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Abstract

Background: Optimization methods allow designing changes in a system so that specific goals are
attained. These techniques are fundamental for metabolic engineering. However, they are not
directly applicable for investigating the evolution of metabolic adaptation to environmental changes.
Although biological systems have evolved by natural selection and result in well-adapted systems,
we can hardly expect that actual metabolic processes are at the theoretical optimum that could
result from an optimization analysis. More likely, natural systems are to be found in a feasible region
compatible with global physiological requirements.

Results: We first present a new method for globally optimizing nonlinear models of metabolic
pathways that are based on the Generalized Mass Action (GMA) representation. The optimization
task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer-
approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems
and mixed-integer linear programming (MILP) master problems that provide valid upper and lower
bounds, respectively, on the global solution to the original NLP. The capabilities of this method are
illustrated through its application to the anaerobic fermentation pathway in Saccharomyces
cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a
system to meet a set of physiological constraints that can be represented in mathematical terms
through algebraic equations. This technique is based on applying the outer-approximation based
algorithm iteratively over a reduced search space in order to identify regions that contain feasible
solutions to the problem and discard others in which no feasible solution exists. As an example, we
characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive
response of yeast Saccharomyces cerevisiae to heat shock

Conclusion: Our results show the utility of the suggested approach for investigating the
evolution of adaptive responses to environmental changes. The proposed method can be used in
other important applications such as the evaluation of parameter changes that are compatible with
health and disease states.
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Background
The emergence of design in biological systems was an
unsolved problem until natural selection was established
as the driving force for the evolution of such systems
[1-4]. At the molecular level, the identification of design
principles through controlled mathematical compari-
sons that evaluate different functional criteria in meta-
bolic networks has led to a better understanding of
adaptation and design emergence [5-12]. Such principles
enable building new gene and metabolic networks that
accomplish specific requirements which is the main goal
of Synthetic Biology [13-15]. The identification of
quantitative evolutionary constraints plays an important
role in understanding the actual characteristics of
biological systems [16,17]. In that sense, one may
argue that the adaptive response of the cellular metabo-
lism to different situations is ultimately shaped by
physiological requirements that must be met by tuning
gene expression and enzyme activity [18-20]. Under-
standing the evolution of the adaptive strategies that
assure cell survival in different conditions is, thus, an
important goal in Systems Biology [18-22].

In unicellular organisms, adaptive capability is specially
important as they lack an internal milieu than could
buffer the environmental changes. In this context, the
adaptive responses to different stress conditions, (heat
shock, oxidative stress, osmotic stress, and other envir-
onmental changes), have been extensively investigated
using yeast as a biological model [23-26]. In general,
such adaptive responses require synthesis of protective
proteins (chaperons, trehalose, sphingolipids, etc.), and
a fine tuning of the metabolic status to assure an
appropriate supply of energy and building blocks for
new proteins. The operating principles of the adaptive
response to heat shock were investigated under this
perspective [18,20]. The increase in trehalose, ATP, and
NADPH synthesis are primary requirements for an
appropriate response in this conditions. However, these
flux constraints cannot fully explain the observed
changes. Complementing flux constraints, economy
savings in the gene expression changes and constraints
for preventing an unnecessary increase of metabolites
were shown to be necessary to understand the adaptive
response to heat shock. Thus, a combination of
constraints on particular metabolic processes, economy
issues, fluxes, etc. are required to define the scenario in
which natural selection operates [20].

In this paper we develop a new approach that focuses on
identifying feasible parametric regions that contain
solutions for system parameters so that a set of
physiological constraints are satisfied. With that method
we will be able of identifying the possible evolutionary

solutions that are expected to contain the actual adaptive
response. First, we present a global optimization proce-
dure that capitalizes on the properties of a particular class
of nonlinear models, the GMA (Generalized Mass
Action) models based on the power-law formalism.
This method improves the method recently proposed
by Polisetty et al. [27] and takes advantage of the
properties of the power-law formalism as a canonical
nonlinear modeling technique [28-30]. Second, we
introduce a search strategy that allows identifying the
parameter regions containing admissible solutions for
the problem. The proposed algorithm is very efficient for
realistic problems, although different technical improve-
ments are possible to optimally scale it to large problems.
The feasible regions found would represent the landscape
in which evolutive solutions are expected. Comparison of
our result and actual data allows to discuss the practical
usefulness of the proposed approach.

Methods
Problem statement
Generally speaking, a metabolic network can be char-
acterized by its processes, internal metabolites, and
control (external) variables. Details on the regulatory
effects (for instance feed-back inhibition) are important
for a complete description. Furthermore, kinetic details
are required for computing the response of the system to
different inputs and environmental changes. For a system
with p processes that can contribute to the change in the
concentration of the pool of any of the n internal
metabolites, the basic mathematical representation is

dXi
dt

v i nir r

r

p

= =
=

∑ μ
1

1,.., (1)

Here, μir is a stoichiometric factor that indicates how
many molecules of Xi are produced or used by the process
vr; it is a positive integer if the flux r produces Xi and it is a
negative integer, if the flux r depletes the pool of Xi.

Each velocity can be represented by different functional
forms that may include various parameters. The choice
of a particular mathematical form is not trivial and can
either facilitate or hinder the task of analyzing the
optimal design and the adaptive responses to different
environmental changes [31,32]. From all the available
formalisms, the so-called power-law formalism is one of
the most convenient. Details for this choice can be found
elsewhere [31]. In this formalism, each velocity is
represented as:
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In this representation, Xj accounts for the concentration
of metabolite j, gr is an apparent rate constant for flux r,
and frj is the kinetic order of variable Xj in reaction r.
Each kinetic order quantifies the effect of the metabolite
Xj on flux r and corresponds to the local sensitivity of the
rate vr to Xj evaluated at the operating point indicated by
the subscript 0, that is:

f
vr
X j

X j
vr

r p j n mrj = ∂
∂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ = = +

0

1 1,.., , .., (3)

If Xj has no direct influence on the rate of reaction r, the
kinetic order is zero. If it directly activates the flux of
reaction r, the kinetic order is positive. If it inhibits the
flux of reaction r, then the kinetic order is negative.

Without loss of generality, enzyme levels can be
considered embedded in the gr parameters. This is so
because, in most cases, the kinetic-order for the enzyme
is 1, as velocities are linearly dependent on the enzyme.
Of course, if necessary, enzymes can also be included in
the model as control variables. On the other hand, if the
model includes dynamic changes in enzymes, for
instance through gene regulation, they can also be
considered as dependent variables.

Using this representation, a Generalized Mass Action
(GMA) model is defined by expressing each velocity in
(1) using its power-law form (2) [33]:
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Here, we assume that there are m ≥ 0 control (external)
variables. Alternatively, an S-system model is obtained
by aggregating the different processes in a net process of
synthesis Vi

+ and a net process of degradation Vi
− for

each metabolite, i.e.:
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Using the power-law representation for each aggregated
process, we obtain:

dXi
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In this last formulation, the kinetic orders are called g
and h, and the rate constants a and b for convenience.
The different parameters of models (4) and (6) can be
obtained, for instance, via estimation from dynamic data

[34,35]. If this is not possible, tentative parameter values
can be suggested based on the literature [22,36].
Furthermore, based on their mathematical definition,
values that represent those situations of interest can be
easily proposed even in absence of specific data. This last
possibility allows model analysis and exploration even
in cases were little experimental information is available
[37,38]. GMA and S-system models are very interesting,
as they capture the underlying non-linearities of the
system processes and provide a model that is amenable
to optimization techniques [39]. Here we will separate
two different goals:

1. Optimization in biotechnological applications:
Given a model that represents the reference state of
the system, we are interested in finding the parameter
changes (engineering design) that optimize a given
objective function (usually a flux).
2. Find feasibility regions in evolution studies:
Given a model that represents the normal metabolic
state of a cell, find the admissible changes at the level
of enzyme activities that are compatible with a set of
physiological and functional effectiveness criteria
(evolutive emergence of design).

Results and discussion
Optimization approach
Motivation of the optimization approach
Optimization of biological processes is a very important
goal in biotechnological applications [40-44]. In general,
the main purpose is finding the appropriate changes in
enzyme levels, mainly through changes in gene expres-
sion, so that a given objective function is optimized. This
can be a flux, for example in a production process, a
metabolite concentration, or any other objective func-
tion. Developing appropriate optimization techniques is
fundamental for defining a practical metabolic engineer-
ing approach [44]. The intrinsic complexity of the target
systems and the non-linearities involved in the under-
lying processes makes optimization a difficult task in this
field. The use of models based on approximated
representations such as the power-law models, either in
their S-system or in GMA form, is a promising alternative
[19,45].

Optimization based on nonlinear models defined with
the power-law formalism was first proposed by Voit
[45]. By using the S-system model strategy, a transforma-
tion to logarithmic coordinates allows using linear
optimization for solving a number of biotechnological
problems [45-47]. However, when the problem is
represented by a GMA model as in (4), this technique
cannot be directly applied. To overcome this problem,
methods for optimizing models based on this particular
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form have been developed [27,39,47]. Here, we shall
present a new method that is closely related with the
method suggested by Polisetty et al. [27]. Our first goal is
to develop an efficient global optimization method for
GMA models. Besides its own interest for metabolic
engineering tasks, this is a requirement for developing
the feasibility approach that is the ultimate goal of this
work.

Optimization method
In practical biotechnological applications, we are inter-
ested in obtaining the best set of changes in enzyme
levels (that is gr in GMA models), so that a given goal is
attained (for instance maximize a flux) and a set of
constraints are satisfied (for instance: metabolite levels
do not increase over a given threshold, some reactions
do not reduce the fluxes under given values, changes in
enzymes do not go beyond a realistic maximum, etc.).

The optimization task can be posed as an standard
optimization problem that aims to identify the specific
values of vr, gr and Xj that minimize a given predefined
criterion while satisfying at the same time a set of
biological constraints. In what follows, we consider an
standard optimization problem in which the objective
function is minimized. Maximization problems can be
easily reformulated into minimization problems by
changing the sign of the objective function. At this
point, kinetic-orders are regarded as fixed parameters.
These parameters represent intrinsic kinetic properties of
the involved processes. Optimization of their values is
possible, although the method should be further
adapted to deal with that case and assure a global
optimum. We shall consider this possibility in the future.

The optimization task is, thus, formulated as a nonlinear
programming (NLP) problem of the following form:

ONLP S( ) min{ ( , , ) : ( , , ) }
, ,

= ∈
v Xr

U v X v X S
γ

γ γ (7)

where ONLP(S) denotes the optimal objective value over
S. The set S is called the set of feasible solutions, and
contains all the values of vr, gr and Xj that satisfy a set of
constraints on the GMA equations. In matrix notation:

S v X h v Xp p n= ∈ × × ≤+ + +{( , , ) : ( , , ) }γ γR R R 0 (8)

In this representation, v, g, X denote the (column)
vectors of continuous variables; U p p n: R R R R+ + +× × 6 1
is the objective function; and h p p n k: R R R R+ + +× × 6
represents the equations that define the feasible set. In
general, S may also include additional equations others
than those involved in the GMA representation to reflect

specific biological conditions. Problem ONLP(S) can
also be expressed in a more detailed way as follows:
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Here the feasible set S includes the steady-state equations
as a basic constraint. Thus, optimization is run to find a
steady-state solution that optimizes the objective func-
tion and that fulfills the considered constraints. As
commented before, the optimization model may also
incorporate other equations that impose certain condi-
tions on the values of the variables vr, gr, Xj. For instance,
we can consider a constraint X1 + X2 + X6 ≤ k that forces
the summation of certain concentrations of metabolites
to be lower than a desired upper limit k. This second type
of constraints may represent specific physiological
properties that the solution sought should satisfy.

Hence, the objective of the NLPmodel defined above is to
find the solution that simultaneously minimizes the
function U(·) and satisfies the equations (physiological
constraints) defined upon the biological system. There are
currently many strategies available to solve NLP problems
like ONLP. These methods are typically implemented in
software packages that allow the solution of models with
thousands of variables and constraints (see [48]).
Unfortunately, there is a particular difficulty in solving
the NLP defined byONLP, which stems from the fact that
its feasible space is nonconvex. This nonconvex structure
is given by the nonlinear equality constraints that define
the velocity terms. In nonconvex models, standard NLP
techniques are not guaranteed to converge to the global
optimum and yield solutions that must be regarded as
locally optimal. In the context of performing a biological
analysis, this limitation constitutes a major shortcoming,
since it can lead to wrong conclusions.

To overcome this drawback, it is necessary to resort to a
specific type of mathematical methods known as global
optimization techniques (for a detailed review see [49]),
which are able to assure the optimality of the solutions
found within a desired tolerance. Although such
strategies can deal with any type of non-convexities,
they tend to be computationally expensive, which
hampers their practical implementation. A possible
way to reduce their computational burden consists of
developing tailored methods that exploit the mathema-
tical structure of the non-convexities of the model.
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In this paper, following this general idea, a novel
deterministic global optimization method inspired on
the works of Bergamini and co-workers [50-52] is
presented to solve ONLP to global optimality. The
method introduced relies on hierarchically decomposing
the original problem into two levels, an upper level
master problem CMILP an a lower level slave problem
RNLP, between which the algorithm iterates until a
termination criterion is satisfied.

The master level of our algorithm entails the solution of
a mixed-integer linear programming (MILP) problem,
which is a relaxation of ONLP (i.e., it rigorously
overestimates the feasible region of ONLP), and there-
fore predicts a valid lower bound on its global optimum.
Such a model is constructed by replacing the non-
linearities in ONLP by valid over and under estimators.
Particularly, in our method, supporting hyper-planes
and piecewise linear functions are used to approximate
the original search space of ONLP. In the lower level, the
original problem is locally optimized in a reduced search
space, thus yielding an upper bound on its global
solution. The upper and lower level problems are solved
iteratively until the bounds converge. For clarity,
technical details of the main features of the proposed
algorithm are commented in the Appendix section.

Algorithmic Steps
Figure 1 shows, in an illustrative way, how the algorithm
works. At each iteration, the master problem is solved to
provide a lower bound on the global solution toONLP. In
the master problem, both, the objective function and
search space of the original problem are convexified in
order to avoid local optima. This is done by introducing
auxiliary binary variables that allow to linearize the
nonlinear terms. This leads to a reformulated master
problem that can be solved to global optimality by
standard optimization methods. As discussed on the
Appendix, the convexification of the original problem
takes advantage of themathematical structure of the GMA
representation. Note, however, that the solution found by
the master problem does not necessarily have to satisfy all
the constraints in ONLP, since some of them may have
been relaxed to reformulate the nonconvexities.

Hence, the prediction made by the upper level must be
checked in the lower level, so the solution is guaranteed
to be feasible in the original search space. Specifically, in
our algorithm, the solution of the master model is used
as a starting point in the lower level problem, which is
solved in a reduced search space that is defined
according to the output of the master level. The lower
level solution is then employed to tighten the search

Upper bound

Lower bound

Original objective function

S

Original search space

Convexified search space

Convexified objective function

Iteration 2

Iteration 1

Iteration 2

Iteration 1

Gap 1

Gap 2

Figure 1
Optimization algorithm based on outer approximation. The original nonconvex problem (upper bound) is depicted in
red, whereas the convexified problems (lower bound) are shown in blue color. The master problem is used to provide lower
bounds to the global optimum and to initialize the slave problem. The bounds tend to converge as iterations proceed.
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space of the master problem. As a result, the new
modified master problem predicts better lower bounds
that are closer to the global solution. Furthermore,
tightening the search space of the master problem also
improves the quality of both, the starting points and
reduced search spaces passed to the lower level. This can
be observed in Figure 1, which shows how the envelopes
employed in the master problem become tighter as
iterations proceed. As a result, the upper and lower
bounds tend to approximate and finally converge within
the desired optimality gap.

The detailed steps of the proposed decomposition
strategy are as follows (see Figure 2):

1. Set iteration count c = 0, upper bound UB = ∞,
lower bound LB = -∞, and tolerance error = tol.
2. Set c = c + 1.

Solve the MILP master problem CMILP:

• If problem CMILP is infeasible, then stop. There is no
feasible solution to the problem.

• Otherwise, update the current lower bound as follows:
LB LB

c

c= max{ } , where LBc represents the objective
function value associated with the optimal solution of
CMILP in iteration c.

3. For fixed lower and upper bounds on the velocity
terms (i.e., vr and vr , respectively), solve the lower
level problem RNLP to obtain an upper bound on
the solution of ONLP.

• If problem RNLP is infeasible, then update the grid in
CMILP and go to step 2.
• Otherwise, update the current upper bound as follows:
UB UB

c

c= min{ } , where UBc represents the objective
function value associated with the optimal solution of
RNLP in iteration c.

4. Check the convergence criteria:

• If UB LB
UB tol− ≤ , then stop. The solution corresponding

to UB (i.e., the solution of model RNLP in the iteration
with minimum objective function value) satisfies the
finalization criterion (i.e., it can be regarded as optimal
within the predefined optimality gap).
• Otherwise, update the grid in CMILP and go to step 2.

Optimization of the anaerobic fermentation pathway in
Saccharomyces cerevisiae
As an illustrative example of the proposed technique, we
use the anaerobic fermentation pathway in Saccharomyces
cerevisiae presented in Polisetty et al. (Case study 1 in
[27]) as a benchmark problem for optimization. The
reader is referred to the original publication for details
(Figures 1, 2 in [27]). The model can be found in the
Additional File 1.

The algorithm was implemented in GAMS interfacing
with CPLEX 9.0 and SNOPT 6.2 as main MILP/NLP
optimization packages, respectively, on an Intel 1.2 GHz
machine. The upper level of the algorithm was con-
structed using 50 supporting hyper-planes and 9 piece-
wise terms. These upper and lower estimators were
updated during the execution of the algorithm by
defining new linearizations and terms of the piece-wise
approximation in the middle points of the active
subintervals in the solution of the master problems.
The tolerance error (i.e., optimality gap) was set to 0.2%.

In the upper part of Table 1 we present the optimal
solution for three different strategies. As in [27], we limit
the possible changes to 5-fold. In those conditions, an
optimum rate of 157.59 mM min-1 is found when all
enzymes can be changed. This is a theoretical situation
that, in practice, can be difficult, if not impossible, to
implement. In practice, enzyme manipulation may be
restricted to only few enzymes. Thus, we explored a more
realistic situation and obtain the optimal changes that
would be necessary for maximizing ethanol production

Figure 2
Flowchart of the optimization algorithm based on
outer approximation.
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if only two different enzymes were to be manipulated at
once. As in [27], our method finds that a five-fold
increase in glucose transporters and a 2.85 fold-change
in phosphofructokinase activity is the best combination
if only two enzymes can be changed. In this situation a
final rate of 103.66 mM min-1 can be attained. Thus, a
realistic strategy may reach about a 66% of the best
theoretical solution in that case. In the extreme case that
only one enzyme can be manipulated, the best solution
is found by increasing glucose intake. This is not
surprising as glucose intake is a bottleneck for obtaining
a final increase in ethanol production. As illustration of
the method performance, we also include in the lower
part of Table 1 the optimal solution for all the possible
combinations in which glucose intake is increased and a
second enzyme is manipulated. In that case, any other
strategy of increasing GLK and other enzyme produces a
much lower increase in ethanol production that the
optimal pair GLK and PFK. All those results are the same
as in [27], showing that our method reaches appropriate
results.

In Table 1, the main computational details of the
algorithm, which include the values of the NLP and
MILP solved in the last iteration, the total number of
iterations and the total solution time are also provided.
From a technical point of view, it is worth to indicate
that our method produces much tighter upper bounds
than those reported in [27] (compare Table 1 with Table
III in [27]). For instance, for the case when two enzymes
are accessible to manipulation, our method yields an
upper bound of 72.68 mM min-1, whereas in [27] it is
126.11 mM min-1. This means that our method assures
convergence to the global minimum within an optim-
ality gap of 0.19%, whereas in the solution reported in
[27] this gap is 22%. Similar results can be observed in
the remaining optimizations. This advantage can be
important for an appropriate scaling of the method for

more complex problems. Note that the total time
indicated in Table 1 refers to the exploration of all the
combinations within each strategy. Thus, the one-
enzyme optimization (the case when only one enzymes
can be changed) takes 2.04 CPU seconds. The case of
finding the maximum when two enzymes can be
changed takes 2.64 seconds, whereas the examples in
which all enzymes can be modified is solved in 0.89
CPU seconds. Note that at a first glance, one would
expect that the problem in which all the enzyme changes
are allowed would take more CPU time than those in
which only a subset of changes are permitted. These
results, which are due to some implementation details of
the algorithm, can be found in small problems (i.e.,
around 1 second of CPU time) but are not likely to
appear in bigger problems in which the CPU time is
indeed dominated by the complexity of the model rather
than by the implementation details.

Optimal adaptive response of yeast to heat shock
As a motivation for the feasibility approach that we shall
develop in the next section, we shall obtain the optimal
enzyme activity changes that would correspond to
different goals in the adaptive response of yeast to heat
shock. This problem was first analyzed by intensive
computation by Vilaprinyo et al. [20]. By using a GMA
model of the major metabolic pathways in yeast central
metabolism, the goal is to identify which changes at the
level of enzyme activities are more likely to produce a
desired adaptive response. This response is defined by a
set of physiological changes that can be considered as
necessary for adaptation. In the model we include
glycolysis, synthesis of trehalose and glycerol, and the
branching from glycolysis to the pentose phosphate
pathway. There are nine enzymes that can be changed,
and the target fluxes are those of trehalose, ATP, and
NADPH synthesis. Model details can be obtained from

Table 1: Optimization of ethanol production

Modified reaction numbers (Xi)opt/(Xi)nom LB (NLP) UB (MILP) Iterations Total time (s)

HXT [5] 72.68 72.77 4 2.05
HXT, PFK [5,2.85] 103.66 103.86 3 2.64
All [5,0.9,5,0.2,5,0.2,5,5] 157.59 157.70 4 0.89

HXT, GLK [5,0.75] 72.68 72.77 4 1.32
HXT, PFK [5,2.85] 103.66 103.86 3 0.57
HXT, GAPD [5, 5] 73.18 73.31 4 1.22
HXT, PYK [5,0.63] 72.68 72.77 4 1.25
HXT, TPS+GOL [5,0.2] 73.41 73.54 4 1.24
HXT, GLY [5, 5] 73.41 73.54 4 1.22
HXT, ATPase [5, 5] 87.77 87.84 4 1.24

Best optimization strategies for increasing the rate of ethanol production in the model discussed as case study 1 in [27]. LB: Lower bound, UB: Upper
bound. Reaction numbers refer to the mathematical model used in [27]. HXT: Glucose uptake, GLK: Hexokinase, PFK: Phosphofructokinase, GAPD:
Glyceraldehide-3-phosphate dehydrogenase, PYK: Pyruvate kinase, TPS+GOL: Polysaccharide production (glycogen + tre-halose), GLY: Glycerol
production.
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[18,20] (see also Table 1 for nomenclature, and the
Additional File 1 for the model equations and physio-
logical constraints).

We shall obtain the optimal changes that optimize
different goals: (i) Maximization of the rate of trehalose
synthesis, (ii) Maximization of ATP synthesis, (iii)

Maximization of NADPH synthesis, and (iv) Minimiza-
tion of cost related to changing gene expression. We
consider two different scenarios. First, we run the
optimization procedure without physiological con-
straints. Second, we consider the constraints in Table 2
(see also Additional File 1). The implementation details
of the algorithm are the same as in the previous example.
Results are shown in Table 3. The table also provides the
computational details of the algorithm.

Trehalose synthesis can be increased up to 2.08mMmin-1

by increasing the activity of HTX, PYK, and TPS+GOL,
while decreasing most of the other activities. In doing
that, two of the involved metabolites (G6P and F16P)
accumulates. Furthermore, synthesis of glycerol is
reduced to zero and synthesis of NADPH is decreased.
This optimal solution cannot be considered a good
adaptive solution as it compromises the cellular inner

Table 2: Physiological constraints that shape the admissible
adaptive response to heat shock in yeast

Metabolites (mM) Fluxes (mM min-1) Other

Glucose < 0.04 VTRE> 0.03 Cost < 12.06
Glucose-6-P < 20.22 VNADPH> 3.53
8.64 < Fructose-1,6-P < 22.86 VATP> 180.6
Phosphoenol piruvate < 0.01 VGLY> 0.39
ATP < 6.77 ψ < 28.1

See details in the work of Vilaprinyo et al. [20].

Table 3: Optimization results for the model of heat shock response in yeast

Objective function VTRE VNADPH VATP Cost VTRE VNADPH VATP Cost
Goal (Maximize/Minimize) Max Max Max Min Max Max Max Min
Constrains in [20] No No No No Yes Yes Yes Yes

Enzymes (Chanfe-fold)

HTX 20.00 20.00 20.00 1.00 10.66 12.77 19.21 4.52
GLK 0.50 3.00 0.50 1.00 4.58 5.42 8.15 2.42
PFK 0.25 0.25 20.00 1.00 1.00 1.00 2.34 1.00
TDH 0.25 0.25 0.25 1.00 5.11 2.10 4.92 1.46
PYK 20.00 20.00 20.00 1.00 10.54 5.54 11.78 3.07
TPS+GOL 20.00 0.25 0.25 1.00 20.00 2.34 2.34 4.93
GADP 0.25 20.00 0.25 1.00 1.71 20.00 1.71 1.79
Glycerol production 0.25 0.25 0.25 1.00 1.00 1.00 1.00 1.00
ATPase 0.25 0.25 20.00 1.00 1.81 0.62 2.04 1.00

Metabolites (mM)

Glucose (internal) 0.75 0.08 22.67 0.06 0.04 0.04 0.04 0.04
Glucose-6-P 278.04 160.28 0.02 0.23 20.22 20.22 20.22 7.95
Fructose-1,6-P 669.48 510.46 164486.70 14.36 22.86 22.86 22.86 22.86
PEP 0.00 4.9 × 10-4 1.7 × 10-3 3.5 × 10-3 0.01 8.3 × 10-3 0.01 0.01
ATP 20.54 13.10 6.6 × 10-5 0.03 2.47 6.77 6.77 3.63

Fluxes (mM min-1)

VTRE 2.08 0.02 1.3 × 10-5 3.6 × 10-4 0.26 0.03 0.03 0.03
VNADPH 0.59 46.21 0.36 1.64 3.54 41.44 3.54 3.53
VATP 154.90 247.16 1755.86 49.05 620.09 281.06 658.84 180.47
VGLY 0.00 0.01 877.66 22.22 1.00 0.40 0.44 0.73
Ψ 5.00 0.06 5.00 1.00 20.00 2.34 5.48 4.93
Cost 16.61 17.02 18.22 0.00 12.00 11.02 12.06 6.07

Computational details

Iterations 4 4 4 1 1 4 5 3
LB (NLP) 2.08 46.21 1755.86 0.00 0.26 41.44 658.84 6.07
UB (MILP) 2.09 46.29 1757.87 0.00 0.26 41.48 659.74 6.06
Total time (s) 1.06 1.83 2.54 0.43 0.22 0.97 2.12 1.19

Constraints correspond to those in Table 2. For details on the model and on the meaning of Ψ and Cost the reader is referred to [20] and to
Additional File 1.
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milieu by accumulating metabolites and challenges other
processes by decreasing some critical fluxes. In that sense,
this solution optimizes a metabolic goal (vTRE) but does
not match other important physiological constraints. A
similar result is obtained when the goal is tomaximize the
synthesis of NADPH or ATP. Particularly striking is the
unrealistic concentration of F16P that is obtained in the
optimal strategy formaximizing ATP synthesis. In the case
of minimization of Cost, as no further constraints are
imposed, we find the trivial solution that corresponds to
maintain the basal conditions.

Considering the set of constraints identified by Vilapri-
nyo et al. (Table 2), we run again the optimization
procedure for each of the four objective functions. In all
the cases, an optimal solution compatible with the
imposed constraints is obtained. For instance, the
maximum rate of trehalose synthesis that is compatible
with the considered constraints is 0.26 mM min-1. This is
well below the maximum obtained without constraints,
but now the solution is reasonable in the terms imposed
by the physiological constraints. Similar results are
obtained for the other objective functions. We also
obtain the solution that minimizes the overall cost. In
that case, cost can be lowered about a 50% with respect
the other cases. Minimization of cost undertakes values
of the fluxes that are lower than in the optimal solutions
for the other objective functions. From the implementa-
tion point of view, it is interesting to notice that in all the
cases the algorithm was able to provide near optimal
solutions (with an optimality gap of 0.2%) in few CPU
seconds. Similarly, as in the previous example, the
master problem provided very tight relaxations, which
led to few iterations.

Feasibility approach
Optimization techniques seek finding the best strategy
for changing control variables so that the system can
reach a given goal. Thus, such methods are important in
biotechnology and metabolic engineering where the
scientist fixes the goal and searches for the best strategy
in changing the underlying processes. The situation is
different if we analyze the evolution of natural systems.
As discussed above, natural systems are (in some sense)
optimized by the evolutive process by natural selection
that acts as a purifying process. Although the exact
contribution of this mechanism is still discussed [53], it
is generally accepted as one of the basic driving forces in
evolution. From this perspective, different criteria for
functional effectiveness have been used for investigating
the emergence of design principles in cellular systems
[5,16,17].

This part of the paper introduces a method that aims at
providing an approximate characterization of the

feasible space of a biological problem rather than
identifying a single optimal solution. The tool presented
is intended to provide valuable insights on the set of
changes in enzyme activities that would be required for
adaptation to an environmental challenge.

The approach introduced is based on the NLP formula-
tion defined in ONLP and exploits the specific structure
of the GMA representation. The use of this particular
representation allows to perform the feasibility study by
slightly modifying the algorithm described in the
previous section. Specifically, our strategy relies on
solving the original problem ONLP iteratively over a
reduced search space. At each iteration the method
identifies a region that contains a feasible solution to the
problem. This region is then removed from the search
space, and the optimization problem is resolved in the
reduced domain. The algorithm proceeds in this manner
until there is no feasible solution in the remaining
regions of the search space.

The overall method, which relies on the global optimi-
zation approach introduced before, comprises two
different levels. At the upper level, a master problem is
solved to identify a region that may contain a feasible
solution to ONLP. At the lower level, the prediction
made by the master problem is checked by solving the
original problem in a reduced search space. If a feasible
solution is found, then integer cuts are added to the
master problem in order to exclude the region contain-
ing such a feasible point. Otherwise, the master model is
updated by refining its grid, until either a feasible
solution is obtained in the lower level or an infeasibility
is detected in the higher level problem. The main
features of the algorithm are outlined next, whereas
more technical details can be found in the Appendix.

Mathematical representation
We define a set of disjoint sets PS

q ( P PS
q

S
q∩ ′ = ∅ for all

q ≠ q’) such that their union contains the feasible space S

of ONLP ( S PS
q

q Q

⊆
=1, ,…
∪ ). In our work, for the sake of

simplicity but without loss of generality, we assume that
each of these regions PS

q is a hyper-rectangle described
by a set of linear inequalities that impose lower and
upper limits on the apparent rate constants gq(gq and γ q ,
respectively). Thus, we have:

P v X q QS
q p p n m q q q= ∈ × × ≤ ≤ =+ + +

+{( , , ) : } , ,γ γ γ γR R R 1…

(9)

This assumption implies that the feasibility analysis will
be performed on the values of the apparent rate
constants g, although in general it could also account
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for other variables. In this notation, the values of the r
components of gq and γ q , which are denoted by γ r

q and
γ r

q , respectively, correspond to the limits of the
subintervals obtained by partitioning the original
domain of each single variable gr [0, ∞] into T
subintervals. It follows that Tr = Q. In each hyper-
rectangle PS

q , the component r of the vector g must fall
into a specific subinterval t r

t
r r

t( )γ γ γ≤ ≤ .

In mathematical terms, the feasibility analysis consists of
identifying, from the aforementioned set of hyper-
rectangles, those that contain feasible solutions to
ONLP and those in which no feasible point exists (see
Figure 3). In other words, we aim at determining
whether the intersection S ∩ PS

q is empty (S ∩ PS
q =

∅) or contains at least one feasible point (S ∩ PS
q ≠ ∅).

Algorithmic Steps
The algorithm relies on solving two different problems, a
modified master problem CFMILP and a modified slave
problem RFNLP, between which the algorithm iterates.
Model CFMILP is obtained from CMILP by adding a set
of auxiliary equations that define the set of hyper-
rectangles on which the search is conducted. Further-
more, it also incorporates a set of integer cuts that
exclude from the search space those hyper-rectangles that
have been explored so far. Similarly, model RFNLP is
derived from RNLP by imposing certain lower and upper
bounds on the values of the apparent rate constants g.
These bounds correspond to the limits of the hyper-
rectangle that contains the solution predicted by the
master problem, which may or may not be feasible in the
search space of the original problem ONLP.

Model CFMILP is a relaxation of ONLP and therefore
predicts a valid lower bound on its solution.

Furthermore, if CFMILP is unfeasible, it follows that
ONLP (and also RFNLP) are unfeasible in any hyper-
rectangle contained in the search space of the master
problem (i.e., any hyper-rectangle that has not yet been
removed from the search space). In our approach, this
property is indeed exploited to terminate the algorithm.

The detailed steps of the proposed algorithm are as
follows (see Figure 4):

1. Set outer iteration count b = 0, inner iteration
count c = 0, upper bound UB = ∞, lower bound
LB = -∞.
2. Set b = b + 1.
3. Set c = c + 1.
Solve the MILP master problem CFMILP:

• If problem CFMILP is infeasible, then stop. There is no
feasible solution to the problem in the current search
space.
• Otherwise, for fixed lower and upper bounds on the
apparent rate constants ( γ r , γ r ) and on the velocity
terms ( vr , vr ) solve the lower level problem RFNLP.

S (feasible space)

Hyper-rectangles that do not
contain feasible solutions

Hyper-rectangles that contain
feasible solutions

Figure 3
Definition of hyper-rectangles. The overall domain is
divided into a set of hyper-rectangles that contain the original
nonconvex search space of the model. Each hyper-rectangle
considered in the analysis can either contain at least one
feasible solution or be empty. Hyper-rectangles dissected by
the feasible space (i.e., those placed in its borders) contain
feasible and unfeasible parts.

Figure 4
Flowchart of the algorithm for identifying feasible
parameter regions.
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- If problem RFNLP is infeasible, then update the grid in
CFMILP and go to step 3.
- Otherwise, derive a new integer cut, set c = 0 and go to
step 2.

Feasible enzyme activity patterns in the adaptive response of yeast
to heat shock stress
Using the same model as in the second optimization
example, we have investigated the feasibility regions for
changing enzyme activities in yeast metabolism so that
specific physiological constraints are met. For simplicity
in representing the results of the analysis, we shall
present 2-D plots in which the feasible regions for the
changes in two enzymes are shown. It is important to
indicate that in each case all the enzymes are considered
in the feasibility analysis, although only the correspond-
ing region for the two selected enzymes is shown.

According to that, the hyper-rectangles for the feasibility
analysis are defined on the domain of the selected
enzymes, say for instance PFK and TDH. For practical
reasons, we consider gr = krgr0. Here, gr0 represents the
basal value and kr the change-fold over the basal value.
We shall use the values of kr that correspond to the
relative change of that enzyme with respect the basal
activity. In this paper, we consider that enzyme activities
are changed only by changing the amount of enzyme. Of
course, activity changes due to other reasons, such as
temperature dependency, could also be considered. In
such cases, the cost component would be much lower. In
either case, the resulting changes in activity would affect
metabolite concentrations and fluxes. Those changes are
considered in other constraints used in this analysis.

As an example, in the case of PFK and TDH 10 equally
spaced segments from 0.25 to 20 fold-change are
considered in the study. This leads to 100 hyper-
rectangles, each of which corresponds to a specific
combination of one sub-interval of PFK and another of
TDH. On the other hand, no sub-intervals are defined for
the remaining enzymes. This implies that in each hyper-
rectangle the model is free to choose any values for them.
Thus, the method is free for finding the best combina-
tion of enzymes that, within the considered hyper-
rectangle, optimizes the objective function and meets the
constraints. In this example, the synthesis of ATP was
regarded as the criterion to be optimized in the master
and slave problems of our algorithm. This objective is
only used to guide the MILP and NLP subproblems.
However, as mentioned before, any other criterion could
have been employed, with identical results, since the
main goal of our algorithm is to identify feasible regions
and not to find optimal solutions. The implementation
details of the algorithm are the same as in the previous

examples. It is interesting to notice that the total CPU
time was 31.81 CPU seconds, which shows the efficiency
of the proposed method.

The results of the feasibility analysis are given in Figure 5.
The boxes in green represent hyper-rectangles that contain
at least one feasible solution to the problem, whereas
those in red have been proved to be unfeasible. As
expected, there are numerous enzyme activity patterns
that allow meeting these requirements. In concordance
with our previous results, the model can find admissible
solutions by compensating the activities of PFK and TDH.
However, as the increase of PFK reaches its higher limit,
admissible solutions can only be found with restricted
values of TDH. In the unfeasible region, no compensation
on the rest of enzymes produce an admissible solution
considering the corresponding values of PFK and TDH.

Let us note that the search grid employed in the analysis
can be easily refined by performing a bound contraction
strategy. Specifically, the lower and upper allowable

Figure 5
Feasibility analysis of the adaptive response of yeast
to heat shock. Feasibility analysis of the adaptive response
of yeast to heat shock. In each case, all the enzymes are
allowed to change, producing a 9-D search space. For
simplicity, only the result for PFK and TDH is presented.
A 10 × 10 grid of values for the change in activity of PFK and
TDH is explored for feasible solutions. Grid values are
defined as equally spaced segments from 0.25 to 20. Red
squares indicate regions in which no feasible solution is
found. Green squares indicate regions in which at least one
feasible solution is found.
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fold-changes for the associated rate constants can be
determined by running 4 different optimization pro-
blems that account for the maximization/minimization
of each single rate constant separately. This strategy
reveals, for instance, that the admissible intervals for the
rate constant range from 0.25 to 4.41 for the PFK, and
from 1.35 to 11.86 for TDH. Figure 6 shows the results
obtained when this new grid is considered, assuming
again 10 sub-intervals for each enzyme. As can be
observed, the advantage of performing the bound
contraction is that it allows to discard beforehand
regions of the search space that do not contain feasible
solutions. Hence, the study concentrates only on the
most promising hyper-rectangles (i.e., those in which it
is more likely to find a feasible point). The total CPU
time in this new case was 420.00 CPU seconds. The
existence of a relatively wide region of admissible
solutions raises the question of which of the solutions
will evolve by natural selection. To shed light on this
issue, in Figure 6, we have also plotted the optimal
solutions found in Table 3 (filled color points) and some
experimental points corresponding to the data bases
analyzed by Vilaprinyo et al. (see Table I in [20]).
Interestingly, the experimental data, in the case of PFK

and TDH, are situated close to the optimal solution that
is obtained when the cost is minimized. Roughly, this
may be an indication that adaptive response of yeast to
heat shock has been shaped to save resources related to
over-express enzymes. For illustrative purposes, we also
show the results obtained for PFK and HXT. In that case,
as the system can compensate larger changes in HXT,
results are not all that clear. Iteratively, we could
consider all the possible pairs to obtain a global view
of the results.

Effect of the constraint values
The results obtained in the feasibility analysis shown in
the previous section are dependent on the values of the
constraints. The values used in that case were obtained in
a previous analysis of the model [20] and could be
modified in different ways. The interesting advantage of
our method is that it allows for exploring the resulting
feasible regions in practical terms for large models. Thus,
one could consider different values that can be suggested
by experts or obtained from other biological considera-
tions. Of course, a sound knowledge of the biological
problem is a fundamental basis for this. In any case,

Figure 6
Feasibility analysis of the adaptive response of yeast to heat shock. Feasibility analysis of the adaptive response of
yeast to heat shock. Once the maximum and minimum regions that contain feasible solutions are found, a refined search is
performed. For PFK the parameter set goes from 0.25 to 4.41. For TDH it goes from 1.35 to 11.86. For HXT it goes from 3 to
20. In each case, 10 segments are considered. Color code is as in Figure 5. Red circle: Maximum rate of ATP synthesis; Black
circle: Maximum rate of NADPH synthesis; Gray circle: Maximum rate of Trehalose synthesis; Blue circle: Minimum cost; Black
empty circles: Experimental observations (Table I in [20]).
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comparison of the resulting feasible regions can help in
evaluating the considered constraints and may help in
identifying those constraints that are more likely
responsible for the actual characteristics of the adaptive
response. This would require appropriate experimental
data for comparing the model predictions with the actual
system behavior.

Conclusion
While the solutions obtained via optimization methods
can be realizable in a biotechnological application,
provided the required changes can be practically
implemented, the optimal changes would seldom be
attained in natural systems that have evolved through
natural selection. From a general point of view, those
systems have evolved so that the metabolic status meets
a set of constraints without compromising survival and
viability. For instance, adaptive response to a given
condition may require to increase a flux over a given
limit. However, instead to evolve towards a solution that
reaches the maximum possible flux, evolution finds a
solution that provides the required increase without
compromising other objectives, for instance maintain a
low concentration of internal metabolites.

Our feasibility approach has been developed to address this
problem. By considering a set of physiological constraints,
we search for the feasible parameter regions that allow the
system to meet those constraints. We have investigated the
utility of this approach in exploring the adaptive response of
yeast to heat shock. Our results identify the admissible
changes in enzyme activities that canmeet the physiological
constraints suggested in [20] (see Table 2). Interestingly, the
experimental observations are located within the predicted
feasibility region and close to the changes that would be
required tominimize the cost of overexpressing the different
enzymes (Figure 6). Furthermore, the proximity to the
optimum for trehalose synthesis also suggest that this is an
important requirement for the actual adaptive response.

Although this is not the case in the considered examples,
it may happen that two or more unconnected feasible
regions may exist for a given problem. That situation
would be very interesting from the point of view of
discussing the evolution of that adaptive response. In
theory, it would mean that solutions in either of the
regions could emerge from natural selection. If actual
data situates the evolutionary solution in a particular
region, then one may ask which were the disadvantages
of the other possibilities. Besides a random choice,
selection of a given solution among equally admissible
alternatives would be a clue of the existence of
complementary constraints. For instance, it may be that
the evolved solution is better for assuring an appropriate

adaptive response to other stress conditions. Also, one
should check for differences in dynamic responses as a
complementary argument for evaluating the perfor-
mance of each of the potential solutions.

The practical use of the methodology developed in this
work requires a mathematical model that accurately
reflects the properties of the system. Furthermore,
although detailed models would be desirable, the
mathematical complexity makes optimization tasks
very difficult on those models. GMA models provide a
practical solution and have several advantages that allow
an efficient implementation of the optimization proce-
dures. First, automatic generation of models from
conceptual schemes is straightforward, which facilitates
obtaining a useful mathematical model. Second, a
number of techniques exist for fitting those models to
dynamic data (see [34] for a review), which is basic for
obtaining a numerical model that can be used in
optimization procedures. Third, GMA models can
incorporate qualitative data, which can help when
limited information is available for parameter identifica-
tion. Finally, the specific structure of the GMA model can
be exploited to devise an efficient tailor-made global
optimization algorithm. Particularly, in the context of
the proposed method, we take advantage of the GMA
representation in order to construct master MILPs that
provide tight lower bounds on the optimal solution to
the original problem. Thus, our method exploits the
advantages offered by this kind of models for obtaining a
useful implementation of the optimization and feasi-
bility approaches.

In practical problems, once a model has been appro-
priately identified, parameter uncertainties can be a
difficulty for obtaining a reasonable result [54,55]. As
the procedure developed here is highly efficient, it
should be practically possible to run a sensitivity analysis
by screening different parameter sets. This would help in
discussing the validity of the obtaining results when
parameter variability is an issue.

The proposed method requires a sound knowledge of the
biological problem. This is especially important for
identifying physiological constraints that can be relevant
in limiting the feasibility region. If those constraints are
not clearly identified, our method can be used as an
exploratory tool for identifying different feasibility
regions that would correspond to different sets of
physiological constraints. An analysis of the different
results could help in identifying those constraints that
may be more important in a given scenario. In any case,
validation of the feasibility regions obtained would
require experimental data. Discrepancies between theo-
retical results and actual data may help in discarding
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unreasonable physiological constraints. In the example
discussed here, experimental observations agree with the
predicted feasibility region. This should be interpreted as
an indirect prove that the physiological constraints used
are meaningful in that case. However, it is not a prove
that these are the only constraints that explain the
observed results. An iterative analysis through alternative
sets of constraints would be required for completely
identifying the most significant ones.

Besides its application to understand the evolution of
adaptive responses, our methodology can be useful in
exploring health and disease states [56] so that optimal
targets for specific treatments via regulation of enzyme
activity can be suggested [57]. All these problems must
take into account the evaluation of several objective
functions [58]. Our approach could simplify this task by
finding the optimal solution for each of the various
objective functions and by comparing these results
within the feasibly region (see for instance Figure 6).

Our method focuses on exploring adaptive responses
through changing enzyme activities. It would be inter-
esting to extend the methodology to include kinetic-
orders in the optimization. This would allow to explore
design principles required for a given network to
perform according to specific performance criteria.
Also, it would be necessary to adapt the optimization
procedures so that dynamic properties, such as stability
and response time, could be included as physiological
constraints.
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Appendix
Upper level master problem for the optimization
procedure
The upper level master problem CMILP is a relaxation of
ONLP that is obtained by applying an exponential
transformation on some variables of ONLP and then
replacing the resulting logarithmic terms by valid over
and under estimators. We first define the following
exponential transformations:

γ r e r pr= =Γ 1, ,… (A:1)

X e j n mj
x j= = +1, ,… (A:2)

where Γr and xj are the new transformed variables. With
these changes, equation A.2 translates into:

v e e r pr
x f
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n m
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A logarithmic transformation is next applied on equa-
tion A.3 to obtain:

ln , ,v f x r pr r rj j

j
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This equality constraint can be replaced by the following
inequalities:

ln , ,v f x r pr r rj j

j
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1

1… (A:5)

ln , ,v f x r pr r rj j

j

n m

≥ + =
=
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∑Γ
1
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The concave univariate terms appearing on the left hand
side of equations A.5 and A.6 are next replaced by valid
under and over estimators, respectively. Specifically, in
this work we employ piecewise linear functions and
supporting hyper-planes to under and over estimate the
logarithmic terms, respectively (see Figure 7).

rln

r

Figure 7
Approximation of the logarithmic terms.
Approximation of the logarithmic terms via piecewise linear
functions (in red color) and supporting hyper-planes (in blue
color).
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To derive the piecewise linear functions, we consider a
partition of the domain [ vr , vr ], determined by grid
points v v vr r r

H1 2 1, ,..., + , with vr
1 = vr , v vr

H
r

+ =1 and
v vr

h
r
h+ ≥1 for h = 1, ... H. The piecewise under estimator

can be formulated as a disjunction with H terms (see
[50]):
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The mixed-integer formulation based on the convex hull
reformulation [59] is as follows:
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Then, by combining A.5 and A.8, we get:
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On the other hand, the logarithmic term in constraint
A.6 is approximated by a linear outer-approximation.
This is accomplished by adding supporting hyper-planes,
which are obtained by performing first order lineariza-
tions at a set of l points. Equation A.6 is therefore
rewritten as follows:
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Since the logarithmic function is concave, these hyper-
planes strictly over estimate its value and thus do not

chop off any feasible solution of the original model
ONLP. The overall master problem can therefore be
expressed as follows:

( ) min ( , , , , )

. . , . .

CMILP U v x yr r j rh rhΓ λ
s t constraints  A  to A1 7 133

0 1

v

x

y

r rh

r j

rh

,

,

{ , }

λ ∈
∈

∈

+R
RΓ

Model CMILP takes the form of a mixed-integer linear
programming (MILP) problem. This type of model can
be efficiently solved via standard branch and bound
techniques [60].

Note that the master problem can also be expressed as
follows:

CMILP S( ) min { ( , , , , ) :

( , , , , ) }
, , , ,

= ′

∈
v x y

U v x y

v x y RS
Γ

Γ

Γ
λ

λ

λ
(A:14)

where the set RS is a relaxation of R (i.e., contains R) and
it is defined as follows:

RS v x y

h v x y

p p

n p H p H

= ∈ × ×

× ×
′ ≤

+
⋅ ⋅

{( , , , , )

{ , } :

( , , , , ) }

Γ

Γ

λ

λ

R R
R R 0 1

0

(A:15)

where ′ × × × ×+
⋅ ⋅U p p n p H p H: { , }R R R R R0 1 16 is the

r e f o r m u l a t e d o b j e c t i v e f u n c t i o n ; a n d
′ × + × × ×+

⋅ ⋅h p p n p H p H g: { , }R R R R0 1 6 represents the
set of reformulated equations that define the feasible set,
which includes the auxiliary constraints that define the
lower and upper estimators of the logarithmic terms.

Lower level slave problem for the optimization procedure
The lower level of the algorithm is represented by a
reduced NLP (model RNLP), which is obtained from the
original nonconvex formulation ONLP by imposing
lower and upper bounds on the values of the velocity
terms.

( ) min ( , , )

,...,

RNLP U v X

v i n

v X

r r j

ir r
r

p

r r j
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j
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, ,γ R

The solution of such a model provides an upper bound
on the objective function of ONLP. The master and slave
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problems are solved iteratively until the upper and lower
bounds converge. Note that in RNLP, the lower and
upper limits of the intervals within which the values of vr
must fall (i.e., vr and vr ) are given by the master
problem CMILP. Specifically, these bounds correspond
to the limits of the intervals that are active in the master
problem. Then, if vr

∗ denotes the solution of the master
problem, in which the h term of the disjunction that
approximates vr is active, then we have that
v v vr

h
r r

h≤ ≤∗ +1 and, hence, v v v vr r
h

r r
h= = +, 1 .

Remarks
• The upper and lower estimators are only required
to replace those velocity terms that appear in
equations with more than two terms. On the other
hand, equations containing only two of the remain-
ing velocity terms can be written as follows:

μ μir r ir rv v i TE r r TJ i= − ∀ ∈ ∀ ′ ∈, , ( ) (A:16)

where TE represents the set of those metabolites
whose concentration is described by only two
velocity terms, and TJ(i) represents the set of velocity
pairs (j, j’) associated with each metabolite i in TE.
Note that in equation A.16, μir and μir’ have opposite
signs, so it is possible to perform a logarithmic
transformation on both sides of the equation:

ln ln ln( ) ln

, ( )

μ μir r ir rv v

i TE r r TJ i

+ = − +
∀ ∈ ∀ ′ ∈

′ ′ (A:17)

By combining equations A.4 and A.17, we finally get:

ln ln( )

,

μ μir r rj j ir r
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n m

r j j
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n m

f x

f x i TE r

+ + = − + +
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+

′
=
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∑

∑

Γ Γ
1

1

rr TJ i∈ ( )

(A:18)

which is a linear constraint.
• The grid in problem CMILP can be updated in
different ways. A possible strategy to perform the
updating consists of including in it the middle points
of the active subintervals in the solution of the
master problem CMILP. Therefore, if the solution of
CMILP is such that v v vr

h
r r

h≤ ≤∗ +1 (i.e., interval h is
active), then the grid corresponding to vr is modified

by adding the new point vr
h vr

h+ +1

2
. Alternatively, the

grid can be updated by just adding the optimal
solution obtained in the lower level problem RNLP.
• In each iteration, additional hyper-planes can be
added in the master problem in a similar way as it is
done with the grid updating. Thus, the logarithmic
terms can be linearized either at the middle points of
the active subintervals or at the optimal values
obtained in the lower level problem RNLP.

• The approach presented can easily handle the case
in which lower and upper bounds are imposed on
the apparent rate constants gr and/or the concentra-
tions of metabolites Xj. These conditions can be
expressed via the following constraints:

γ γ γr r
r r p≤ ≤ = 1,..., (A:19)

X X X j nj j j≤ ≤ = 1,..., (A:20)

which can easily be converted into the following
linear inequalities:

ln ln ,...,γ γr r
r r p≤ ≤ =Γ 1 (A:21)

ln ln ,...,X x X j nj j j≤ ≤ = 1 (A:22)

• The approach presented also allows to fix upper
bounds on the summation of gr and Xj. This can be
accomplished by adding the following inequalities:

γ r

r

p

SG≤
=

∑
1

(A:23)

X SXj

j

n m

≤
=

+

∑
1

(A:24)

Here, SG and SX denote the upper bounds on the
summations of gr and Xj, respectively. These inequal-
ities can be equivalently written as follows:

e SGr

r

p
Γ ≤

=
∑

1

(A:25)

e SXx

j

n m
j ≤

=

+

∑
1

(A:26)

Constraints A.25 and A.26 are convex, and hence can
be linearized in a similar way as was done with
equation A.6. Note, however, that the definition of
lower bounds on the summation of gr and Xj leads to
nonconvex terms. In this latter case, additional
piecewise estimators are required to preserve the
convexity of the model.
• Let us finally note that different types of piecewise
functions could be applied in the master problem
[52].

Modified master problem for the feasibility method
The problem of identifying if the variable gr falls into the

subinterval t r
t

r
t

r
t( )γ γ γ≤ ≤ can be formulated as a

disjunction with T terms:
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The mixed-integer formulation based on the convex hull
reformulation [59], is as follows:

′ = =
=

∑γ γrt r

t

T

r p
1

1,..., (A:28)

γ γ γr
t

rt rt r
t

rtz z r p t T≤ ′ ≤ = =1 1,..., , ..., (A:29)

z r prt

t

T

= =
=

∑ 1 1
1

,... (A:30)

z r p t Trt ∈ = ={ , } ,... , ...,0 1 1 1

where ′γ rt is the auxiliary disaggregated variable and zrt is
a new binary variable that takes a value of one if gr lies in
the subinterval t, and it is zero otherwise. Figure 8 shows
an illustrative example with r = 2 and t = 4. Note that the

binary variables zrt indicate the membership of a
solution to a specific hyper-rectangle. In the example
presented, each variable is divided into 4 intervals, which
leads to 16 different hyper-rectangles, each of which is
represented by a different binary solution z*.

The task of identifying optimal values of v, g and X
according to a predefined criterion over the search space
SP S P

q Q S
q= ∩ ∪

=
{ }

,...,1
can be expressed as a mixed-integer

nonlinear programming (MINLP) problem with the
following form:

( ) min ( , , , , )
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The equations in FMINLP define a non convex feasible
region. However, it is possible to convexify the model by
applying the same algebraic transformations described
before. Finally, the reformulated MILP problem can be
expressed as follows:

( ) min ( , , , , , , )CFMILP ′ ′U v x zr r rt j rh rh rtΓ Γ λ γ
s.t. constraints 1,  A  to A

A  to A
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In the context of our algorithm, this master problem is
employed to predict whether a feasible solution exists in
the search space SP or not.

Modified slave problem for the feasibility method
The modified slave problem is a reduced NLP model
RFNLP that is obtained from the original nonconvex
formulation ONLP by imposing lower and upper
bounds on the continuous variables vr and gr.

( ) min ( , , )
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Figure 8
Feasibility analysis: hyper-rectangles. The hyper-
rectangles are defined by imposing lower and upper bounds
on the values of the apparent rate constants. The
membership of a solution to a specific hyper-rectangle is
defined by a vector of binary variables that identifies the
active sub-intervals in which the solution falls.
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Note that in model RFNLP, the lower and upper bounds
imposed to gr are given by the values of the binary
variables zrt in the master problem, whereas the values of
vr and vr correspond to the limits of the active
intervals of the linear piecewise approximations in
CFMILP.

Integer cuts for the feasibility method
At each iteration, the search space is reduced by
removing all the sub-regions (i.e., hyper-rectangles)
containing feasible solutions that have been identified
so far. This is accomplished by making use of integer
cuts, which are mathematically expressed as follows:

z z JM bs

s JM

s

s JM

b

b b∈ ∈
∑ ∑− ≤ − ∀

1 0

1 1| | (A:31)

where JM s zb
s
b

1 1= =∗{ | } and JM s zb
s
b

0 0= =∗{ | }, with
z s

b∗ being the value of the s component of the vector of

binary variables in the feasible solution identified in the
outer iteration b. The sets JMb

1 and JMb
0 are therefore

obtained in each outer iteration b, and are employed to
derive integer cuts that are added cumulatively to the
master problem CFMILP.

Figure 9 illustrates how the algorithm removes at each
iteration the hyper-rectangles containing feasible solu-
tions identified in previous iterations from the search
space. This is accomplished by adding integer cuts, which
prevent the master problem from repeating the binary
solutions z* that correspond to the feasible hyper-
rectangles. This procedure is repeated until an infeasi-
bility is detected in the master problem, which implies
that there is not any feasible solution to ONLP in the
remaining hyper-rectangles of the search space.

Remarks
• Note that the algorithm only requires solving the
problems to feasibility, i.e., a feasible solution of the
problems is sufficient for the algorithm goal. How-
ever, by defining a small tolerance error tol, the
algorithm can also determine the optimal solution in
the region SP explored at each iteration within the
predefined optimality gap.
• The integer cuts in equation A.31 are added
cumulatively at each iteration to the upper-level
model CFMILP, which leads to an increase in its size.

Additional material
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Model details and physiological constraints. Detailed description of
the models used in the main text and the physiological constraints
considered in the optimization and feasibility examples.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-386-S1.PDF]

Acknowledgements
The authors wish to acknowledge support of this research work from the
Spanish Ministry of Education and Science (MEC) (projects BFU2005-
00234/BMC, BFU2008-00196/BMC, DPI2008-04099, CTQ2009-14420-
C02-01 and PHB2008-0090-PC) and the Spanish Ministry of External
Affairs (projects A/8502/07, HS2007-0006 and A/020104/08).

References
1. Darwin C and Wallace AR:On the Tendency of Species to form

Varieties; and on the Perpetuation of Varieties and Species
by Natural Means of Selection. Journal of the Proceedings of the
Linnean Society of London 1958, Zoology 3:46–50.

2. Darwin C: On the origin of species by means of natural selection, or the
preservation of favoured races in the struggle for life. London: John
Murray; 11859.

3. Savageau MA: Biochemical Systems Analysis: A Study of Function and
Design in Molecular Biology. Reading, Mass.: Addison-Wesley; 1976.

4. Turner JS: The Tinkerer’s Accomplice: How Design Emerges from Life
Itself. Harvard University Press; 2007.

Figure 9
Feasibility analysis: integer cuts. Hyper-rectangles
containing feasible solutions (blue circles) are removed from
the search space in next iterations (red cross) by adding
integer cuts. The integer cut guarantees that the combination
of active intervals that defines a feasible hyper-rectangle will
not be repeated in subsequent iterations.

BMC Bioinformatics 2009, 10:386 http://www.biomedcentral.com/1471-2105/10/386

Page 18 of 20
(page number not for citation purposes)



5. Savageau MA: Optimal design of feedback control by inhibi-
tion. Journal of Molecular Evolution 1974, 4(2):139–156.

6. Savageau MA: Comparison of classical and autogenous
systems of regulation in inducible operons. Nature 1974,
252(5484):546–549.

7. Savageau MA: Significance of autogenously regulated and
constitutive synthesis of regulatory proteins in repressible
biosynthetic systems. Nature 1975, 258(5532):208–214.

8. Hlavacek WS and Savageau MA: Rules for coupled expression of
regulator and effector genes in inducible circuits. Journal of
Molecular Biology 1996, 255:121–139.

9. Hlavacek WS and Savageau MA: Completely uncoupled and
perfectly coupled gene expression in repressible systems.
Journal of Molecular Biology 1997, 266(3):538–558.

10. Alves R and Savageau MA: Irreversibility in unbranched path-
ways: preferred positions based on regulatory considera-
tions. Biophysical journal 2001, 80(3):1174–1185.

11. Alves R and Savageau MA: Comparative analysis of prototype
two-component systems with either bi-functional or mono-
functional sensors: differences in molecular structure and
physiological function. Molecular microbiology 2003, 48:25–51.

12. Alves R and Savageau MA: Evidence of selection for low cognate
amino acid bias in amino acid biosynthetic enzymes.
Molecular microbiology 2005, 56(4):1017–1034.

13. Igoshin OA, Price CW and Savageau MA: Signalling network with
a bistable hysteretic switch controls developmental activa-
tion of the sigma transcription factor in Bacillus subtilis.
Molecular microbiology 2006, 61:165–184.

14. Igoshin OA, Alves R and Savageau MA: Hysteretic and graded
responses in bacterial two-component signal transduction.
Molecular microbiology 2008, 68(5):1196–1215.

15. Dasika MS and Maranas CD: OptCircuit: an optimization based
method for computational design of genetic circuits. BMC
Systems Biology 2008, 2:24.

16. Salvador A and Savageau MA: Quantitative evolutionary design
of glucose 6-phosphate dehydrogenase expression in human
erythrocytes. Proceedings of the National Academy of Sciences of the
United States of America 2003, 100(24):14463–14468.

17. Salvador A and Savageau MA: Evolution of enzymes in a series is
driven by dissimilar functional demands. Proceedings of the
National Academy of Sciences of the United States of America 2006,
103(7):2226–2231.

18. Voit EO and Radivoyevitch T: Biochemical systems analysis of
genome-wide expression data. Bioinformatics 2000, 16(11):
1023–37.

19. Voit EO: Design principles and operating principles: the yin
and yang of optimal functioning. Math Biosci 2003, 182:81–92.

20. Vilaprinyo E, Alves R and Sorribas A: Use of physiological
constraints to identify quantitative design principles for
gene expression in yeast adaptation to heat shock. BMC
Bioinformatics 2006, 7:184.

21. Klipp E, Nordlander B, Kruger R, Gennemark P and Hohmann S:
Integrative model of the response of yeast to osmotic shock.
Nature biotechnology 2005, 23(8):975–982.

22. Alvarez-Vasquez F, Sims KJ, Cowart LA, Okamoto Y, Voit EO and
Hannun YA: Simulation and validation of modelled sphingo-
lipid metabolism in Saccharomyces cerevisiae. Nature 2005,
433(7024):425–430.

23. Eisen MB, Spellman PT, Brown PO and Botstein D: Cluster analysis
and display of genome-wide expression patterns. Proceedings
of the National Academy of Sciences of the United States of America
1998, 95(25):14863–14868.

24. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB,
Storz G, Botstein D and Brown PO: Genomic expression
programs in the response of yeast cells to environmental
changes. Molecular biology of the cell 2000, 11(12):4241–4257.

25. Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG,
Lee TI, True HL, Lander ES and Young RA: Remodeling of yeast
genome expression in response to environmental changes.
Molecular biology of the cell 2001, 12(2):323–337.

26. Molina-Navarro MM, Castells-Roca L, Belli G, Garcia-Martinez J,
Marin-Navarro J, Moreno J, Perez-Ortin JE and Herrero E:
Comprehensive transcriptional analysis of the oxidative
response in yeast. The Journal of biological chemistry 2008, 283
(26):17908–17918.

27. Polisetty PK, Gatzke EP and Voit EO: Yield optimization of
regulated metabolic systems using deterministic branch-
and-reduce methods. Biotechnol Bioeng 2008, 99(5):1154–69.

28. Savageau MA: Biochemical systems analysis. I. Some mathe-
matical properties of the rate law for the component

enzymatic reactions. Journal of theoretical biology 1969, 25(3):
365–369.

29. Savageau MA: Biochemical systems analysis. II. The steady-
state solutions for an n-pool system using a power-law
approximation. Journal of theoretical biology 1969, 25(3):370–379.

30. Savageau MA: Biochemical systems analysis. 3. Dynamic
solutions using a power-law approximation. Journal of theore-
tical biology 1970, 26(2):215–226.

31. Alves R, Vilaprinyo E, Hernandez-Bermejo B and Sorribas A:
Mathematical formalisms based on approximated kinetic
representations for modeling genetic and metabolic path-
ways. Biotechnology and Genetic Engineering Reviews 2008, 25:1–40.

32. Alves R, Vilaprinyo E and Sorribas A: Integrating Bioinformatics
and Computational Biology: Perspectives and Possibilities
for In Silico Network Reconstruction in Molecular Systems
Biology. Current Bioinformatics 2008, 3(2):98–129.

33. Voit EO: Computational Analysis of Biochemical Systems. A
Practical Guide for Biochemists and Molecular Biologists. Cambridge,
U.K.: Cambridge University Press; 2000.

34. Chou IC and Voit EO: Recent Developments in Parameter
Estimation and Structure Identification of Biochemical and
Genomic systems. Math Bisoc 2009, 219:57–83.

35. Goel G, Chou IC and Voit EO: System Estimation from
Metabolic Time Series Data. Bioinformatics (Oxford, England)
2008, 24(21):2505–11.

36. Curto R, Voit EO, Sorribas A and Cascante M: Mathematical
models of purine metabolism in man. Mathematical biosciences
1998, 151:1–49.

37. Alves R, Herrero E and Sorribas A: Predictive reconstruction of
the mitochondrial iron-sulfur cluster assembly metabolism:
I. The role of the protein pair ferredoxin-ferredoxin
reductase (Yah1-Arh1). Proteins 2004, 56(2):354–66.

38. Alves R, Herrero E and Sorribas A: Predictive reconstruction of
the mitochondrial iron-sulfur cluster assembly metabolism.
II. Role of glutaredoxin Grx5. Proteins 2004, 57(3):481–92.

39. Marin-Sanguino A, Voit EO, Gonzalez-Alcon C and Torres NV:
Optimization of biotechnological systems through geo-
metric programming. Theor Biol Med Model 2007, 4:38.

40. Bailey J, Birnbaum S, Galazzo J, Khosla C and Shanks J: Strategies
and challenges in metabolic engineering. Ann NY Acad Sci 1990,
589:1–15.

41. Cameron D and Tong J: Cellular and metabolic engineering: an
overview. Appl Biochem Biotechnol 1993, 38:105–140.

42. Cameron D and Chaplen F: Developments in metabolic
engineering. Curr Opin Biotechnol 1997, 8:175–180.

43. Mendes P and Kell D: Making cells work - metabolic
engineering for everyone. Trends Biotechnol 1996, 15:6–7.

44. Banga JR: Optimization in computational systems biology.
BMC Syst Biol 2008, 2:47.

45. Voit EO: Optimization in integrated biochemical systems.
Biotechnol Bioeng 1992, 40(5):572–82.

46. Alvarez-Vasquez F, Canovas M, Iborra JL and Torres NV: Modeling,
optimization and experimental assessment of continuous L-
(-)-carnitine production by Escherichia coli cultures. Biotech-
nol Bioeng 2002, 80(7):794–805.

47. Marin-Sanguino A and Torres NV: Optimization of biochemical
systems by linear programming and general mass action
model representations. Math Biosci 2003, 184(2):187–200.

48. Biegler JT and Grossmann IE: Retrospective on optimization.
Computers and Chemical Engineering 2004, 28:1169–1192.

49. Floudas CA: Deterministic global optimization: Theory.
Methods and Applications. Dordrecht, The Nether-lands: Kluwer,
Academic Publishers; 2000.

50. Bergamini ML, Aguirre P and Grossmann IE: Logic-based outer
approximation for globally optimal synthesis of process
networks. Computers and Chemical Engineering 2005, 29:1914–1933.

51. Bergamini ML, Scenna NJ and Aguirre P: Global Optimal
Structures of Heat Exchanger Networks by Piecewise
Relaxation. Industrial and Engineering Chemistry Research 2007,
46:1752–1763.

52. Bergamini ML, Grossmann IE, Scenna N and Aguirre P: An
improved piecewise outer-approximation algorithm for
the global optimization of MINLP models involving concave
and bilinear terms. Computers and Chemical Engineering 2008,
32:477–493.

53. Koonin EV: Darwinian evolution in the light of genomics.
Nucleic acids research 2009, 37(4):1011–1034.

54. de Atauri P, Sorribas A and Cascante M: Analysis and prediction
of the effect of uncertain boundary values in modeling a

BMC Bioinformatics 2009, 10:386 http://www.biomedcentral.com/1471-2105/10/386

Page 19 of 20
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/4469274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4469274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4431516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4431516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1105191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1105191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1105191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8568860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8568860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9067609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9067609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11222282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12657043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12657043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12657043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12657043?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15853887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15853887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16824103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16824103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16824103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18363790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18363790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18315885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18315885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14614139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14614139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14614139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16461898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16461898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11159314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11159314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12547041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12547041?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16584550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16584550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16584550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16025103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15674294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15674294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11102521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11102521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11102521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11179418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11179418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18424442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18424442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18064703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18064703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18064703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5387046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5387046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5387046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5387047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5387047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5387047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5434343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5434343?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9664759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9664759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15211518?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15211518?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15211518?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15211518?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15382238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15382238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15382238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17897440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17897440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2192652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2192652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8346901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8346901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9079723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9079723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18507829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18601153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12402325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12402325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12402325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12832147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12832147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12832147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19213802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10699868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10699868?dopt=Abstract


metabolic pathway. Biotechnology and bioengineering 2000, 68:
18–30.

55. Voit EO and del Signore M: Assessment of effects of experi-
mental imprecision on optimized biochemical systems.
Biotechnol Bioeng 2001, 74:443–448.

56. Voit EO: A systems-theoretical framework for health and
disease: Inflammation and preconditioning from an abstract
modeling point of view. Mathematical biosciences 2008, 217(1):
11–8.

57. Vera J, Curto R, Cascante M and Torres NV: Detection of
potential enzyme targets by metabolic modelling and
optimization: application to a simple enzymopathy. Bioinfor-
matics 2007, 23(17):2281–9.

58. Vera J, de Atauri P, Cascante M and Torres NV: Multi-criteria
optimization of biochemical systems by linear program-
ming: application to production of ethanol by Saccharo-
myces cerevisiae. Biotechnol Bioeng 2003, 83(3):335–43.

59. Raman R and Grossmann IE: Modeling and computational
techniques for logic based integer programming. Comput
Chem Eng 1994, 18:563.

60. Nemhauser GL and Wolsey LA: Integer and Combinational
Optimization. New York: John Wiley; 1998.

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2009, 10:386 http://www.biomedcentral.com/1471-2105/10/386

Page 20 of 20
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/10699868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11427946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11427946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17586544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17586544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17586544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12783489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12783489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12783489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12783489?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10066636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10066636?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Problem statement

	Results and discussion
	Optimization approach
	Motivation of the optimization approach
	Optimization method
	Algorithmic Steps
	Optimization of the anaerobic fermentation pathway in Saccharomyces cerevisiae
	Optimal adaptive response of yeast to heat shock

	Feasibility approach
	Mathematical representation
	Algorithmic Steps
	Feasible enzyme activity patterns in the adaptive response of yeast to heat shock stress
	Effect of the constraint values


	Conclusion
	Authors’ contributions
	Appendix
	Upper level master problem for the optimization procedure
	Lower level slave problem for the optimization procedure
	Remarks

	Modified master problem for the feasibility method
	Modified slave problem for the feasibility method
	Integer cuts for the feasibility method
	Remarks


	Additional material
	Acknowledgements
	References

