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a b s t r a c t

Cells are natural factories that can adapt to changes in external conditions. Their adaptive responses to
specific stress situations are a result of evolution. In theory, many alternative sets of coordinated changes
in the activity of the enzymes of each pathway could allow for an appropriate adaptive readjustment
of metabolism in response to stress. However, experimental and theoretical observations show that
actual responses to specific changes follow fairly well defined patterns that suggest an evolutionary
optimization of that response. Thus, it is important to identify functional effectiveness criteria that may
explain why certain patterns of change in cellular components and activities during adaptive response
have been preferably maintained over evolutionary time. Those functional effectiveness criteria define
sets of physiological requirements that constrain the possible adaptive changes and lead to different
operation principles that could explain the observed response. Understanding such operation principles
can also facilitate biotechnological and metabolic engineering applications. Thus, developing methods
that enable the analysis of cellular responses from the perspective of identifying operation principles may
have strong theoretical and practical implications. In this paper we present one such method that was
designed based on nonlinear global optimization techniques. Our methodology can be used with a special
class of nonlinear kinetic models known as GMA models and it allows for a systematic characterization
of the physiological requirements that may underlie the evolution of adaptive strategies.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Cells are natural factories that can adapt to changes in external
conditions (Causton et al., 2001; Gasch et al., 2000; Mitchell et al.,
2009). Their adaptive responses are a result of evolution through
different mechanisms that include random mutation, gene duplica-
tion, gene transfer, etc. (Koonin, 2009). During steady-state growth
conditions, the cell works within normal operating ranges that are
characterized by fluxes and metabolite levels moving within more
or less narrow ranges (Watson, 1970; Wiebe et al., 2008).

As the conditions in the medium change, the operating range
of cells may also change. If environmental changes are spurious,
there are internal control mechanisms that play a fundamental
role in maintaining the operating range of cells about its initial
value. However, when the environmental changes are relevant or
sustained, an adaptive response is mounted by the cells. Such adap-
tive responses occur during heat shock, oxidative stress, or other
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stresses. If those situations are prevalent in the evolutionary history
of the cell, specific behaviors and mechanisms that facilitate cell
adaptation through changes in gene expression and protein activ-
ity and assure cell viability are selected for. Such behaviors lead
to a fine tuning of metabolic fluxes and concentrations (Vilaprinyo
et al., 2006). The specificity of the adaptive response mounted by
each cell type in response to a given stress depends both on the
challenges it responds to and on the evolutionary history of the
cell or organism (Bedford and Hartl, 2009; Kashiwagi et al., 2006;
Teusink et al., 2009; Wilkins, 2007).

For example, the heat shock caused by a sudden rise in the
temperature of the growing media triggers an ordered response
in yeast that causes an arrest in cell cycle and specific changes
in the coordinated activity of several metabolic pathways (Trotter
et al., 2001). These changes help the cell to synthesize protec-
tive molecules that permit its adaptation and survival (Causton
et al., 2001; Eisen et al., 1998; Gasch et al., 2000; Jenkins, 2003).
In principle, many alternative sets of coordinated changes in the
activity of pathways could allow for an appropriate adaptive read-
justment of metabolism. However, experimental and theoretical
measurements of the actual responses show that these follow fairly
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well defined patterns that are consistent with an evolutionary
optimization of this response with respect to different physiolog-
ical and functional effectiveness criteria (El-Samad et al., 2005;
Kurata et al., 2006; Molina-Navarro et al., 2008; Vilaprinyo et al.,
2006). Thus, it is important to identify functional effectiveness cri-
teria that may explain why certain patterns of change in cellular
components and activities during adaptive response have been
preferably maintained over evolutionary time (Coelho et al., 2009;
Han, 2008; Salvador and Savageau, 2003, 2006; Savageau, 1971,
1974a,b, 1976; Savageau et al., 2009). Such criteria are necessar-
ily derived from the analysis of systemic properties that emerge
from the integrated molecular behavior of the cellular components,
and they may include robustness, dynamic stability, minimiza-
tion of intermediates, minimization of biosynthetic cost, temporal
responsiveness, etc. (Chang and Sahinidis, 2005; Coelho et al., 2009;
Salvador and Savageau, 2003, 2006; Savageau et al., 2009). The
functional effectiveness criteria for a response define sets of phys-
iological constraints that shape that response and lead to different
operation principles that could explain why the cells adapt in a cer-
tain way at the molecular level (Bedford and Hartl, 2009; Braunstein
et al., 2008; Vilaprinyo et al., 2006; Voit and Radivoyevitch, 2000;
Voit, 2003).

Although the operational principles of cellular responses are
a result of evolution, they can be applied to and validated in
biotechnological applications. Metabolic engineering manipulates
naturally evolved organisms in order to obtain increased amount
of new products (Bailey et al., 1990, 1996; Bailey, 1991, 1999, 2001;
Hatzimanikatis and Liao, 2002). This manipulation often involves a
process of optimization that searches for the best modified strain
with respect to the initial optimization criteria (Goodman, 2008).
Thus, developing methods that permit analysis of cellular responses
from the perspective of identifying operational principles may have
strong theoretical and practical implications. Often, this goal can
only be achieved through methods that involved the creation, anal-
ysis and comparison of mathematical models for the processes and
responses one is interested in studying (Alvarez-Vasquez et al.,
2004; Klipp et al., 2005; Sims et al., 2004; Voit, 2003).

In this work, we discuss and extend a method that can be
used to identify and study the operation principles of cellular
response at the molecular level, by characterizing feasibility regions
for those responses (Guillén-Gosálbez and Sorribas, 2009; Pozo
et al., submitted for publication). Such feasibility regions encom-
pass all possible ranges in enzyme activity that allow for an
appropriate response by the cell after an environmental chal-
lenge. This method may help in both, understanding the evolution
of such responses and guiding manipulations of gene expression
in metabolic engineering applications. The proposed method for
identifying feasibility regions uses a recently developed global opti-
mization method (Guillén-Gosálbez and Sorribas, 2009; Pozo et
al., submitted for publication). Here, the capabilities of that opti-
mization method are enhanced through an iterative and systematic
search strategy that identifies all the parameter regions contain-
ing admissible solutions that are compatible with the considered
physiological constraints. The general framework presented here
has the potential for solving problems of great interest in systems
biology studies. As an example we analyze a mathematical model
created to represent the heat shock response of the yeast Saccha-
romyces cerevisiae.

2. Methods

2.1. Generalized Mass Action models

Generalized Mass Action (GMA) models are a special class of
models defined within the general framework of Biochemical Sys-
tems Theory (BST) (Voit, 2000). These models use the power-law

formalism to obtain a representation of the different processes
involved in the target system. For a network with p processes
(enzyme reactions, transport systems, etc.), n internal metabolites,
and m external parameters or independent variables, a GMA model
is defined as follows:

dXi

dt
=

p∑
r=1

�irvr =
p∑

r=1

�ir

⎛⎝�r

n+m∏
j=1

Xfrj
j

⎞⎠ i = 1, . . . , n (1)

In Eq. (1), the parameters �ir account for the stoichiometry of
the process, i.e. the number of molecules of Xi produced by or used
in reaction vr (for instance +1, +2 for production, or −1, −2, etc.,
for degradation). The parameters of the power-law representation
of each reaction are the apparent rate-constant � r and the kinetic-
order fir, defined as (Savageau, 1969a,b, 1976):

fir =
(

∂vr

∂Xi

)
0

Xi0

vr0
(2)

The subscript 0 stands for the operating point where the power-
law representation is derived. Appropriate parameter values for a
given system can be estimated using different procedures. As this is
a broad subject, the reader is referred to the recent review by Chou
and Voit (2009). In the following, we shall assume that a parameter
set has been obtained and that the GMA model can be used for
characterizing the properties of the system.

GMA representations integrate information about network
stoichiometry and regulation (kinetic-orders) into a dynamic math-
ematical model. These models can be used for computing both the
transient and steady-state responses of metabolites and fluxes to
changes in the environment of the model. Due to their structure and
to the available methods, GMA models are well suited for evaluating
parameter sensitivities and for developing optimization techniques
(Chang and Sahinidis, 2005; Marin-Sanguino et al., 2007; Polisetty
et al., 2008; Torres et al., 1996, 1997; Voit, 1992). Thus, that rep-
resentation is especially useful as a framework for systems biology
applications and provides a description of processes that is more
accurate than the one provided by other techniques based on the
stoichiometric matrix alone, such as Flux Balance Analysis (FBA)
(Lee et al., 2006). This added accurateness comes at the price of
needing more information to estimate parameter values for GMA
models.

2.2. Characterization of the effect of changes in enzyme activities

Given a GMA model, changes in enzyme activities can be imple-
mented by changing the value of the rate-constant for the processes
in which the enzymes are involved.1 For simplicity, we can write

dXi

dt
=

p∑
r=1

�irvr =
p∑

r=1

�ir

⎛⎝kr�r

n+m∏
j=1

Xfrj
j

⎞⎠ i = 1, . . . , n (3)

where kr indicates the change-fold over the original enzyme activ-
ity (which is � r). Thus, in the reference state, kr = 1. Accordingly,
a vector (k1, k2, . . . , kp) would correspond to a specific pattern of
fold changes in enzyme activities. For this vector, the change in the

1 Enzyme activities can be explicitly included in the model as independent vari-
ables. However, for constant levels of enzyme activity, doing so is equivalent to
changing the rate-constant directly. If the model includes gene regulation and mod-
ulatory changes in protein activity, enzymes should be explicitly included as internal
variables in the model. Mimicking changes in the medium can be done either by
changing the values of an external variable or by changing the values of rate con-
stants for the processes that are responsible for sensing those changes.
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system steady-state can be easily computed numerically by solving
the steady-state equation

0 =
p∑

r=1

�ir

⎛⎝kr�r

n+m∏
j=1

Xfrj
j

⎞⎠ i = 1, . . . , n (4)

We shall use Eqs. (3) and (4) to analyze the effect of different
activity patterns on the systemic performance of the model and
evaluate how this performance influences the overall physiological
outcome of the response.

2.3. Criteria for functional effectiveness in cellular metabolism

Changes in the reference steady-state as a consequence of a
change in the enzyme activity pattern can be compared to a series
of functional effectiveness criteria (Vilaprinyo et al., 2006; Voit and
Radivoyevitch, 2000). Those criteria, which define the boundaries of
internal change that the cell must go through in order to adapt and
survive, are matched against the internal changes that are caused
by the changes in enzyme activity of a given response profile. While
some of those criteria may be quite general, others may be case-
specific and may have different quantitative thresholds in different
cases (Salvador and Savageau, 2003, 2006; Vilaprinyo et al., 2006).
We now briefly discuss some of the criteria that have been used
in the literature. These are useful for discussing operative ranges,
evolution, and optimization of metabolic processes.

2.3.1. Change in metabolic fluxes
Changes in the rate of synthesis for key metabolites are impor-

tant indices of functional effectiveness. For example, if a system
regulates production of a metabolite in response to the cellular
demand for that metabolite, an increase in the demand should lead
to an increase in the production (e.g. Alves and Savageau, 2000 and
references therein). The specific flux criteria are dependent on the
system one is interested in and should be considered in the context
of the whole system and not as isolated processes. For example, in
the adaptive response to heat shock an increase in ATP production
that causes depletion of NADPH or a dramatic decrease in glycolytic
flux may be inappropriate in the general context of the adaptive
response (Vilaprinyo et al., 2006).

In GMA models, steady-state fluxes can be easily computed for
each condition using the following equation

vrss = kr�r

n+m∏
j=1

Xfrj
jss

r = 1, . . . , p (5)

where subscript ss indicates the relevant steady-state values corre-
sponding to the new conditions. As stated before, the steady-state
solution for metabolites can be obtained by numerically solving Eq.
(4).

In larger networks that involve different branch points and reg-
ulatory effects, it is possible to obtain similar increases in a given
set of fluxes with different patterns of modified enzyme activities.
Thus, this criterion, by itself, will seldom be enough to assess the
adaptive value of a set of changes and fully explain the observed
operation principles for the system.

2.3.2. Metabolite accumulation
Changes in steady-state fluxes may often lead to changes in

metabolite levels. From a practical point of view, either in biotech-
nological applications or in natural systems, one may argue that
accumulation of intermediary metabolites may cause undesirable
cross regulation side effects and tax the finite solvability capacity
of the cell (see Alves and Savageau, 2000 and references therein).
Thus, minimization of intermediate metabolite accumulation will

be typically regarded as an important effectiveness criterion of an
adaptive response, except for those cases in which metabolite accu-
mulation might play an important role (for instance accumulation
of trehalose in the heat shock response). Changes in metabolite
levels are given by the steady-state solution to Eq. (4).

2.3.3. Overall changes in enzyme activities
Changes in enzyme activity are easy to simulate. However, it is

often difficult to assess in a real situation whether those changes
are indirect and due to the modulation of either gene expression or
stability of mRNA (Garcia-Martinez et al., 2007; Romero-Santacreu
et al., 2009), or direct and due to modulator effects on the activity
of the protein. The later can arise via reversible covalent modifi-
cation of specific residues or via changes in the conformation of
the protein in response to a new set of physical chemical parame-
ters in the medium. Changes in gene expression are costly in terms
of metabolic resources (Wagner, 2005). They lead to mRNA and
protein synthesis, which are among the most expensive metabolic
activities of a cell. Thus, minimization of fold change can be con-
sidered an important functional effectiveness criterion (Raiford et
al., 2008). If one assumes that changes in protein activity during
the long term adaptive response of a cell are mostly due to changes
in gene expression then, to a first approximation, one can estimate
the cost of a given set of changes in enzyme activity by adding up all
the kr values. One possible way to account for both up- and down-
regulations consists of defining a “biological” cost of a response that
is mathematically given by

∑
∀i|ln(ki)|.

2.3.4. Parameter robustness
Parameter robustness is an important criterion as it refers to

the system’s sensitivity to slight differences in parameter values
(Aldana et al., 2007; Coelho et al., 2009; Kitano, 2004; Kitano, 2007;
Morohashi et al., 2002; Savageau, 1971). Systems with large param-
eter sensitivities may indicate the existence of processes that are
more responsive to noise. Thus, they could be considered as less
well adapted than systems that are more sensitive to parame-
ter changes. Although low parameter sensitivities may arise from
poorly identified parameters, one can argue that, in most cases, low
sensitivity is a desirable property in well-adapted systems. This cri-
terion has been extensively used in identifying design principles
and in evaluating model adequacy and behavior (Cascante et al.,
1995; Coelho et al., 2009; Curto et al., 1997; de Atauri et al., 2000;
Voit, 2000).

2.3.5. Temporal responsiveness
Temporal responsiveness is another criterion that is impor-

tant for systemic performance. Systems with inadequate temporal
responsiveness may not survive to reach a new steady state, inde-
pendently of the adequacy of their steady-state responses. In
general, evaluating this criterion requires numerical simulations,
except for the case where we are only interested in studying the
dynamics in the neighborhood of a steady-state solution. In such
a case one can linearize the system of equations about the steady
state and obtain analytical solutions for the transient behavior of
the dependent variables (Hlavacek and Savageau, 1998).

Unlike the other criteria that were discussed so far, using tem-
poral responsiveness as a criterion for optimization poses many
problems. In the context of globally optimizing metabolic systems,
there are indeed very few methods capable of handling the dynamic
constraints required to assess the temporal responsiveness. In fact,
the strategies proposed so far are only applicable to specific types of
models, and usually optimization uses large amounts of CPU time,
even when tackling small problems with few variables and con-
straints (Chachuat et al., 2006; Chang and Sahinidis, 2005; Esposito
and Floudas, 2000; Papamichail and Adjiman, 2002, 2004; Singer
and Barton, 2006). This limitation can be overcome by performing
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the assessment of the temporal responsiveness in the post-optimal
analysis of the solutions found. Hence, once a feasible solution is
identified, the evaluation of its temporal responsiveness can add
an extra criterion for deciding the relevance of such solution. In
terms of evolution, this may be important as a given optimum can
involve dynamic properties that will make the solution unfeasible
in practice.

2.3.6. Steady-state stability
Dynamic stability is a criterion that evaluates the ability of a

given system for returning to a steady-state after a perturbation.
A stable system can accommodate fluctuations and will be able
of maintain a reference state. Evaluation of steady-state stability
should be a complementary criterion for testing the appropriate-
ness of a proposed change in the system (Savageau, 1974a, 1975,
1998). In the optimization of metabolic systems, this criterion can
be included in the optimization model itself (Chang and Sahinidis,
2005) or it can be assessed in the post-optimal analysis of the solu-
tions for Eq. (4).

3. Feasibility regions in biochemical pathways: definition
and their practical significance

3.1. Definitions

A feasibility region is a region in parameter space whose inter-
nal membership is defined by the sets of all parameter values that
are compatible with specific physiological constraints (Dayarian
et al., 2009; Guillén-Gosálbez and Sorribas, 2009). Here, without
loss of generality, we shall concentrate on the special case of fea-
sibility regions defined by changes in enzyme activities, that is
the set of vectors representing the fold change in enzyme activi-
ties: (k1, k2, . . . , kp), that are compatible with a set of functional
effectiveness criteria (constraints). These functional criteria must
be assessed through mathematical models, such as the GMA rep-
resentation, that allow predicting the biological performance of
a system in a specific environment. In mathematical terms, per-
forming a feasibility analysis entails conducting a systematic search
for determining the set of values of some variables of the biolog-
ical model for which the overall formulation remains feasible. In
this context, linear models usually fail to capture the whole com-
plexity of the biological system, so it is necessary to use nonlinear
formulations.

Hence, finding the boundaries for this class of feasibility regions
requires obtaining global optimal solutions for nonlinear opti-
mization problems. One of the important limitations of standard
nonlinear optimization techniques is that they cannot guarantee
the global optimality of the solutions found when they are applied
to nonlinear problems that have non-convexities. Non-convexities,
such as bilinear terms, fractional terms, etc., are very common in
many engineering problems. In the context of our analysis, these
non-convexities arise from the kinetic equations required to link
the concentration of the metabolites with the velocities of the reac-
tions that take place in the metabolic network.

There are currently several global optimization methods that
can handle non-convex problems and provide solutions that are
globally optimal within a desired tolerance (Tawarmalani and
Sahinidis, 2002). Most of these methods are general purpose, that
is to say, they can be applied to a wide range of problems regardless
of the type of non-convexities embedded in the model. However,
their performance can change drastically from one application to
another depending on the specific structure of the problem to be
solved (for a detailed review of these methods see Grossman and
Biegler, 2004). A possible way of expediting the search for global
solutions for nonlinear non-convex problems consists of exploiting

the structure of the involved non-convexities. The major classes
of non-convex problems studied so far include concave minimiza-
tion (Hansen et al., 1992) and problems with linear fractional and
bilinear terms (Quesada and Grossman, 1995), and a method for
problems with signomial parts (Porn et al., 2008). Different opti-
mization strategies have also been suggested for S-system and GMA
models within BST (Chang and Sahinidis, 2005; Hatzimanikatis et
al., 1996; Marin-Sanguino et al., 2007; Polisetty et al., 2008; Voit,
1992). Recently, a highly efficient global optimization technique for
GMA models has been developed by our group. Technical aspects
of this optimization are discussed elsewhere (Guillén-Gosálbez and
Sorribas, 2009; Pozo et al., submitted for publication). We shall use
this technique in the feasibility analysis presented here.

3.2. Characterization of feasibility regions in GMA models

The method for finding the feasibility regions was first intro-
duced by Guillén-Gosálbez and Sorribas (2009). Here, we briefly
review it and discuss the different steps and their importance.
Mainly, steps 2–3 are critical for reducing the search space and
obtain a useful result. After reviewing the method, we shall apply
it to two practical cases showing its utility both for optimization and
evolutionary studies. Finally, we shall stress the role of the set of
physiological constraints in defining the feasibility region. As stated
before, the strategy presented relies on the use of global optimiza-
tion methods that are customized for this particular application.

A feasibility region for a particular problem can be identified
through the following steps:

1. Define a set of constraints that must be fulfilled by any solu-
tion (limits for fluxes, concentrations, gene expression, etc.). At
this point, collaboration with experts in the biological problem
is fundamental.

2. Define the search space for the fold change of each enzyme. (i.e.,
the lower and upper bounds, kLO

i
and kUP

i
that define the interval

within which the fold change must fall). Based on experimental
information, one can restrict the search space for practical pur-
poses. Thus, if measurements in microarray experiments show
that during the studied response a given gene is over expressed
between 5 and 8-fold, we could consider allowing changes from
1 up to 20-fold from the basal condition for that gene. By making
the range so large, one covers for other plausible values that may
also be linked to alternative adaptive solutions.

3. Find the maximum and minimum (bound contraction) values for
changing each enzyme that are compatible with the set of con-
straints defined in 1 and with the limits established in 2. This
is achieved by defining ki as the objective function. Note that
these optimizations provide bounds for all the variables ki (i.e.,
kLO∗

i
and kUP∗

i
) that will fall within those first considered in step

2. Thus, we can assure that outside the obtained bounds for ki
no other combination of changes in the enzymes produces a
valid solution. In mathematical terms, we have that a solution
will be unfeasible if there exists at least one ki that satisfies that
ki /∈ [kLO∗

i
, kUP∗

i
].

4. Define a grid of values for each ki: (k1
i
, k2

i
, . . . , kni

i
), using

the minimum and maximum values obtained in the previ-
ous step. Typically, we have divided the allowed range in
10 sections. The bound contraction step shortens the search
region, which results in a more efficient search of the feasibility
region.

5. Consider a set of the hyper-rectangles, each of which is defined
by lower and upper limits imposed on the values of each ki. For
instance, a particular hyper-rectangle would be defined by fold
changes that are between 2.5 and 3.7 for enzyme 1, between 10
and 12.3 for enzyme 2, and so on.
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6. Find the global optimum using any of the velocities as
the objective function. This will give a set of fold changes
(k11, k21, . . . , kp1) for which this optimum is attained. At this
stage, as the goal is to find admissible solutions, we can select any
of the velocities as the objective function. The results of the fea-
sibility analysis will be the same independently of this choice.
At this point, all we need is to be sure that at least a solution
exist that is compatible with the set of constraints. Hence, it
is not strictly required to globally optimize the model in each
hyper-rectangle, since a feasible solution suffices for the purpose
of the analysis. One can wrongly conclude from this observa-
tion that it is possible to conduct the feasibility analysis using
a local optimization method. This is not true, as the task of the
algorithm is not only to identify feasible solutions in each hyper-
rectangle, but also to discard regions in which no feasible point
exists. Standard local optimization methods cannot accomplish
the latter task, as they can fail even in solving convex prob-
lems (Tawarmalani and Sahinidis, 2002), in such a way that one
will never be sure if the convergence problems that will arise
when attempting to optimize empty hyper-rectangles will really
indicate the absence of feasible solutions. One possible way to
circumvent this issue is to rely on a lower bounding problem,
which is one of the main ingredients of any global optimiza-
tion technique, capable of providing a valid lower bound on the
global optimum of the model. Particularly, the feasibility analysis
requires the use of a linear lower bounding problem, since linear
and mixed-integer linear programming techniques (LP and MILP,
respectively) can indeed identify problems with no feasible solu-
tions. Hence, our method exploits the fact that LP and MILP
techniques will only fail when attempting to solve models of
small/medium size that are really unfeasible (i.e., do not contain
any feasible point). Note that in this context the main task of the
lower bounding problem is not to provide a tight bound on the
global solution of the model, as is the case in standard global opti-
mization methods, but to detect empty hyper-rectangles from
unfeasible models. Thus, the particular features of our feasibility
analysis justify the need for a customized global optimization
method.

7. Identify and annotate the hyper-rectangle that contains this
solution. This will be the one whose lower and upper limits
contain the values of ki associated with the optimal solution
identified in the current iteration.

8. Repeat steps 4–7 by excluding the hyper-rectangle containing
the optimal solution obtained in step 5 by adding an integer cut
to the lower bounding problem. This is repeated until no further
solution is found to be compatible with the remaining hyper-
rectangles (i.e., until the lower bounding problem turns out to
be unfeasible).

9. Analyze the obtained results and compare the feasible region
with actual experimental data. If the feasibility region contains
the observed data, this is an indication that the considered set of
constraints may explain the adaptive response. Alternative con-
straints can be introduced and a new feasibility region can be
obtained by starting again the analysis at point 2. In the next sec-
tion we will discuss the interpretation of results obtained with
different sets of constraints.

This procedure is illustrated in Fig. 1. For simplicity, we show
results for two enzymes only. However, at each optimization, all the
enzymes are allowed to change values (see below). The constraints
considered in each optimization are those defined in step 1 plus
the limits on the values of ki that define each hyper-rectangle. By
following the procedure described above, a region of feasibility is
bounded and defined by a set of feasible hyper-rectangles. These
regions can be further refined by increasing the granularity of the
hyper-rectangles within the region(s) of feasibility. Note that any
of the hyper-rectangles that define the feasible regions contains at
least one admissible solution.

3.3. Utility of feasibility regions characterization

The feasibility regions determined through the previously
described methodology can be most useful in two situations:

1. In biotechnological applications. In practical applications, it
may be impossible to attain the optimal solution that would

Fig. 1. Strategy for finding a feasible region. In the first step, the global optimum is identified and the hyper-rectangle where it occurs is annotated (a). In the next step, this
hyper-rectangle is discarded and the new optimum is located (b). The process is repeated (c) until no new optimum is obtained (d). Here we show results for two of the
hypothetical enzymes but the search is done for all simultaneously.
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Fig. 2. Schematic representation of the central metabolism of yeast. Details are discussed in previous papers (Polisetty et al., 2008; Vilaprinyo et al., 2006; Voit and
Radivoyevitch, 2000). Basal values for enzyme activities and the resulting steady state are given in Tables 1 and 2.

correspond to an optimization analysis. Thus, one can define
a minimum percentage of the optimum that would identify a
practical cost-beneficial strategy. Feasible regions that are com-
patible with that threshold can be obtained using the method
proposed in this work. The desired minimal limit can be math-
ematically represented by a simple inequality constraint. Once
the feasibility region is determined the user can select the most
appropriate values for practical implementation. The feasible
regions will contain a global optimum for attaining this prac-
tical threshold as well as many other subobtimal solutions. Note
that all the identified solutions, including the sub-optimal ones,
would be guaranteed to attain the minimum increase in the
objective function considered in the analysis.

2. In evolutionary studies. Feasible regions that are compatible with
physiological requirements can be identified in studies about
evolution of responses. If the model captures the features of the
system that are important for the response, one would expect
to find the actual adaptive response within this region. An itera-
tive analysis considering different physiological constraints may
help in identifying which of these constraints are more impor-
tant as selective pressures for evolving an appropriate response,
avoiding the spandrel effects. Furthermore, comparison of actual
data with optimal solutions can help in understanding the selec-
tive pressures in a given case.

3.4. Examples

3.4.1. Metabolic model
As an example for showing the applicability of the method

described above, we shall consider a simplified conceptual model
for the basal metabolism of yeast that is derived from previous
models of the same pathways (Curto et al., 1995; Polisetty et al.,
2008; Voit and Radivoyevitch, 2000).

This model, summarized in Fig. 2, accounts for glycolisis, the
synthesis of glycogen and trehalose, the branching from fructose-
1,6-P to glycerol, and the branching from glycolisis to the pentose
phosphate metabolism. For convenience, we consider simplified
reactions by lumping together a number of processes. For example,
we consider an aggregated process leading to trehalose and glyco-
gen. Numerically, we shall consider that the flux into trehalose is

a fraction of the total flux for this branch (Vilaprinyo et al., 2006;
Voit and Radivoyevitch, 2000). For more details on the simplifica-
tions, assumptions, and experimental evidences used to build this
model the reader is referred to the paper by Voit and Radivoyevitch
(2000). The different processes are modeled using the power-law
formalism as:

Process Velocity Power-law representation Steady-state rate

HXT v1 0.9023X−0.2344
2 X6 17.73

GLK v2 3.1847X0.7464
1 X0.0253

5 X7 17.73

PFK v3 0.5232X0.7318
2 X−0.3941

5 X8 15.946

TDH v4 0.011X0.6159
3 X0.1308

5 X9X−0.6088
14 15.06

PYK v5 0.0947X0.05
3 X0.533

4 X−0.0822
5 X10 30.00

TPS + GLY v6 0.0009X0.7318
2 X11 0.014

G6PDH v7 1.76898 X0.0526
2 X0.9646

15 1.77

GOL v8 0.103209X0.05
3 X0.533

4 X−0.0822
5 X12 1.772

ATPase v9 0.937905X1
5 X13 26.55

(6)

The stoichiometric matrix corresponding to the model in Fig. 2 is
given by:

N =

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 0 0 0 0 0 0

0 1 −1 0 0 −1 −1 0 0

0 0 1 −1 0 0 0 −1/2 0

0 0 0 2 −1 0 0 0 0

0 −1 −1 2 1 −1 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ (7)

Multiplying the stoichiometric matrix by the vector of velocities
V = (v1, . . . , v9)′, we would obtain the set of differential equations
for the model in GMA form2:

Ẋ = N · V (8)

2 Here we use the notation Ẋi = dXi/dt.



Author's personal copy

A. Sorribas et al. / Journal of Biotechnology 149 (2010) 141–153 147

Table 1
Basal enzyme activities.

Symbol Name Value

X6 Glucose uptake (HXT) 19.7 mM min−1

X7 Hexokinase (GLK) 68.5 mM min−1

X8 Phosphofructokinase (PFK) 31.7 mM min−1

X9 Glyceraldehyde-3-phosphate
dehydrogenase (GAPD or, as
alternative name, TDH)

49.9 mM min−1

X10 Pyruvate kinase (PYK) 3440 mM min−1

X11 Polysaccharide production
(glycogen + trehalose)

14.31 mM min−1

X12 Glycerol production (GOL) 203 mM min−1

X13 ATPase 25.1 mM min−1

X14 NAD+/NADH ratio 0.042

The complete mathematical model is given by:

Ẋ1 = 0.9023X−0.2344
2 X6 − 3.1847X0.7464

1 X0.0253
5 X7

Ẋ2 = 3.1847X0.7464
1 X0.0253

5 X7 − 0.5232X0.7318
2 X−0.3941

5 X8 − 0.0009X0.7318
2 X11 − 1.76898 X0.0526

2 X0.9646
15

Ẋ3 = 0.5232X0.7318
2 X−0.3941

5 X8 − 0.011X0.6159
3 X0.1308

5 X9X−0.6088
14 − 0.0516X0.05

3 X0.533
4 X−0.0822

5 X12

Ẋ4 = 2 ×
(

0.011X0.6159
3 X0.1308

5 X9X−0.6088
14

)
− 0.0947X0.05

3 X0.533
4 X−0.0822

5 X10

Ẋ5 = 2 ×
(

0.011X0.6159
3 X0.1308

5 X9X−0.6088
14

)
+ 0.0947X0.05

3 X0.533
4 X−0.0822

5 X10 − 3.1847X0.7464
1 X0.0243

5 X7−
0.0009X0.7318

2 X11 − 0.5232X0.7318
2 X−0.3941

5 X8 − 0.937905X1
5 X13

(9)

The basal enzyme activities used in the models are shown in
Table 1. The steady-state calculated from these values and the
model parameters given in Eq. (9) is shown in Table 2.

3.4.2. Feasible regions for a significant increase in ethanol
production

Optimization of cellular processes is an important goal in
biotechnology. However, optimal solutions obtained with a model
will seldom be practically realizable. In most cases, significant
increases in flux would imply modifying many enzymes at the same

Table 2
Steady-state values of the considered model at the basal conditions.

Symbol Name Basal concentration (mM)

X1 Internal glucose 0.0345
X2 Glucose-6-phosphate 1.011
X3 Fructose-1,6-diphosphate 9.144
X4 Phosphoenolpyruvate (PEP) 0.0095
X5 ATP 1.1278

time, which can be unpractical. One possible application of the
feasibility method proposed here is to explore possible changes
in enzyme activity leading to acceptable solutions, say a given
percentage over the basal value or a given percentage below the
optimum value. As an example, we will consider the optimization
of ethanol production using the reference model. Because of the

simplifications introduced in the model, the rate of synthesis of
ethanol is the same as that for the synthesis of pyruvate.

First, as a reference for comparison, we explore the maximum
rate of ethanol production that can be achieved if changes are
allowed in all enzyme activities. The results of the optimization
analysis using the method described elsewhere (Guillén-Gosálbez
and Sorribas, 2009) are shown in Table 3. For comparative purposes,
we obtain the optimal solution with different allowed ranges for
enzyme activity changes. A nearly linear increase in ethanol pro-
duction is achieved as we allow higher increases in the enzymes.

Table 3
Maximization of ethanol production.

No constraints VNADPH (5% maximum variation) VNAPDH, VATP (5% maximum variation)
Maximum fold change in any enzyme Maximum fold change in any enzyme Maximum fold change in any enzyme

5 10 15 20 5 10 15 20 5 10 15 20

Fold change values at the different optimum
HXT 5 10 15 20 5 10 15 20 1.01 1.01 1.01 1.01
GLK 1.16 10 10.56 16.03 1.16 2.16 7.6 20 0.27 0.27 0.27 0.27
PFK 5 10 15 20 5 10 15 20 1.14 1.14 1.14 1.14
TDH 5 10 15 5.27 5 9.99 15 20 2.58 2.58 2.58 2.58
PYK 5 10 15 20 5 10 15 20 0.34 0.34 0.34 0.34
TPS 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
G6PDH 0.2 0.2 0.2 0.2 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95
GOL 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.22 0.22 0.22 0.22
ATPase 5 10 15 20 5 10 15 20 0.94 0.94 0.94 0.94

Steady-state values for metabolites (mM) corresponding to the different optimum
Glu 0.23 0.03 0.05 0.04 0.23 0.25 0.08 0.03 0.21 0.21 0.21 0.21
Glu-6-P 1.23 1.24 1.24 1.24 1.21 1.22 1.23 1.23 0.95 0.95 0.95 0.95
F-1,6-P 10.41 10.43 10.44 91.01 10.29 10.38 10.40 10.42 2.05 2.05 2.05 2.05
PEP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.09 0.09 0.09 0.09
ATP 1.42 1.43 1.43 1.43 1.40 1.41 1.42 1.42 1.29 1.29 1.29 1.29

Steady-state values for fluxes (mM min−1) corresponding to the different optimum
VATP 336.1 673.8 1011.5 1348.9 332.8 670.2 1008.2 1345.9 63.4 63.4 63.4 63.4
VTRE 0.00027 0.00027 0.00028 0.00028 0.00027 0.00027 0.00027 0.00027 0.00022 0.00022 0.00022 0.00022
VNADPH 0.36 0.36 0.36 0.36 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68
VGLY 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 1.33 1.33 1.33 1.33
VETHANOL 168.0 336.9 505.8 674.6 166.3 335.2 504.1 672.9 31.9 31.9 31.9 31.9

The different scenarios are defined by allowing a maximum fold change increase for any of the enzymes of 5, 10, 15, and 20-fold. Optimal enzyme patterns are obtained
without any other restriction (left) and with a maximum allowable change in the rate of NADPH synthesis of 5% about its basal value (center) and a maximum allowable
change in the rate of NADPH and ATP synthesis of 5% about its basal value (right). Steady-state values of metabolites and relevant fluxes resulting from the optimal change
are also shown for comparison.
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Fig. 3. Feasibility analysis of the maximum ethanol production when only HXT (k1) and PFK (k3) are allowed to change. Values inside the left tables indicates optimum
ethanol production within each cell. Cells are defined by the values of k1 and k3 indicated in the right tables. In each case, the minimum and maximum value defining each
cell are shown in those tables. Color code shows the decreasing ethanol production that can be attained in different conditions. Blue color and 0 values indicate unfeasible
combinations. (a) Optimization constrained to prevent an accumulation of intermediary metabolites that is over 10 times their basal value. (b) Optimization constrained to
prevent an accumulation of intermediary metabolites that is over 10 times their basal value and a change in the production of NADPH that is larger than 5% about the basal
value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

When no restriction is considered (Table 3 left), with a 20-fold
change one can reach a velocity of 674.6 mM min−1 that is much
higher than the basal value of 30.0 mM min−1. While HXT, PFK, PYK,
and ATPase should increase 20-fold, GLK and TDH require a lower
increase. In all four scenarios, optimization of ethanol production
should require lowering TPS, G6PDH, and GOL activities. Imposing
limits on the changes of NADPH production leads to a similar result,
but now the activity of G6PDH is almost unchanged (Table 3 cen-
ter). It is important to stress that in all the cases the synthesis of ATP
increases by a large amount, from a basal value of 46.07 mM min−1

to 1348.9 mM min−1 when the maximum fold change allowed is 20.
If we restrict both the increase in NADPH and ATP production, then
the maximum attainable ethanol production drastically decreases
(Table 3 right).

In the previous examples, all the enzymes were allowed to
change. A more realistic approach that could be translated into
wet lab experiments should analyze the practical possibilities
of increasing ethanol production when only a small number of
enzymes are changed. For illustrative purposes, based on the previ-
ous analyses of this problem (Guillén-Gosálbez and Sorribas, 2009;
Polisetty et al., 2008; Vilaprinyo et al., 2006), we select HXT and
PFK. We shall maintain all the other enzymes fixed at their basal
activity. As we are looking for solutions that do not compromise
cell viability, we shall enforce the condition that all the internal
metabolites should not change more than 10-fold from their basal
values (Polisetty et al., 2008). Under such constrains, the maximum
rate of ethanol production that can be obtained in the model is
100.52 mM min−1 (Fig. 3a).

Now, we will obtain the feasibility region under the same con-
strains. This is an alternative to just finding the optimal solution
and it may help in discussing the changes that can be implemented
in practice. First, we obtain the feasibility region without limita-
tion in additional fluxes. In this case, the feasibility region has
admissible ranges between 0.21 and 5.38 for changing HXT, and
a range between 0.2 and 15 for PFK. Outside these limits, no fea-
sible solution can be obtained (Fig. 3a). While it is reasonable to
expect that ethanol production would increase by increasing HXT,
our results show that increasing simultaneously HXT above 4.86-

fold and PFK above 3.16-fold (cell number 9 for HXT and cell 3
for PFK in Fig. 3a) leads to unfeasible solutions. This is so because
intermediary metabolites would accumulate and the fitness of cells
would decrease. Thus, a biotechnological implementation of a 5-
fold change in HXT and a 5-fold change in PFK is expected to result
in a failure in producing a viable strain. Our results also show that
near optimum increases in ethanol production can be obtained in
different conditions. As far as HXT activity is increased a minimum
of 6.12-fold, we can obtain an almost optimal ethanol increase with
different increases in PFK activity. For instance, we could decide a
3-fold increase in PFK and an 8-fold increase in HXT to obtain an
almost optimal solution.

Planning a biotechnological strategy for increasing the produc-
tion of a given metabolite must consider all the implications of the
planned changes in the overall cellular metabolism. As a second
scenario, we have determined the feasible solutions by imposing
the additional constraint of maintaining the rate of NADPH within
a 5% of its basal level (Fig. 3b). Now, the feasible region has been
drastically reduced and the possible increase in ethanol produc-
tion is almost minimal when compared to its basal value. Thus, in
those cases in which maintaining the rate of NADPH unchanged is
an important limitation, it is impossible to find a strategy involving
changes in HXT and PFK capable of producing a significant increase
in ethanol production (Fig. 3b).

These results show the potential application of our feasibility
analysis in practical applications. Following this procedure, we can
efficiently obtain an overall picture of the attainable values and a
clear estimation of the unfeasible changes. This may help in dis-
cussing the most convenient implementation and the expected
increase one would obtain in the objective function.

3.4.3. Feasible regions for the adaptive response to heat shock in
yeast

Understanding the evolution of adaptive responses was the
main motivation for developing the feasibility method (Guillén-
Gosálbez and Sorribas, 2009). As stated before, the goal of the
feasibility analysis is to obtain admissible values for enzyme activ-
ity changes that drive the model to a new state in which a set of



Author's personal copy

A. Sorribas et al. / Journal of Biotechnology 149 (2010) 141–153 149

constraints are satisfied. Here, two fundamental ingredients are
required. First, we need a mathematical model that is accurate
enough to represent the biological problem at hand. Second, a set
of constraints must be defined, so that changes in enzyme activity
can be evaluated for compatibility.

Both issues pose significant challenges. Useful mathematical
models are hard to build and, in most cases, parameters values
for those models are difficult to obtain. This limitation is common
to any application as discussed in the optimization section. Find-
ing a set of constraints for the response is not an easy task either,
and a sound biological understanding of the problem is required.
As an example of the potential use of the methodology presented
here, we consider the model presented in Fig. 2. First, we shall
perform a feasibility analysis taking into account the set of con-
straints C1–C6 suggested by Vilaprinyo et al. (2006) (see Table 4).
These constraints were identified and used for a previous analysis
of operating principles in the adaptive response of yeast to heat
shock.

Taking these constrains into account, we first find the upper
and lower admissible values for changing each enzyme. Mathe-
matically, this corresponds to performing a bound contraction on
some continuous variables of the non-convex problem. Specifically,
those limits are obtained by solving an optimization problem that
finds the maximum and minimum values of a given ki for which
admissible solutions are found. Results are shown in Fig. 4a. These
results are a generalization of those in Fig. 2(D) in the paper of
Vilaprinyo et al. (2006). As we are now using a systematic search,
our results include those obtained previously by intensive compu-

Table 4
Physiological constraints for the feasibility analysis (see Vilaprinyo
et al., 2006 for details).

Constraint Value

C1 VATP > 180.6 mM min−1

C2 VTRE > 0.03 mM min−1

C3 VNADPH > 3.54 mM min−1

C4

Internal glucose > 0.04 mM
G6P < 20.22 mM
F16P < 22.86 mM
PEP < 0.01 mM
ATP < 6.77 mM

C5 Cost < 12.06
C6 VGlycerol > 0.39 mM min−1

See Vilaprinyo et al. (2006) for details.

tations and are slightly wider as the previous analysis was done
by considering only a set of discrete values. Furthermore, by using
the new procedure, computational time is dramatically reduced to
seconds.

In Fig. 4b, we plot the activity profiles corresponding to differ-
ent experimental measurements (see details in Table I of Vilaprinyo
et al., 2006). Note that all the experimental results are within the
predicted values. Imposing two extra constraints (C7–C8) on the
changes in PFK and TPS relative to the rate of trehalose synthe-
sis (� = (�PFK × �TPS)/vTRE, � < 100), and a minimum value of
F-1,6-P of 8.16, (criteria C7, C8 in Vilaprinyo et al., 2006), the lim-
its for PFK are drastically reduced (Fig. 4c), although the resulting

Fig. 4. Result of the bound contraction procedure. In each case, the maximum and minimum admissible change folds for each enzyme are indicated. (a) Bounds with C1–C6

(Table 5), (b) experimental data plotted to show they are located in the admissible region found in (a), (c) Bounds with C1–C8 (see text for the definition of criteria C7 and
C8), (b) experimental data plotted to show they are located in the admissible region found in (c). Experimental data are those of Tables 1 and 2 in Vilaprinyo et al. (2006).
The search regions allowed for the change-fold in each enzyme are shown in Table 6.
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Fig. 5. Feasibility regions for a simultaneous change in two enzymes. In each case, all the other enzymes can change to compensate and make the changes compatible with
the constraints C1–C6. Red rectangle identifies the limit for changing a given enzyme. For instance, in the case of PFK we have considered changes between 0.2 and 4. These
conditions are the same considered in Vilaprinyo et al. (2006) and are maintained here for comparison. Red rectangles indicate admissible solutions. White regions are
unexplored in that example. Blue points indicate experimental values described in Table 1 of Vilaprinyo et al. (2006). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)

bounds still contain the observed results (Fig. 4d, see also Fig. 2(E)
in Vilaprinyo et al., 2006).

The complete results of performing the feasibility analysis are
presented in Fig. 5. As indicated above, we first obtain the limits for
admissible solutions taking into account criteria C1–C6 and specific
limits imposed on the allowable fold changes in each enzyme based
of experimental results (Table 5). For clarity, in Fig. 5 we show one-
by-one figures that show the simultaneous feasibility regions for
two particular enzymes. It can be seen that some enzyme activities

Table 5
Limits for the fold change in the different enzymes in the
feasibility analysis of Fig. 5.

Enzyme Explored fold change

HXT 1 < k1 < 10
GLK 1 < k2 < 19
PFK 0.25 < k3 < 4
TDH 0.25 < k4 < 6
PYK 0.25 < k5 < 20
TPS 1 < k6 < 19
G6PDH 1 < k7 < 8

These limits were defined considering experimental results.
In each, a wide region around the values observed after heat
shock are selected (see Vilaprinyo et al., 2006 for details).

can take a wide range of values within their allowable boundaries,
while still fulfilling the imposed constraints. This is the case for TPS
and GLK. For other enzymes, feasible changes are more restricted.
For example, PFK and TDH cannot increase by more than 5-fold
their basal values. Outside this range, the system cannot compen-
sate the changes and the constraints are not met. This is also the case
for PFK and PYK. Feasible solutions for changes in both enzymes are
obtained only in a relatively narrow margin. Interestingly, experi-
mentally measured changes from different experiments are found
to be within the feasibility regions identified by our method (see
Vilaprinyo et al., 2006 for details). This is consistent with the notion
that the set of constraints defined for the response are relevant for
the physiological adaptation of yeast.

3.4.4. On the importance of an appropriate set of constraints
The set of initial physiological constraints that are applied to the

optimization procedure play a fundamental role in the feasibility
analysis. Different sets of constraints are likely to produce differ-
ent feasibility regions. The situation is exemplified in Fig. 6. Each
of the represented regions would correspond to different sets of
constraints. In this hypothetical situation, regions (1), (2), and (4)
contain experimental results, while (3) and (5) do not. Thus, the
constraint sets leading to regions (3) and (5) could be discarded
as explanatory physiological constraints for that case. Constraints
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Fig. 6. Hypothetical feasibility regions obtained from five different sets of con-
straints. Points represent experimental results on fold change for enzymes Ei and Ej
in a given adaptive response (see text for details).

producing region (1) should be considered more restrictive than
those of (2), although both explain the observed result. Finally, the
set of constraints that produce region (3) partially explain some
results but not others. In principle, this set of constraints would be
less appropriate to describe the physiological requirements of the
response than sets (1) and (2).

How would changing constraint sets affect the results in our
analysis of yeast heat shock response? As an example, we have
considered an alternative set of constraints to those used above
(compare Tables 4 and 6). For illustrative purposes, in feasibility
analysis using constraints from either Table 4 or Table 6, the activity
of any enzyme is allowed to change between 0.2 and 20-fold. For
simplicity, only the results for PFK, TDH and PYK are shown in Fig. 7.
The two sets of constraints result in different feasibility regions
that share some common values. Interestingly, the feasibility region
obtained with the new set of constraints does not contain all the
experimental values (see Table 1 in Vilaprinyo et al., 2006). This
suggests that this second set of constraints does not adequately
describe the physiological requirements that may have shaped the
adaptive response of yeast to heat shock.

Table 6
Alternative set of constraints for evaluating heat shock response
in yeast.

Constraint Value

C1 VATP > 5B
C2 VTRE > 30B
C3 VNADPH > 5B

C4 3B < internal glucose < 5B
15B < G6P < 20B
2B < F16P < 5B
2B < PEP < 5B
3B < ATP < 6B

C5 Cost < 20
C6 VGlycerol > B

B indicates de corresponding basal value (Tables 1 and 2) for the
flux or metabolite considered in each criterion.

4. Discussion

Understanding why metabolic pathways evolved to be as they
are and how to optimize them are two closely related subjects.
Studies in either field often use similar tools to compute the
response of the whole system to changing conditions.

In optimization problems, control variables are manipulated by
the experimenter and a predefined goal is pursued. This is often the
case in metabolic engineering studies, where the general goal is that
of modifying cells so that specific production targets can be reached
(Hatzimanikatis et al., 1998). Typically, one considers optimizing
the yield of a given process, maximizing flux through a pathway,
etc. Then, optimization procedures are used on a mathematical
model for the relevant processes in order to analyze which changes
are the most likely to produce the desired result (Gianchandani
et al., 2008). There is a wide scope of optimization methods that
can be used for this task, based on different optimization strate-
gies (Banga, 2008; Chang and Sahinidis, 2005; Marin-Sanguino et
al., 2007; Nielsen, 2007; Polisetty et al., 2008; Schuetz et al., 2007;
Vital-Lopez et al., 2006).

In evolutionary studies, however, we are faced with conserved
changes that can appear in organisms by random mutations, by
gene transfer, gene duplication, gene deletion, and other mecha-
nisms. Natural selection may operate as a purifying mechanism that
acts upon the systemic effect of these changes on the overall fitness

Fig. 7. Feasibility analysis obtained with two different sets of constraints. Constraint set 1 correspond to Table 5, constraint set 2 to Table 6. In both cases, enzymes are
allowed to change between 0.2 and 20-fold over basal. Blue points indicate experimental measurements as presented in Table 1 of Vilaprinyo et al. (2006).
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and leads to the fixation of new designs and operative patterns in
a population, due to the differential reproduction of individuals.
As a result, organisms often evolve towards some quasi-optimal
regime under the conditions they live in. Such regime however may
become quite sub-optimal if conditions change drastically. Those
changes could lead to a new round of natural selection, this time
with different physiological constraints. Thus, evolution in natural
systems can be seen as a perpetual optimization-like process, with
the parameter conditions that maximize survival and reproduction
shifting over time.

In fact, one of the biggest current problems in this area is how to
establish a connection between what researchers see as the actual
functioning conditions of the molecular pathways that allow a cell
to perform appropriately and the fitness of that cell. Causative
genotype phenotype models (Martens et al., 2009; O’Connor and
Mundy, 2009) are but a start in connecting the optimization of
the molecular determinants of life and the fitness of organisms.
We hypothesize that adaptive responses are to be found within
feasible regions that allow the system to meet a set of physiologi-
cal constraints that are required for cell survival (Guillén-Gosálbez
and Sorribas, 2009; Vilaprinyo et al., 2006). The numerical thresh-
olds considered in these constraints would shape the admissible
changes in the system parameters so that the effect on global fitness
can be sensed by natural selection. As a result, a specific adaptive
response would evolve. Future work should deal with connecting
the molecular aspects of the adaptive response to the direct survival
ability.

From a practical point of view, there is a set of considerations
that should be taken into account in optimization related stud-
ies of biological problems at the pathway level: (1) a model that
can be used to compute fluxes, metabolite levels, the effect of
changes in parameters, dynamic response, etc., is required; (2)
stoichiometry-based models, such as Flux Balance Analysis mod-
els, are not sufficiently accurate to be used for characterizing
quantitative changes. This is so because they do not account for
regulatory interactions within the network and cannot be used
to accurately calculate metabolite levels, dynamic changes, and
other quantitative information (Nikolaev, 2009); (3) models that
include information about the regulatory signals are essential for an
accurate analysis; (4) kinetic information, even if it is only approx-
imated, is required to define a quantitative model that may help
in the analysis. Because of (4), at present we are still unable to
create genome-wide models for metabolism, because not enough
information is available. However, the obtained results show the
importance of developing GMA-like models as a basis for a more
complete analysis of system optimization and evolution. In this
paper we have presented a methodology designed to address
important practical questions, both in metabolic engineering appli-
cations and in studies of pathway evolution, through the use of a
global nonlinear optimization technique and the characterization
of feasibility regions. Although linear global optimization methods
had been used before to search for survivability regions in Flux Bal-
ance Analysis models, those studies have the limitations described
in points (1)–(4) of the previous paragraph. Our methodology over-
comes those limitations and it can be applied to a special class of
nonlinear differential equations models known as GMA models.3

If such a model is defined for a given metabolic problem, then our
method allows for an exhaustive exploration of different evolution-
ary strategies and a systematic characterization of the physiological
requirements that may underlie the evolution of adaptive strate-
gies.

3 It should be noted that ODE models written using other mathematical forms can
be recasted into GMA models, increasing the generality of the method presented
here.
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