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Abstract 
Understanding the evolution of cellular metabolism requires a number of techniques 
able to deal with its complexity. Adaptive responses observed in evolutive studies are 
expected to consist of an optimal set of changes in enzymes activities fulfilling 
important physiological constraints. Within this context, we present a novel approach to 
identify enzyme activity regions that contain feasible biological responses in evolution. 
The framework presented also allows to optimize the enzyme activity changes required 
to maximize certain fluxes in biotechnological applications. The method relies on 
solving nonlinear programming models via global optimization techniques. 
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1. Introduction 
In natural cells, emergence of new designs results from evolution. The adaptive 
response of the cellular metabolism to different situations is attained by tuning gene 
expression and enzyme activity. Understanding the evolution of adaptive strategies is an 
important goal in Systems Biology.  
The evolution of adaptive stress responses can be seen as a multi objective optimization 
problem. In that sense, the observed response represents an optimal (in some sense) 
combination of changes that ensure appropriate survival in the considered conditions. 
Evolution results in adaptations that are admissible solutions fulfilling important 
physiological constraints. 
Within this general context, we introduce a novel approach that aims to identify enzyme 
activity regions containing feasible responses observed in evolution. The method 
introduced can also be employed to optimize biological systems in biotechnological 
applications. Our approach focuses on the properties of a particular class of non-linear 
models, the GMA (Generalized Mass Action) models that are based on the power-law 
formalism. The proposed algorithm is very efficient for realistic problems. The 
solutions found would represent the landscape in which evolutive solutions are 
expected. Comparison of our results and actual data shows the practical usefulness of 
the proposed method.  

2. GMA representation 
We shall consider a metabolic network that has p fluxes that can contribute to the 
change in the concentration of the pool of any of the n internal metabolites: 
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Here, μir is a stoichiometric factor that indicates how many molecules of Xi are 
produced or used by the process vr; it is a positive integer if the flux r produces Xi and it 
is a negative integer if the flux r depletes the pool of Xi. Each velocity can be 
represented by different functional forms, but, the so-called power-law formalism is one 
of the most convenient: 
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In this representation, Xj accounts for the concentration of metabolite j, r is an apparent 
rate constant for flux r, and frj is the kinetic order of variable Xj in reaction r. Each 
kinetic order quantifies the effect of the metabolite Xj on flux r and corresponds to the 
local sensitivity of the rate vr to Xj evaluated at the corresponding operating point. Using 
this representation, a Generalized Mass Action (GMA) model is defined as [1]: 
 
 
 

niX
dt

 
In this expression, m indicates independent (external) metabolites. 

3. Optimization model and solution strategy 
Here, we present an optimization framework for GMA systems that will be later on 
taken as a basis for deriving the feasibility approach, which is the main contribution of 
this work. Non-linear optimization models based on the power-law formalism were first 
proposed by Voit [2]. In S-system representations, a transformation to logarithmic 
coordinates can be applied thus leading to linear optimization models. However, when 
the problem is represented by a GMA model, this technique cannot be applied.  
In general, the problem of identifying the optimal values of vr, r and Xj that maximize a 
given criterion and satisfy at the same time the equations involved in the GMA 
representation can be posed as a nonlinear programming (NLP) as follows: 
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Model ONLP corresponds to a non-convex problem. Because of this, standard NLP 
techniques may get trapped in local solutions that are likely to be far away from the 
global optimum. This may lead to wrong conclusions when performing biological 
studies. To circumvent this limitation, we introduce a deterministic algorithm to 
globally optimize ONLP that is based on the works of Bergamini and co-workers [3] 
and Polisetty et al. [4]. The proposed method relies on hierarchically decomposing the 
problem into two levels, an upper level master problem CMILP and a lower level slave 
problem RNLP, between which the algorithm iterates until a termination criterion is 
satisfied (see Figure 1). 
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The master level of the algorithm entails the solution of a mixed-integer linear (MILP) 
problem, which is a relaxation of model ONLP (i.e., it rigorously overestimates the 
feasible region of ONLP), and therefore predicts a valid lower bound on its global 
optimum. In the lower level, the original problem is locally optimized in a reduced 
search space (i.e., model RNLP), thus yielding an upper bound on its global solution. 
The upper and lower level problems are solved iteratively until the bounds converge. 
Due to space limitations, technical details of the main features of the proposed 
algorithm are omitted. As mentioned before, this method can be employed in 
biotechnological applications in order to optimize a given bioprocess. In this work, as 
discussed in section 4, such method is employed to derive a tool to perform feasibility 
analysis in evolutive studies. 
 

 
Figure 1. Proposed algorithm. 

4. Feasibility approach 
The algorithm previously presented can be used, after minor modifications, to identify 
regions that contain feasible solutions to the original problem ONLP, and discard others 
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in which no single feasible solution exists. Given the metabolic model, the goal is then 
to find the admissible changes at the level of enzyme activities that are compatible with 
a set of physiological and functional effective criteria. 
From the mathematical point of view, this analysis requires the definition of a set of 
disjoint sets  (  for all q

SP 0'q

S
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S PP 'qq ) such that their union contains the feasible 

space S of ONLP ( ). In this work, for the sake of simplicity, we assume 

that each of these regions  is a hyper-rectangle described by a set of linear 

inequalities that impose lower and upper limits (

q

S
Qq

PS
,...,1

q

SP

q  and q , respectively) on the 

values of the apparent rate constants . Thus, we have: q
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Hence, the feasibility analysis must determine whether these hyper-rectangles contain 
feasible solutions to ONLP or not. 
The method devised to accomplish this task is based on the same ideas presented before 
and comprises two different levels. At the upper level, a master problem is solved to 
identify a region (i.e., hyper-rectangle) that may contain a feasible solution of ONLP. 
At the lower level, the prediction made by the master problem is checked by solving the 
original problem in a reduced search space. If a feasible solution is found, then integer 
cuts are added to the master problem in order to exclude the region containing such a 
feasible point. Otherwise, the master model is updated by refining its grid, until either a 
feasible solution is obtained in the lower level or the higher level problem turns out to 
be unfeasible.  
 

 
Figure 2. Scheme of the modeled pathways and ranges used for generation of 
the in silico gen expression profiles (GEPs). 
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5. Feasible adaptive response of yeast to heat shock  
The capabilities of our method were illustrated through its application to the optimal 
adaptive response of yeast to heat shock (for a detailed description see [5]). Our model 
includes the core of the glycolytic pathway and the first step of the pentose phosphate 
pathway. It also accounts for the synthesis of glycogen, trehalose and glycerol, as 
shown in Figure 2. The notation used in this figure is as follows. Glcout: Extracellular 
Glucose; Glcin: Intracellular Glucose; G6P: Glucose-6-phosphate; F16P: Fructose-1,6-
biphosphate; PEP: Phosphoenolpyruvate; PYR: Pyruvate; HXT: Hexose transporters 
(HXT1–4, HXT6–8, HXT12); GLK: Glucokinase/Hexokinase (GLK1, HXK1, HXK2); 
PFK: Phosphofructokinase (PFK1, PFK2); TDH: Glyceraldehyde-3-phosphate 
dehydrogenase (TDH1, TDH2, TDH3); PYK: Pyruvate kynase (PYK1, PYK2); GLY: 
Production glycogen; TPS: Trehalose 6-phosphate syntase complex (TPS1, TPS2, 
TPS3); G6PDH: Glucose 6-phosphate dehydrogenase (ZWF1).  
The metabolic network was found to be specially sensitive to changes in two specific 
enzymes (i.e., PFK and TDH). For this reason, the feasibility analysis was performed on 
their domain, defining ten different sub-intervals for each of them. Hence, in this 
particular example, the feasibility analysis focuses on identifying, from the initial set of 
100 hyper-rectangles, those containing feasible solutions to ONLP and those in which 
no feasible point exists.  
 

 
Figure 3. Feasibility analysis. White circle: Maximum rate of ATP synthesis; Black circle: 
Maximum rate of NADPH synthesis; Black square: Maximum rate of Trehalose synthesis; Black 
star: Minimum cost; Black empty circles: Experimental observations by Vilaprinyo et al. [5] 

 
The algorithm was implemented in GAMS interfacing with CPLEX and CONOPT as 
main optimization packages. The total CPU time was less than one minute on an Intel 
1.2 GHz machine. Results of this analysis are depicted in Figure 3.  
In the figure, shady boxes represent hyper-rectangles that contain at least one feasible 
solution to the problem, whereas those in white have been proved to be unfeasible. For 
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comparison purposes, we have also depicted other solutions that are optimal in terms of 
some criteria: maximum rate of ATP synthesis, maximum rate of NADPH synthesis, 
maximum rate of Trehalose synthesis and minimum cost. This last metric (i.e., the cost) 
measures the overexpression of the enzymes. 
As can be seen, experimentally observed responses [5] fall within the feasible region 
predicted by the algorithm. Interestingly, they allocate especially close to the minimum 
cost solution, that is, the one that would minimize the overexpression of the enzymes. 
Additionally, the maximum Trehalose rate solution is also near. This probably indicates 
some importance in the adaptation process. 
 

6. Conclusions  
This work introduced a systematic method for identifying the enzyme activity changes 
that allow a system to meet a set of physiological constraints while optimizing a 
parameter in the network. The approach presented relies on formulating nonconvex 
nonlinear problems that are solved via global optimization techniques. 
The approach presented was applied to study the optimal adaptive response of yeast to 
heat shock. Experimental data fall well within the feasible region predicted. The 
closeness of those points to the minimum cost solution suggests that a conservative 
strategy where minimum changes are done is the preferred adaptive response. On the 
computational side, our method proved to be very efficient for medium size problems. 
The solutions found are intended to shed light on both, biotechnological and evolution 
studies. 
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