R to analyze microarray data. 

S.5 Proteomics Data 

Available Data 

 What information from proteomics experiments should 
be stored in databases and how it should be organized is still 
not consensual [194-200]. In consequence there is still no 
central repository of proteomics data. PRIDE [199, 201] and 
the Peptide Atlas [202] projects are probably the resources 
that contain more data from proteomics experiments. The 
global proteomics machine [203] provides software and in-
ternet services that mine data from these and other pro-
teomics data sources. On a smaller scale, the NetworKIN 
database stores proteomics information about the phosphory-
lation state of human phosphoproteins [204].  

 There is, to our knowledge, no good and general HTP 
method to characterize protein activity on a large scale 
(however, see the main text for a promising new method.) 
The development of such methods would allow for the large 
scale determination of enzyme parameters, binding, and 
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thermodynamics constants and would likely create a revolu-
tion in mathematical modeling. Nevertheless, and independ-
ently of the limitations, the application of proteomics meth-
ods to the study of the dynamics of protein post translational 
modification can be a step forward in obtaining this type of 
information. 

Analytical Methods and Tools 

 The progresses in 2D gel electrophoresis and in Mass 
Spectrometry (MS) and NMR technology have permitted the 
analysis of whole cell samples in order to identify the protein 
complement of the cell [205-225]. In general, proteins are 
separated via electrophoresis. The different proteins are then 
identified using MS techniques or NMR techniques. Unfor-
tunately, datasets from these studies are not as abundant nor 
publicly available as those from microarray experiments. 
Furthermore, a central repository for all the proteomics ex-
perimental data is still lacking. Nevertheless, the available 
proteomics data already provide information regarding 
community proteomics [226], subcellular localization of 
proteins [227-229], dynamics of protein turnover [207, 208, 
230, 231], post-translational modifications of proteins [217, 
232-240], markers of specific responses, and many other 
aspects of protein function. 

 Most of the software effort in proteomics is still dedi-
cated to creating tools for identifying proteins from the MS 
or NMR spectra. These tools work, for example, by using 
Fourier analysis for spectral identification. The spectra are 
compared to know protein spectra, thus allowing for the 
identification of proteins in sample. The data sources men-
tioned in the previous section provide tools that allow re-
searchers to identify the proteins that are present or absent in 
each sample.  

S.6 Metabolomics Data 

Available Data 

 There is, to the knowledge of the authors, no general cen-
tral public repository of metabolomics data. A few databases 
already exist, but their content is fragmentary, with respect 
to the amount of reported metabolomics data [241-244]. Fur-
thermore, the problem of developing a standard in data re-
porting is a difficult one that has only now began to be ad-
dressed [245-249]. Links to some of the current repositories 
of metabolomics data available on the web can be found at 
http://www.bmrb.wisc.edu/metabolomics/external_metab_li
nks.html. As time progresses and standardization settles into 
the field, it is likely that central repositories of metabolomics 
data will be developed. Such data will be invaluable for ex-
ample to derive parameter values and perform mathematical 
model validation [250].  

Analytical Methods and Tools 

 Cells use proteins to take up nutrients and make other 
small molecular species. There may be more than 200 000 
metabolites in the plant kingdom alone [200]. Unlike pro-
teomics or genomics, in metabolomics experiments  hun-
dreds of types of molecules with different chemical proper-
ties must be detected. Thus, detection techniques must be 
sensitive, robust and versatile. Technological advances in 
NMR spectroscopy [251, 252] and MS have facilitated the 
use of these two types of techniques to measure the changes 

in the concentration of small metabolites over time [245, 
250, 253-269]. NMR metabolomics methods are inherently 
quantitative but have a low sensitive and require larger 
amounts of a metabolite for identification than MS methods. 
MS is more sensitive but cannot provide absolute quantifica-
tion. A more detailed analysis of these and other experimen-
tal techniques used in metabolomics experiments can be 
found in the literature [268, 270, 271].  

 Computational methods are required at every step to 
process and analyze metabolomics data [263]. A single spec-
trum in a metabolomics experiment may contain many dif-
ferent signals. This requires powerful computational and 
statistical methods as well as accurate spectral maps for the 
many different types of metabolites. Statistical and computa-
tional methods are needed to deconvolute the metabolomics 
spectra. Pattern recognition methods are required when com-
paring different metabolomics experiments of the same sys-
tem under different conditions. Methods for pattern recogni-
tion are reviewed for example in [248, 249, 272]. The com-
parisons between different metabolomics profiles help iden-
tifying metabolites whose levels are significantly modified, 
thus pointing at direct changes in regulation of metabolism 
between the two conditions. Algorithms such as those devel-
oped by Vance et al. [273] can be applied in determining the 
causal sequence of events in metabolomics experiments. 
Parameter fitting methods and algorithms can use the data to 
obtain parameter values for mathematical models [274-278]. 

S.7 Interaction Data 

Available Data 

 Interaction data can be divided into three categories:  

 Genetic and functional interactions. By genetic interac-
tions data we mean data that provide information regarding 
essentiality of genes (e.g. [279]) or complementation be-
tween different genes [280]. For example, in S. cerevisiae, a 
multi-copy vector containing the ISA2 gene rescues the 

grx5 mutant phenotype [281]. By functional interaction 
data we mean data that provide information about which 
processes and functions are genes and proteins involved in. 
Genetic and functional interaction data provides very useful 
information regarding the function of the different genes. It 
may be invaluable in providing information regarding the 
pathways and responses in which genes of unknown function 
are involved. Prophecy is a database that collects this data 
for S. cerevisiae [282]. However, there is, to our knowledge 
no other resource that systematically collects this informa-
tion for other organisms. Another type of functional interac-
tion data is that of genes and proteins that are known to be-
long to specific metabolic pathways, signal transduction 
pathways and gene circuits. By homology analysis many 
proteins of any genome can be placed into the different 
pathways and circuits, thus providing functional information. 

 Physical interactions. By physical interactions data we 
mean data that provides information regarding actual physi-
cal interactions between different proteins or between pro-
teins and nucleic acid. There are many different types of 
experiments that provide data regarding these interactions. 
Automated and large scale Two Hybrid Screens (THS) sys-
tematically take the proteins of a genome and scan for physi-
cal interactions between each pair of proteins [283-285]. If 
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an interaction exists, a chemical product that can be detected 
is produced or photons are emitted [285, 286]. A systematic 
application of the THS technology has been reported for 
yeast, worm, fly, human, H. pylori and other organisms (see 
[286-296]). Different reporter methods will provide different 
sensitivity and robustness in THS [291]. The THS assays 
also have problems with false positive and false negative 
interactions. This is so because the interaction between pro-
teins is often measured in conditions that may not be the 
native conditions under which the two proteins meet in the 
cell. An alternative method for HTP assays of protein inter-
actions is by using classical biochemical co-purification 
methods followed by MS identification of the purified pro-
teins [287, 297]. So far there is a 10-20% overlap between 
dataset of protein interactions that are determined independ-
ently [298]. It is conceivable that in the near future protein 
chips, where the individual proteins of the genome are se-
cured to some support material, will be devised and used to 
fish out interacting partners from whole cell protein extracts. 
There are already affinity chips that are used for purification 
of proteins [211]. Additional sources for protein-protein in-
teraction information are in silico predictions. By using se-
quence information and evolutionary analysis there are 
methods that predict, for example, co-evolution of residues 
in different proteins or gene fusion events in different ge-
nomes. Predictions of co-evolution or detection of gene fu-
sion events are interpreted as indicating that there is a physi-
cal interaction between two proteins (see [299-302] for a 
review). On-line resources where information from HTP 
interaction experiments is deposited include the BIND data-
base [303] the PRIME database [304], the MIPS database 
[305], the DIP database [306] and the MINT database [307]. 
All these databases also contain information regarding small 
scale interaction experiments, mined from the literature. 
Some databases focus on specific organisms, as is the case 
for example of the E. coli database EchoBase [308]. 

 Another type of physical interaction between cellular 
components that has implications in cell function is the one 
occurring between proteins and nucleic acids. Information 
regarding which regulatory motifs are bound by the different 
transcription factors (TF) in a genome is important because it 
allows the identification of which genes are regulated by 
each transcription factor. The development of ChIP-chip 
technology [309, 310] enables HTP research about which 
genes are regulated by which TFs in a genome. In ChIP-chip 
experiments, cells are grown under the conditions of interest 
and then they are lysed. Then one of a series of methods is 
used to crosslink DNA and protein, followed by fragmenta-
tion of the genomic DNA. The DNA fragments are then co-
purified with the transcription factors of interest, amplified, 
and hybridized with a genomic DNA microarray. This hy-
bridization reveals where in the genome the TF binds, allow-
ing the inference of gene circuits controlled by each TF. As 
is the case for protein-protein interactions, there is no large 
scale central repository for this type of information. There 
are however smaller databases that contain information re-
garding the different aspects of protein-DNA interaction. 
The NDB, PSIBASE and AANT databases contain informa-
tion obtained from DNA protein complexes deposited at the 
PDB [311-313]. NPInter also has information about interac-
tions between protein and non coding RNA in E. coli, S. cer-

evisiae, C. elegans, D. melanogaster, M. musculus, and H. 
sapiens [314]. The BDTNP database at Berkeley (https://bd-
tnp.lbl.gov/Chipper-/index.jsp) is a secured access resource 
for the analysis of fly related DNA-protein interactions. 

Analytical Methods and Tools 

 The computational methods used for mining interaction 
data range from those used to find co-occurrence of genes in 
the literature, to those used to create protein alignments and 
to calculate co-evolution of specific residues, and to those 
used for in silico protein docking. Many algorithms use 
graph theory to derive networks of functional interactions 
from the different types of data. From a mathematical mod-
eler’s perspective, the representation of networks obtained 
from mining interaction data is in general far from perfect. 
Most representations of these networks show a set of nodes 
(the genes/proteins) connected by edges whenever there is 
some form of interaction between them (e.g. [315]). This 
kind of representation is ambiguous and prevents direct utili-
zation of the networks for the generation of mathematical 
models. Some tools (e.g. pathway tools [96, 100]) represent 
networks with diagrams that can be easily and unambigu-
ously parsed as models. However, this is mostly for enzyme 
network data. Building something similar for systematic re-
construction of gene circuits and signal transduction path-
ways is difficult until a standardized classification is ac-
cepted for signal transduction proteins and transcription fac-
tors. 

S.8 Kinetic Data 

 Kinetic data are fundamental for the development of 
mathematical models in molecular biology. Having such data 
in abundance and devising good classification systems for 
the different functions of cellular species facilitates auto-
mated model creation. This job has so far been easier for 
enzymes than for other types of molecules. Many years ago, 
the enzyme commission (EC) developed a functional classi-
fication scheme for the activity of enzymes that, although not 
perfect, is very useful when annotating proteins with enzyme 
functions [316]. Databases such as BRENDA [19, 317-319] 
include information about the function of different types of 
enzymes, and in some cases also about kinetic parameters 
and thermodynamic energy measurements. Kinetic informa-
tion can also be found for example in KDBI [320]. EzCatDB 
[321, 322] and MaCie [323, 324] include information re-
garding catalytic mechanisms. ProTherm provides thermo-
dynamics data for mutant proteins [325]. However, the ki-
netic information is not classified and organized in such a 
way that researchers can directly take the parameter values 
and use them to build models. Anyone who is interested in 
doing so must consult the original sources where the parame-
ter values are reported and make sure that units are consis-
tent and that the experimental conditions during the determi-
nation are appropriate for the purposes of the model. 

 It would be important to have similar functional classifi-
cations for other types of proteins, such as receptors, struc-
tural proteins, transcription factors and so on. This would 
facilitate automated building of schema that could then be 
used to build mathematical models. However, proposed 
standard for such classifications are still far from perfect or 
universal. Some classifications based upon the DNA binding 
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motifs or the structural binding domain of transcription fac-
tors have been proposed (see e.g. [326, 327]). Classifications 
similar to that proposed by the EC for enzymes have been 
proposed for signal transduction molecules [328] and trans-
port proteins [329]. However, their use is far from wide-
spread and it is unclear if they will be adopted as a standard.  

 It would also be extremely useful to have standard func-
tional classifications for: 

a) Lipid components. The chemical structure of 
these lipids may constitute a good basis for such a 
classification. 

b) Nucleic acid molecules, including the different 
types of small RNAs that are currently being 
shown to play important roles in regulating and 
catalyzing functional aspects of the cell metabo-
lism. Although a general classification has been 
proposed for RNA [330], it focuses on structure, 
rather than function. 

c) Small metabolites. Again, the chemical structure 
of these small metabolites may constitute a good 
basis for a functional classification. The Ligand 
database [331] is a good repository of small meta-
bolic molecules. Other methods, based on chemi-
cal and structural information allow for the devel-
opment of different types of metabolite classifica-
tions (e. g. [332]). 

 Having a classification for the different proteins, genes 
and other components of the cell has allowed the creation of 
many resources with more systemic functional information 
such as lists of pathways, gene circuits and signal transduc-
tion pathways (e.g. Metacyc [95], KEGG [80, 82] or EMP 
[333]). Such resources provide annotated information re-
garding the function of the different cellular components. 

S.9 Mathematical Models 

Available Data 

 Mathematical models of specific molecular processes in 
different organisms are an increasingly important source of 
information for the understanding of the systemic behavior 
in molecular biology. Such models have been published 
since the 1950s and they are mostly scattered in the litera-
ture. Datasets that collect and organize these models have 
been recently started, but relatively few models are included 
[334-341]. Model annotation is much more challenging than 
annotation of genes and proteins for several reasons. For any 
given system, one can create models using different formal-
isms and at different levels of detail. This depends, among 
other things, upon the questions one wants to ask of the 
model. Models of similar processes on different organisms 
may involve different enzymes, different number of steps 
and branch points, etc. Finally, the existence of specific 
regulatory signals that may vary from one condition to an-
other, from one protein isoform to another, or from one or-
ganism to the next, introduces further complexity into the 
modeling process. 

 Despite all these difficulties, it is clear that a standard 
model reporting language is useful to reutilize models or part 
of models that have been previously defined and curated. 

Building models is a challenging task and any tools that fa-
cilitate the model building process are useful. Currently there 
is an effort to make newly published models comply with 
minimal information criteria for publication [338]. There is 
also a drive to facilitate the interchange of model files be-
tween different programs and researchers by asking that 
models be deposited in central databases, using a standard-
ized modeling language such as SBML or CellML [342-
345]. A large investment is also being made in the develop-
ment of tools for model set up and analysis [346-352]. The 
model database efforts are currently in their infancy and the 
databases are still small. However, if one is willing to search 
the literature, one will find many models that are useful in 
understanding the systemic behavior of molecular biology 
processes. 

Analytical Methods and Tools 

 There are different formalisms for writing models and 
different classes of models. The choice of a given mathe-
matical representation depends on the goals of the modeling 
exercise, the complexity of the target system, and the avail-
able data (either in terms of parameters or in terms of time 
course data, metabolite levels, enzyme activities, etc.). Fur-
thermore, the same problem can be studied at different levels 
of complexity. For example, one can find models that range 
from the modeling of a single enzyme reaction to those that 
attempt to model the whole cell, going through intermediate 
scale models that consider small sets of cellular pathways 
and circuits.  

 Among the smaller scale models that consider only a 
very limited number of molecules and reactions we find 
many different types of modeling. Mainly, quantum model-
ing is used for investigating the active state of an enzyme 
reaction [353], molecular dynamics is used to study protein 
folding [354], stochastic modeling can be used for modeling 
networks of reactions with a small number of molecules 
[346]. For large scale models of many pathways, the quan-
tum modeling, molecular dynamics modeling, Monte Carlo 
modeling and stochastic modeling become unfeasible due to 
lack of computer power. Sets of ordinary and partial differ-
ential equations are common in exploring the dynamic be-
havior of complex pathways [275, 355, 356]. Qualitative 
types of modeling such as discrete binary mode modeling 
[357-359] or flux balance analysis [360-363] are also used to 
study large networks.  

 Integration of models from different origins and using 
different mathematical forms is a very challenging problem. 
Before discussing possible solutions to this problem, it is 
worth it briefly detail some of the specific requirements of 
the most common formalisms. A simple description of a 
process is appealing because one require less information to 
build a model from such a description. However, the utility 
of the resulting models may be limited if our goal is to un-
derstand dynamic behavior and design principles. More 
complex descriptions of a process have better changes of 
producing models that reproduce a wide range of behavior 
for the system one is studying. However, the complexity of 
such models combined with lack of information regarding 
the process may prevent the creation of more detailed     
models.  
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 A similar argument can be made for mathematical repre-
sentations. Simple linear representations will facilitate the 
analysis of models but will prevent the model from capturing 

non linear behavior that is typical of biological systems. Ap-
proximation theory provides many alternative formalisms 
that combine simplicity with non linearity [364]. We now 
briefly discuss different types of models used in molecular 
biology. 

Finite State Models 

 Finite state models analyze the dynamic behavior of net-
works in which the nodes are allowed only a finite number 
of states (e.g. on-off). Such a mathematical description is 
very simple, thus allowing the analysis of complex and large 
networks. The basic information required to built such mod-
els include: (i) the stoichiometric matrix of the reactions tak-
ing place in the model, which can be derived from the con-
ceptual scheme of the target system, (ii) the relevant regula-
tory signals, so that we can appropriately describe the on-off 

states of the system’s elements, and (iii) a set of functions, 
usually sigmoid, that are used to decide the on-off state of 
the different elements (e.g. [365]). Finite state models are 
appealing because they need a minimum of information as 
input and provide clues about the dynamic properties of a 
system [358]. However, in general, these models will not be 
useful if detailed quantitative predictions are needed.  

Models Based on Stoichiometry 

 Flux-balance analysis (FBA) and graph theoretical ap-
proaches study network topology and relate changes in that 
topology to qualitative changes in the dynamics of the sys-
tem. These models often study the entire metabolic network 
of an organism [360, 366-381]. As in the case of the finite 
state models FBA requires a minimum of information, be-
sides the stoichiometric matrix of the model. From this ma-

trix and using graph theoretical methods and optimization 
techniques, FBA can, for example evaluate the effect of de-
leting a gene on the flux distribution, thus identifying the 
expected phenotypes for mutants in the different enzymes. A 
disadvantage of these approaches is that they fail to account 
for dynamic regulation. FBA models are a good choice for 
genome-wide descriptions and can be used as a base for 
more detailed modeling of specific pathways. 

Stochastic Modeling 

 Stochastic models consider the details of the system and 
either a) use a Master equation to study the time distribution 
of the metabolite concentration [382-385], or b) consider 
every molecule in the system and follow their time evolution 
using chemical kinetics and algorithms that are able to statis-
tically predict each elementary reaction event in the system. 

Gillespie like algorithms require that all reactions are mass 
action in order for the methods to work [346-349]. There are 
now newer stochastic methods that are being developed and 
loosen this constraint [386]. These models are computation-
ally very heavy. Whenever dealing with processes that in-
volve large pools of molecules, deterministic approaches are 
good approximations to the more detailed stochastic ap-
proach.  

 

Continuous Modeling 

 The use of differential equations, either ordinary (for well 
stirred systems) or partial (for systems with spatial 
differentiation) to define mathematical models that can be 
used to quantitatively simulate the dynamics of a molecular 
system was the first [387, 388] and is still the more prevalent 
choice as a computational modeling tool. There are 
mathematical rational expressions that simplify complex 
mechanisms and are considered to represent more or less 
accurately the dynamics of many different types of 
individual molecular biology processes. For example, for a 
simple one substrate enzyme, the Michaelis-Menten rate 
expression can represent the dynamics of the reaction in well 
stirred systems [389]. Many other rational expressions have 
been derived for more complex enzyme atic mechanisms. 
However, we lack the knowledge of how many processes 
happen, which prevents the use of these pre-defined kinetic 
expressions in modeling. Even if the mechanism is known, 
in most cases the parameter values have not been measured 
and thus the mathematical representation using rational 
expression cannot be parameterized. Furthermore, when 
parameter values are available, the experimental conditions 
under which they have been measured may invalidate their 
use.  
 Additional complications occur when one is interested in 
modeling spatially non-homogenous systems. In such a case 
PDEs must be used and many of the simplifying assumptions 
for obtaining rational rate expressions such as the Michaelis 
Menten kinetics often break down. Thus, depending on the 
level of mechanistic, spatial and mathematical detail one 
wants to consider, a given conceptual scheme can generate 
many different models.  

 One way to side-step the lack of knowledge regarding 
mechanism and, in some cases, parameter values is by using 
approximation theory. Mathematical theory allows us to ap-
proximate functions of known and unknown form with struc-
tured, canonical, representations that are precise at the oper-
ating point of the approximation and accurate over a varying 
range of values about that operating point. The most wide-
spread and successful approaches use Taylor series to ap-
proximate the kinetic functions. This strategy was used by 
Savageau in the late sixties to generate a non linear represen-
tation of molecular biology systems, known as the Power-
law formalism [390-392]. The Power-law representation can 
be derived from the conceptual model and some systemic 
properties can be analyzed without the need of a detailed 
kinetic characterization [393-406]. Furthermore, we can eas-
ily modify a given model by adding terms to any of the equa-
tions, which can be an advantage for sharing models. Alter-
native representations to the Power-law formalism that share 
some of its advantages are the Lin-log [265, 407, 408] and 
(log)linear [409] formalisms. Both formalisms require the 
same information as required for the Power-law formalism, 
although the final representation differs [364, 410]. Recently, 
a Saturable and Cooperative (SC) formalism has been de-
rived by using Taylor series approximation after a power-
inverse transformation [364, 410]. In a different strategy, the 
use of a special rate-law called Convenience kinetics has 
been proposed as a way of obtaining a general representation 
[411]. Because power-law models can be easily and auto-
matically obtained from other representations, the use of this 
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(and other) formalism(s where such usage is possible) may 
facilitate HTP modelling building and analysis.  
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