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ABSTRACT: The identification of the enzymatic profile that achieves a maximal production rate of a given metabolite is an
important problem in the biotechnological industry, especially if there is a limit on the number of enzymatic modulations allowed.
The intrinsic nonlinear behavior of metabolic processes enforces the use of kinetic models, such as the generalized mass action
(GMA) models, giving rise to nonconvex MINLP formulations with multiple local solutions. In this paper, we introduce a
customized spatial branch-and-bound strategy devised to solve efficiently these particular problems to global optimality. A tight
MILP-based relaxation of the original nonconvex MINLP is constructed by means of supporting hyperplanes and piecewise linear
underestimators. The overall solution procedure is expedited through the use of bound tightening techniques and a special type of
cutting plane. The capabilities of the proposed strategy are tested through its application to the maximization of the citric acid
production in Aspergillus niger. We also provide a numerical comparison of our algorithm with the commercial package BARON and
an outer approximation-based method earlier proposed by the authors.

1. INTRODUCTION

Cellular and molecular biology has experienced a dramatic
paradigm switch driven by the introduction of new technological
and computational tools. This change has led to a wide accep-
tance of networks and their emergent properties as a central
subject for understanding the evolution of cell metabolism. The
emergence of systems biology as a discipline based on high
throughput experimental techniques, bioinformatics methods,
and mathematical modeling is the result of these advances. One
of the consequences of this activity is a renewed interest in
biotechnological applications that ranges from industrial pro-
ducts based onmodified organisms to the possibility of designing
new organisms.1-4

Cellular metabolism is a complex system that involves a huge
number of components interacting in a dynamic way through
nonlinear processes. This makes biological systems much more
challenging than human designed factories and industrial products.
In most problems, appropriate simplifications are required to grasp
part of this complexity and to obtain practical results both in
understanding the evolutionof emergent properties and inpredicting
systems responses to experimental manipulation.5-7

Advances in molecular biology techniques have made it
possible to modulate the expression of genes in a given organism
in order to obtain strains with enhanced phenotypes.8,9 Being
able to improve the yield through modified strains is a crucial
aspect for successful biotechnological applications. However, the
intrinsic complexity of metabolic networks makes an intuitive
inference of the most promising genetic changes a highly difficult
(if not impossible) task. Henceforth, systematic optimization
tools are required for improving metabolic engineering so that
biotechnological applications can be made useful and affordable.

Optimization is not at all a new concept in biology.10-13 It is
clear that mathematical programming approaches offer a

promising framework for analyzing mathematical models of
biological systems in a systematic way, shedding light on the
strategies that must be followed in order to improve their
properties.9,12,14-16 In particular, one of the areas in which
systematic tools based on mathematical programming hold good
promise is the analysis and manipulation of metabolic networks
through gene expression modification.17-20 From the point of
view of industrial applications, the use of optimization methods
in systems biology applications has gained wider interest.9 Be-
sides their application in increasing the yield of specific products,
these techniques have also been used to explain the current
adaptive responses of organisms and to predict the properties of
new designs.9,21,22

While existing optimization techniques may be of some help,
the complexity of cellular metabolism requires the development
of global optimization methods that could be applied to these
kinds of nonlinear problems. With these techniques, one expects
that actual biological processes could be further improved by
identifying quantitative operation principles that would help in
deciding which genes should be modified and which is the
optimal profile for obtaining a given goal. The fact that biological
experiments are expensive and time-consuming9 coupled with
the usefulness of computational techniques when modeling
metabolic networks23 contributes to increasing the attractiveness
of developing appropriate optimization approaches to address
these problems.
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Flux balance analysis attempts this prediction by the optimiza-
tion of stoichiometric models.24 This approach leads to mixed-
integer linear problems (MILP) that can be effectively solved by
standard branch-and-bound techniques. This has been the main
key of their success in different applications.25-30 Unfortunately,
this technique fails to capture the regulatory relationships that
commonly exist between processes in metabolic networks.31

These limitations can be overcome by resorting to kinetic
metabolic models that account for the relationship between the
concentration of metabolites and the fluxes in the network.
Specifically, nonlinear kinetic expressions are preferred, as linear
estimations have been found to be only valid for a narrow range
around the approximation point.8

Among the available formalisms, models based on the power-
law formalism in the variant form known as generalized mass
action (GMA from here on) exhibit some particular advantages
that make their application rather convenient.32-37 For instance,
as will be explained in detail later in the paper, they can
adequately capture the nonlinear behavior of the metabolic
regulations while exhibiting some linear properties when ex-
pressed in the logarithmic space. Furthermore, they are able to
describe any particular metabolic network37 what grants the
generality of the framework presented herein. On the other hand,
this approach gives rise to nonconvex models and, hence, to
multimodality (i.e., existence of multiple solutions).9 It should be
emphasized that guaranteeing global optimality is of paramount
importance in this type of problem, as a local optimal solution
may lead to a completely different physical interpretation and
objective function value than that associated with the global
optimum, thus hampering the entire biological analysis.38

Global optimization addresses the computation and charac-
terization of global optima (i.e., minima and maxima) of non-
convex functions constrained in a specified domain.39 It has been
the object of intense research during the past 15 years, but it is
expected to continue as a major challenge in nonlinear optimiza-
tion in the upcoming years.40

Global optimization approaches can be classified into stochas-
tic or deterministic ones. Stochastic methods are nondetermi-
nistic approaches (i.e., they cannot guarantee global optimality)
that make use of meta-heuristics in order to guide the search for
“good” solutions from a series of pseudorandom generated
points. These methods are often based on physical and biological
analogies. On the other hand, deterministic methods are rigorous
and, thus, can guarantee global optimality within a desired
optimality gap. These methods rely on the calculation of a series
of valid upper and lower bounds for the global optimum of the
problem that approach each other during the execution of the
algorithm until the optimality gap is reduced below a predefined
tolerance. Among the different methods that may be included in this
group, the most commonly used are the outer-approximation
(OA)41 and the spatial branch-and-bound (B&B) methods.42-46

In OA, the original problem is decomposed into two different
subproblems at two different hierarchical levels: a master lower
bounding problem and a slave upper bounding problem. The
former is a relaxation of the original problem (i.e., it over-
estimates the feasible region of the original problem) that
provides lower bounds on its global optimum. The latter entails
the solution of the original problem in a reduced search space. In
each iteration, the solution of the master problem is used as a
starting point to solve locally the slave problem in a reduced
search space (i.e., bounds are provided to some variables
according to the solution of the master problem). If the

optimality gap is found to be within a given tolerance, the
algorithm terminates. Otherwise, the relaxation of the master
problem is improved (i.e., is tightened) at the expense of
introducing more variables.

On the other hand, in the spatial branch-and-bound (sBB here
on; do not confuse with the MINLP solver sBB that implements
a nonlinear branch and bound) method, the original problem is
allocated in the root node of an exploration tree. Lower and
upper bounds for the problem are compared, and if the desired
tolerance is not met, the problem is split into two smaller
subproblems (descendants) by partitioning the feasible space
of a continuous variable (branching variable). Then, the two new
problems are solved, if required, by recursive partitioning. If a
node is proved not to contain the global optimum, then the
associated branch in the sBB tree can be pruned. At the end, the
global optimal solution is to be found in one of the subproblems
derived during the process. This method is based on the idea of
“divide and conquer” as each of the subproblems is smaller, and
thus easier to solve, than the original one.

Multiple methods have been devised so far as variations from
the original sBB. These methods include branch-and-reduce,47,48

RBB,49-54 symbolic reformulation,38,55,56 reduced-space branch-
and-bound,57 branch-and-contract,58 and the branch-and-cut
framework proposed by Barton.59 Some interval arithmetic
global optimization methods60-62 are sBB-like methods.63 It
has been observed that the performance of global optimization
methods is highly dependent on the type of nonlinearities.8

Henceforth, by exploiting the special mathematical structure of
the problem under investigation,64,65 it is possible to devise
tighter relaxations that lead to faster algorithms.66

The application of global optimizationmethods to the analysis
of metabolic networks that are described though nonlinear
models (e.g., GMA formalism) has been scarce. Polisetty et al.67

were the first ones to address this problem. In their work, they
present a B&B procedure to identify the enzymes to be modified
for efficiency in yield and cost. Later, Pozo et al.68 proposed an
outer-approximation algorithm that improved the method by
Polisetty in terms of quality of the solutions provided (i.e.,
significantly smaller optimality gaps) and CPU time. The authors
also presented a rigorous theoretical analysis on the construction
of tight piecewise approximations and supporting hyperplanes.
This method was also used to study the evolution of the cellular
metabolism.21,22

In this work, we present a novel sBB method for the global
optimization of metabolic networks that are modeled via the
GMA formalism. Our computational procedure exploits the
specific structure of the GMA models in order to construct tight
MILP-based relaxations of the original nonconvex formulation.
These linear relaxations are tightened through the use of a special
type of cutting planes that are derived from some equations of the
model. The sBB method is further expedited by tailored-made
branching rules and bound contraction procedures based on
interval analysis. The capabilities of this customized sBB are
tested through a case study that addresses the optimization of
citric acid production by Aspegillus niger. The results produced by
our algorithm are compared with those generated by an outer
approximation-based method introduced by the authors in
previous works and also with the commercial global optimization
package BARON.21,22,68

The paper is organized as follows. The problem is presented in
section 2, and its mathematical formulation is proposed in
section 3. The customized sBB is described in detail in section
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4, whereas section 5 contains some numerical results. Finally, in
section 6, we discuss some particular issues about the perfor-
mance of the proposed methodology and its implementation.

2. PROBLEM STATEMENT

A metabolic network (Figure 1) is composed of a set of
reactions and transportation processes (represented by arrows in
the figure), generally ruled by enzymes, which transform organic
substrates into metabolic intermediates and energy compounds
(i.e., metabolites, in general). Some of these metabolites
(represented by boxes in the figure) can also inhibit or facilitate
some processes in the metabolic network. For instance, M4
inhibits P2 and M1 facilitates P5 in the figure.

The problem under study is the determination of the levels of
the enzymes activities that maximize the synthesis rate of a
particular metabolite in a metabolic pathway. The GMA repre-
sentation is used to model the metabolic network behavior
assuming steady state conditions. It is considered that all model
parameters are deterministic in nature (i.e., perfectly known in
advance without any variability). These parameters include the
stoichiometric coefficients of the chemical reactions and the
transportation processes, as well as the rate constants and kinetic
orders of the power-law formalism describing these processes.

Under these conditions, we aim to customize a sBB global
optimization method that may improve our previous results for
this class of models. Due to the canonical representation
provided by the GMA modeling strategy, this goal is of para-
mount importance for practical biotechnological applications.

3. MATHEMATICAL FORMULATION

The optimization problem is mathematically formulated as a
MINLP, in which continuous variables denote metabolite con-
centrations and velocities, and binary variables model the
changes in the enzyme levels. We first present the GMA
formalism and then introduce the overall MINLP formulation.
3.1. GMA Representation. The concentration X of every

single metabolite i present in the metabolic network can be
determined at a particular time t from the p flows of the network:

dXi

dt
¼ ∑

p

r¼ 1
μirvr i ¼ 1, :::, n ð1Þ

In eq 1, the stoichiometric coefficient, μir, accounts for the
number of molecules of metabolite i that are involved in process
r. Hence, it is an integer parameter that is positive if process r
contributes to the synthesis of metabolite i, negative if it depletes
the concentration of i, and zero if process r does not directly
influence the concentration of metabolite i. The velocity at which
process r occurs, which is denoted by vr, is described by a kinetic

equation. In GMA models, the so-called power-law
formalism69-71 is the kinetic equation of choice (eq 2).

vr ¼ γr
Yn þ m

j¼ 1

X
frj
j r ¼ 1, :::, p ð2Þ

Here, γr is the basal state activity of the enzyme governing process r,
whereas frj is the kinetic order of metabolite j in process r. This
representation accounts for the m external (i.e., independent)
metabolites, whose concentration is constant throughout the process
(Xj = constant, j = nþ 1, ..., m). By introducing eq 2 into eq 1 and
removing the time dependence (we are interested in solving the
steady state for which dXi/dt= 0 applies), a completeGMAmodel as
in eq 3 is obtained.

∑
p

r¼ 1
ðμirγr

Yn þ m

j¼ 1

X
frj
j Þ ¼ 0 i ¼ 1, :::, n ð3Þ

3.2. MINLP Formulation. Since genetic manipulations will
take place on an unmodified strain (i.e., at its basal state), it is
convenient to express the optimal enzyme activities as a fold-
change Kr over their basal state levels γr. According to this, we
can rewrite eq 2 as follows:

vr ¼ Krγr
Yn þ m

j¼ 1

X
frj
j r ¼ 1, :::, p ð4Þ

Here, Kr is a positive continuous variable that will take the value
of 1 at the basal state (i.e., when the enzyme levels are not
manipulated). Furthermore, Kr > 1 indicates overexpression of
enzyme r, and Kr < 1 denotes its inhibition. This variable is
allowed to change between given bounds, Kr

LB and Kr
UB as stated

in eq 5.
KLB
r e Kr e KUB

r r ¼ 1, :::, p ð5Þ
The number of enzymes that can be modified at a time is

constrained to be lower than an upper limit. The motivation for
this is that a large number of genetic manipulations might be
impractical. This is modeled through a disjunction that deter-
mines whether a specific enzyme is modified or not:

Yr1
KLB
r e Kr e 1- δ

" #
∨ Yr2

1- δ e Kr e 1þ δ

" #

∨ Yr3
1þ δ e Kr e KUB

r

" #
Yr1, Yr2, Yr3 ∈ fTrue, Falseg

r ¼ 1, :::, p ð6Þ
Here, δ is a sufficiently small parameter (i.e., numerical results
shown in this work were obtained using a value of 5� 10-7), and
Yr is a Boolean variable that is true if the associated term of the
disjunction is satisfied and false otherwise. The disjunction in
eq 6 can be reformulated into linear inequalities by applying
either the Big-M or convex hull reformulations.72,73 The latter,
known to provide a relaxation at least as tight as the former,72

gives rise to eqs 7-11.

Kr ¼ Kr1 þ Kr2 þ Kr3 r ¼ 1, :::, p ð7Þ

KLB
r yr1 e Kr1 e ð1- δÞyr1 r ¼ 1, :::, p ð8Þ

Figure 1. Example of a generic metabolic network, where processes are
represented by arrows and metabolites by boxes.
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ð1- δÞyr2 e Kr2 e ð1þ δÞyr2 r ¼ 1, :::, p ð9Þ

ð1þ δÞyr3 e Kr3 e KUB
r yr3 r ¼ 1, :::, p ð10Þ

yr1 þ yr2 þ yr3 ¼ 1 r ¼ 1, :::, p ð11Þ
These equations enforce the definition of the binary variables

yr1, yr2, and yr3, which take the value of one if the corresponding
term of the disjunction holds true and zero otherwise. These
binary variables are then used to define an upper bound ME on
the total number of enzymes that can be modified as follows:

∑
p

r¼ 1
yr1 þ ∑

p

r¼ 1
yr3 e ME ð12Þ

Typically, metabolite concentrations will be allowed to change
within given bounds (XLB and XUB, respectively):

XLB
i e Xi e XUB

i i ¼ 1, :::, n ð13Þ
Generally, the objective of these problems is to maximize the

synthesis rate of the desired product (note that any other
objective function could be evaluated if required). For the sake
of simplicity, we pose the problem as a minimization one by
reversing the sign of the objective function:

min - ∑
p

r¼ 1
μirνr ð14Þ

Recall that only the velocities involved in the production of the
desired metabolite must be considered in eq 14. The resulting
MINLP that embeds the GMA equations can be expressed in
compact form as follows:

ðOMINLPÞ min -∑
p

r¼ 1
μirvr

s:t: eqs 1; 4; and 7-13

Model OMINLP [note that the authors have uploaded a
similar model to ref 74] seeks the appropriate changes in the
enzyme activities (continuous variables) that maximize the
synthesis rate of the desired product. The enzyme activities
calculated by themodel can be implemented in the real system by
tuning the expressions of the corresponding genes. Note that
when the number of simultaneous modifications is not limited
(recall that in our case it is), we can drop the binary variables,
which gives rise to a nonconvex NLP problem.
Constraints in OMINLP define a nonconvex search space

where multiple local optima may exist. Hence, in order to solve
OMINLP to global optimality, we must resort to global optimi-
zation techniques.

4. SOLUTION STRATEGY

In this section, we present our customized sBB method for
solving problem OMINLP to global optimality. This method
makes use of a MILP-based linear relaxation of the nonlinear
equations present in theMINLP formulation.We first describe in
detail the way in which this relaxation is constructed before
presenting the particularities of the sBB algorithm.
4.1. Relaxed Subproblem. In order to build a linear relaxation

of OMINLP, we introduce two new auxiliary variables, kr and xi,
that are defined by an exponential transformation as follows:

Kr ¼ exp kr r ¼ 1, :::, p ð15Þ

Xi ¼ exp xi i ¼ 1, :::, n ð16Þ

These variables replace the original ones, Kr and Xi, appearing
in eq 4, thus giving rise to eq 17.

vr ¼ ðexp krÞγr
Yn þ m

j¼ 1

ðexp xjÞfrj r ¼ 1, :::, p ð17Þ

Let p(i) denote the number of velocity terms explicitly expressed
in the mass balance of metabolite i, that is, for which μir 6¼ 0.
Velocities vr appearing only in instances of eq 1 with p(i) = 2 are
next transferred to linear constraints by introducing eq 17 into
eq 1 and taking logarithms as follows:

0 ¼ μirνr þ μir0vr0

μirðexp krÞγr
Yn þ m

j¼ 1

ðexp xjÞfrj ¼ - μir0 ðexp kr0 Þγr0
Yn þ m

j¼ 1

ðexp xjÞfr0 j

lnðμirÞ þ kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj ¼ lnð-μir0 Þ þ kr0

þlnðγr0 Þ þ ∑
n þ m

j¼ 1
fr0jxj " ijpðiÞ ¼ 2 ð18Þ

Recall that when the concentration of a metabolite is only
determined by two processes, the stoichiometric coefficient of
one of themmust be negative, and hence, no domain violation for
the logarithmic function can occur in eq 18.
On the other hand, when vr appears in at least one instance of

eq 1 with more than two terms (i.e., p(i) g 3), we make the
following changes. We reformulate eq 4 by taking logarithms in
both sides of the constraint:

lnðvrÞ ¼ kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj " r ∈ rlin ð19Þ

In this equation, rlin denotes the set of velocities r that are
linearized by this process. In mathematical terms, r ∈ rlin⊂{r}S
$i|μir 6¼ 0∧p(i) g 3.
The right-hand side of eq 19 is now linear, but the logarithm in

the left-hand side gives rise to a nonconvex search space. To
linearize this nonconvex term, we reformulate the equation into
two inequalities (eqs 20 and 21) and replace their left-hand sides
with linear estimators.75

lnðvrÞ g kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj " r ∈ rlin ð20Þ

lnðvrÞ e kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj " r ∈ rlin ð21Þ

The left-hand side of equation eq 20 can be overestimated by L
supporting hyperplanes, which are first-order Taylor expansions
of the natural logarithm defined at L linearization points vr

l within
the domain [vr

LB,vr
UB].

ln vr e ln vlr þ
1
vlr
ðvr - vlrÞ " r ∈ rlin l ¼ 1, :::, L ð22Þ
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By combining eq 22 with eq 20, we obtain the following linear
constraint (eq 23):

ln vlr þ
1
vlr
ðvr - vlrÞ g kr þ lnðγrÞ

þ ∑
n þ m

j¼ 1
frjxj " r ∈ rlin l ¼ 1, :::, L ð23Þ

Note that the quality of the relaxation depends on the number of
linearizations added to the model.
On the other hand, the logarithmic term ln vr in eq 21 is

underestimated by means of a piecewise linear function76-78

defined over H subintervals within the domain [vr
LB,vr

UB] as
follows:

ln vr g

a1r vr þ b1r v1r e vr e v2r
a2r vr þ b2r v2r e vr e v3r

...

ahr vr þ bhr vhr e vr e vh þ 1
r

...

aHr vr þ bHr vHr e vr e vH þ 1
r

8>>>>>>>>>>><
>>>>>>>>>>>:

ð24Þ

where ar
h and br

h are the coefficients of the straight line that is
active in the hth interval defined by the limits vr

1 = vr
LB and vr

Hþ1 =
vr
UB. This can bemodeled as a disjunction with h terms as follows:

∨H
h¼ 1

Zh
r

vhr e vr e vh þ 1
r

ahr vr þ bhr e kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj

2
66664

3
77775 "r ∈ rlin

Zh
r ∈ fTrue, Falseg

ð25Þ
Here, the Boolean variable Zr

h indicates whether the hth interval
of the rth velocity is active or not. The last equation inside the
disjunction is obtained by combining eq 21 and eq 24. The
disjunction in eq 25 can be translated into linear equations
through the convex hull reformulation.

vr ¼ ∑
H

h¼ 1
vhhr " r ∈ rlin ð26Þ

vhr z
h
r e vhhr e vh þ 1

r zhr " r ∈ rlin h ¼ 1, :::,H ð27Þ

∑
H

h¼ 1
zhr ¼ 1 " r ∈ rlin ð28Þ

∑
H

h¼ 1
ðahr vhhr þ bhr z

h
r Þ e kr þ lnðγrÞ þ ∑

n þ m

j¼ 1
frjxj " r ∈ rlin

ð29Þ
where vhr

h is a disaggregated variable and zr
h is a binary variable

that takes the value of 1 if the hth interval of the rth velocity is
active and 0 otherwise. Note that, in contrast with the supporting
hyperplanes, the piecewise formulation does require the defini-
tion of binary variables. Hence, a proper balance should be found
between the number of intervals and the quality of the relaxation,

so that the computational burden of the model does not explode
with the addition of a large number of binary variables.
Finally, eqs 7-10 are rewritten as follows:

kr ¼ kr1 þ kr2 þ kr3 r ¼ 1, :::, p ð30Þ

lnðKLB
r Þyr1 e kr1 e lnð1- δÞyr1 r ¼ 1, :::, p ð31Þ

lnð1- δÞyr2 e kr2 e lnð1þ δÞyr2 r ¼ 1, :::, p ð32Þ

lnð1þ δÞyr3 e kr3 e lnðKUB
r Þyr3 r ¼ 1, :::, p ð33Þ

Recall that bounds on variable Xi need to be expressed in the
space of variables xi as shown in eq 34.

lnðXLB
i Þ e xi e lnðXUB

i Þ i ¼ 1, :::, n ð34Þ
The lower bounding problem can be expressed in compact form
as follows:

ðCMILPÞ min- ∑
p

r¼ 1
μirvr

s:t: eqs 1; 11; 12; 18; 23; and 26-34

It should be clarified that the reformulation presented here is
an opt-reformulation since all local and global optima of the
original problem are mapped into local and global optima of the
reformulated model.63 Problem CMILP can be solved via
standard methods for MILP problems such as the B&B.46

4.2. Customized Spatial Branch-and-Bound. The spatial
branch-and-bound algorithm we propose to solve problem
OMINLP exploits the particular features of the GMA model.
The method is based on sequentially solving subproblems
obtained by partitioning the original domain. A spatial branch-
and-bound tree (sBB tree from here on) is used to represent the
hierarchy of nodes.
Let OMINLPk andCMILPk denote theOMINLP andCMILP

subproblems associated with node k of the sBB tree. The original
problem, OMINLP, is allocated in the root node (k = 0). A
convex relaxation of the original problem (model CMILP0) is
solved in order to obtain a valid lower bound on the global
optimum of the original formulation.42,44,79,80 An upper bound
for the node can also be computed by optimizing locally the
original model OMINLP0 using the solution provided by
CMILP0 as starting point. If the optimality gap of the node is
above the tolerance, then we generate subproblems OMINLP1

and OMINLP2 by splitting (branching) the domain of one of the
p velocities vr. This is equivalent to creating two descendant
nodes in the sBB tree. Every time a subproblem OMINLPk is
created, it is added to a list T containing all of the active (i.e., yet
to explore) nodes in the sBB tree. Each of these subproblems is
then solved exactly in the same manner as OMINLP0, in order to
produce lower and upper bounds for each of the nodes. Recall
that in these subproblems, we impose lower and upper limits on
the variables according to the selected branching scheme. Every
time a node is evaluated, the associated OMINLPk problem is
eliminated from T.
If at any node k of the sBB tree CMILPk is infeasible, the node

can be pruned, as it does not contain any feasible solution to
OMINLP. If this happens at node 0, then OMINLP is infeasible.
Similarly, if the optimal solution to CMILPk, denoted by rOF*, is
above the overall upper bound OUB (i.e., the best bound
considering all the nodes of the sBB tree), we can prune this
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node, as proceeding in this branch will only lead to worse
solutions (note that as we go deeper in the tree, subproblems
are more restricted). After updating OUB, we can prune those
nodes in the active list with a lower bound greater than OUB.
Search trees are only finite for an ε-tolerance.40 Hence, a node

can be fathomed when the difference between the upper and
lower bounds is smaller than the tolerance. We update OUB
whenever the upper bound of the node is lower than the current
OUB. The overall lower bound (OLB) corresponds to the lowest
among the lower bounds of the active nodes in the sBB tree. The
algorithm terminates when the gap between OUB and OLB is
reduced below the ε-tolerance.
In the next few sections, we highlight some particular features

of our sBB strategy.
4.2.1. Branching Strategy. An effective branching technique50,81

aims at minimizing the size of the sBB tree and, thus, can strongly
affect the performance of the algorithm.63 In contrast with the
application of B&B to MILP optimization, where the optimal
solution of the relaxation is only infeasible in the original problem
when integer variables take fractional values, in nonlinear optimiza-
tion, infeasibilities may also be due to continuous variables violating
constraints that have been relaxed. We must keep in mind that the
termination criterion for the proposed strategy is achieving a
sufficiently small optimality gap. A tight CMILP formulation capable
of providing high-quality lower bounds plays a major role in the
performance of the algorithm. Recall that eq 4 is the only equation of
OMINLP that is relaxed to build CMILP. Hence, by deriving a tight
approximation of the logarithmic function therein, it is possible to
determine tight bounds on the global optimal solution of OMINLP.
The proposed method branches on the velocities vr|r ∈ rlin. This is a
common feature with the reduced space B&B57 that only branches
on a subset of variables. With this strategy, the linear estimators (i.e.,
piecewise linear functions and hyperplanes) concentrate on the
lower region of the branching velocity in the left-hand descendant
subproblem and in the upper region of the velocity in the right-hand
one. This improves the quality of the relaxation without increasing
the number of variables and the associated complexity.
At each node, the algorithm branches on one single velocity.

Our branching strategy consists of branching on the velocity
term with the worst relaxation (i.e., the one for which the
difference between the solutions of the relaxed and original
problem takes a maximum value). Let vCMILPk*

be the vector
containing the value of the p velocities vr in the optimal solution
of subproblem CMILPk and vOMINLPk*

be the equivalent vector
for subproblem OMINLPk. The branching velocity in node k is
that with the largest distance between its optimal value in the
original problem and the relaxation:

rk ¼ arg max
r ∈ rlin

ðabsðvCMILPk
�

r - vOMINLPk
�

r ÞÞ ð35Þ
If no optimal solution to OMINLPk is avaiblable (i.e.,

OMINLPk was found infeasible in a local search), the branching
velocity is selected with the same equation but vr

OMINLPk*

is then
calculated as a function φ of the optimal values of kr

CMILPk*

and
xCMILPk*

:

vOMINLPk
�

r ¼ φðkCMILPk
�

r , xCMILPk
�
Þ

¼ expðkCMILPk
�

r Þγr
Yn þ m

j¼ 1

expðxCMILPk
�

j Þfrj ð36Þ
Another important consideration when branching is the

selection of the branching point, that is, the point in which the

domain of the branching velocity will be split. One possible
strategy consists of using the optimal solution to CMILPk,
vr
CMILPk*

, as the branching point. From numerical examples, we
found that this strategy usually led to large CPU times, mainly
because it produces the same solutions in both descendant
nodes. In contrast, allocating this point close to one of the
extreme points of [vr

LB,k,vr
UB,k] is likely to produce a very easy

subproblem and a very hard one. The same applies to the rule
presented in ref 57, where the branching point is selected as vr

br,k =
0.9vr

LB,k þ 0.1vr
UB,k if vr

OMINLPk* e vr
mid,k (with vr

mid,k = (vr
LB,k þ

vr
UB,k)/2) and vr

br,k = 0.1vr
LB,k þ 0.9vr

UB,k otherwise. Another
alternative, perhaps the most intuitive one, is using the bisecting
rule, in which the interval is divided by its mid point, vr

mid,k.
Particularly, we have obtained the best performance of the
algorithm by applying one of the strategies presented in ref 82.
This strategy relies on using a convex combination between the
optimal solution vr

OMINLPk* and the midpoint of the interval vr
mid,k,

as illustrated by eq 37:

vbr, kr ¼ 0:5vOMINLPk
�

r þ 0:5vmid, kr ð37Þ
Again, if vr

OMINLPk* is not available, it is calculated as in eq 36. With
this strategy, we concentrate the efforts around the optimal
solutionwithout compromising the balance between the complex-
ity of the two subproblems.
4.2.2. Bound Contraction and Interval Analysis. The quality

of the OLB strongly depends on the bounds imposed on the
variables.40 These bounds can be tightened during the performance
of the algorithm using bound contraction techniques. In general, we
can distinguish between two lines of bound tightening procedures:
optimality-based bounds tightening (OBBT55,58,83-87) and feasibil-
ity-based bounds tightening (FBBT55,66,83,87-91).
OBBT derives tight bounds for n variables by solving 2n

optimization problems, where each of the n variables is mini-
mized and maximized subjected to the problem constraints.
When n is large, this procedure becomes time-consuming.
Consequently, OBBT is typically performed only in the root
node prior to the global optimization procedure.84 We imple-
ment the same strategy, using OBBT to improve the bounds of
the p velocities vr by solving subproblems OBLB and OBUB:

ðOBLBÞ for every r : min νr
s:t: eqs 1; 11; 12; 18; 23 and 26-34

ðOBUBÞ for every r : max νr
s:t: eqs 1; 11; 12; 18; 23 and 26-34

To avoid cutting off feasible values of vr, we use the linear
relaxation CMILP to generate bounds on the variables. For those
cases in which the computational burden of model OBLB/UB is
large or the number of velocities is particularly high, we can relax
the integer variables in these subproblems in order to expedite
their solution. Note that this is done at the expense of obtaining
weaker bounds for the velocities.
On the other hand, FBBT inherits the knowledge from recursive

arithmetic intervals47 in order to infer new bounds for the variables
from the information provided by the problem constraints. Every
time we branch in a node k, we modify the bounds for the branching
velocity in the descendant subproblems as follows:

vUB, k þ 1
r ¼ vbr, kr ð38Þ

vLB, k þ 2
r ¼ vbr, kr ð39Þ
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where kþ 1 and kþ 2 denote the left-hand side and right-hand side
subproblems, respectively. Consider a hypothetical metaboliteXa for
which the mass balance is described as follows:

dXa

dt
¼ 0 ¼ 2v1 þ v2 - 3v3 ð40Þ

From this equation, we know that v1
LB g (3v3

LB - v2
UB)/2 and

v1
UBe (3v3

UB- v2
LB)/2. Similar expressions can be derived to get

bounds on v2 and v3. These equations improve the effect of the
branching strategy by generating tighter bounds for variables
others than the one on which we have branched. In general, the
following expressions hold:

vLB, ir ¼ ∑
r0

����� μir0
-μir

� �
> 0

μir0
-μir

vLBr þ ∑
r0

����� μir0
-μir

� �
< 0

μir0
-μir

vUBr

r0 6¼ r i ¼ 1, :::, n ð41Þ

vUB, ir ¼ ∑
r0

����� μir0
-μir

� �
> 0

μir0
-μir

vUBr þ ∑
r0

����� μir0
-μir

� �
< 0

μir0
-μir

vLBr

r0 6¼ r i ¼ 1, :::, n ð42Þ
Note that each mass balance equation in which velocity r
participates can potentially lead to new tighter bounds. To
account for this, we introduce the index i in the bounds vr

LB,i

and vr
UB,i. The bounds obtained in each equation are finally

compared in order to keep the tightest one:

vLBr ¼ maxðvLB, oldr , max
n

i¼ 1
ðvLB, ir ÞÞ ð43Þ

vUBr ¼ minðvUB, oldr , min
n

i¼ 1
ðvUB, ir ÞÞ ð44Þ

Since during the FBBT procedure bounds may be updated, it
may be worth it to repeat the process recursively in order to
obtain tighter bounds. It is convenient to consider an iteration

limit on the number of times that the procedure is performed.
More sophisticated criteria (e.g., repeating the FBBT until the
best improvement falls below a given tolerance) can also be used.
It is known that FBBT provides weaker bounds than OBBT.63

However, it tends to be faster. One of the main advantages of
FBBT is that it can detect infeasible subproblems prior to their
optimization. A subproblem k is infeasible when vr

LB,k > vr
UB,k

for at least one r:

$rjvLB, kr > vUB, kr f OMINLPk ¼ φ ð45Þ
OBBT and FBBT are thus valuable techniques for expediting the
overall performance of the algorithm.
4.2.3. Strengthening Cuts. A special type of linear cuts that

tighten the relaxation of OMINLP can be derived from the
stoichiometric coefficients that relate the p velocities in the mass
balance of every dependent metabolite i. Let us consider the
example introduced in the previous section. Two cuts can be
deduced from eq 40 as follows:

v3 g
2v1
3

ð46Þ

v3 g
v2
3

ð47Þ

In general, from any mass balance equation associated with
metabolite i with p(i) velocities in which only one μir has a
different sign than the remaining ones (i.e., $r|μirμir0 < 0 "r 6¼
r0∧μir0μir0 0 > 0 "r0, r00 6¼ r, r0 6¼ r00), it is possible to generate
p(i) - 1 strengthening cuts according to eq 48:

vr g
μir0
-μir

vr0 " i, r0j $ rjμirμir0 < 0 " r 6¼ r0 ∧ μir0μir00 > 0

" r00 6¼ r, r0 ð48Þ
These inequalities can be obtained offline and added to CMILP
before the optimization takes place. A major advantage of these
cuts is that we can easily linearize them by applying the
exponential transformation described before. Particularly, if we
introduce eq 4 into eq 48 and replace the original Xi and Kr as

Figure 2. Scheme of sBB partitioning procedure. Solution OSk* belongs to the feasible space of subproblem OMINLPkþ1.
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described in eqs 15 and 16, we obtain eq 49:

ðexp krÞγr
Yn þ m

j¼1

ðexp xjÞfrj g
μir0 ðexp k

0
rÞγr0

Qn þ m

j¼ 1
ðexp xjÞfr0 j

-μir

ð49Þ

We can linearize these equations by taking logarithms in both
sides of the inequality, similarly as we did in eq 18:

kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj g lnðμir0 Þ þ kr0 þ lnðγr0 Þ

- lnð- μirÞ þ ∑
n þ m

j¼ 1
fr0 jxj ð50Þ

Note that the introduction of strengthening cuts does not require
the addition of auxiliary variables in the model.
4.2.4. Bound Inheritance. In sBB algorithms, most of the time

is spent in solving the lower bounding problem and identifying a
good incumbent for CMILPk. The customized sBB algorithm
incorporates a strategy devised to alleviate the effect of this
limitation.
Let OSk* be the optimal solution of subproblem OMINLPk. If

none of the pruning criteria are met in this node, two descendant
subproblems, OMINLPkþ1 and OMINLPkþ2, will be created.
Solution OSk* must be feasible for at least one of these subpro-
blems (see Figure 2). Let us assume, without loss of generality,
that OSk* belongs to the feasible space of OMINLPkþ1. Hence,
we can obtain a good incumbent for CMILPkþ1 by expressing

Figure 3. Citric acid production in Aspergillus niger. Adapted from ref 67. Dependent metabolites are highlighted.
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OSk* in the space of variables of the linear relaxation. We
accomplish this by applying a logarithmic transformation on
the continuous variables, and by fixing the values of the binary
variables according to the intervals of the piecewise approxima-
tion in which the original solution has fallen. This provides an
integer feasible solution that is used as a starting value for the
B&B solvers, thereby expediting the solution of the lower
bounding problem in node k þ 1. Note that this initialization
scheme is only applicable to one descendant node.

5. COMPUTATIONAL RESULTS

The problem selected for testing the capabilities of our
customized sBB algorithm is the maximization of the citric acid
production in Aspergillus niger (see Figure 3). On the basis of the
results of Polisetty et al.67 and Pozo et al.,68 we solve several
instances of OMINLP, which differ in the number of reactions
(ME) allowed for simultaneous modification. We assume that
the 60 reactions included in themodel can bemodified by genetic
manipulation. Note, however, that any practical solution should
consider only a limited number of changes. In this specific case,
Polisetty et al.67 showed that by manipulating only 5 enzymes, it
is possible to attain a solution close to the one found when all of
the enzymes can be modified.

Here, we take the results from Pozo et al.68 as a reference for
comparison purposes. We focus on optimizing the system when
only one, two, three, or five enzymes can bemodified (case B,ME
= 1; case C, ME = 2; case D, ME = 3; and case E, ME = 5). The
nomenclature is the same used in Pozo et al.68 The cases
discussed in Table 8 of that paper are used to test the perfor-
mance of the novel sBB method. A total of eight instances are
solved with the customized sBB approach (see Tables 1 and 2).
In all these cases, those enzymes that are not allowed for
modification are fixed to their basal state. The maximum change

for each enzyme is 5 fold over its basal state. The optimization
constraints are the same as in the referenced paper.

Our results are compared with those obtained by the OA
technique introduced by the authors in an earlier work21,68 and
also with the global optimization package BARON. With regard
to the sBB andOAmethods, it should be noted that both of them
solve iteratively the same subproblems: the MILP-based relaxa-
tion CMILP and the bounded OMINLP. From numerical
examples, we observed that both algorithms worked better when
the binary variables associated with the genetic manipulations of
the enzyme levels are fixed in the original problem according to
the output of the linear MILP relaxation. For this reason, the
lower bounds are generated by solving a bounded NLP instead of
a boundedMINLP. [Note that the optimization task is posed as a
maximization problem, so CMILP predicts upper bounds on the
global optimum of OMINLP.]

In all of the examples, we used CPLEX 11.2.1 as MILP solver
and CONOPT 3.14s for the NLPs, whereas BARON v.8.1.592

was employed to solve the full-space OMINLP problems. The
algorithms were implemented in GAMS 23.0.2 on an Intel 1.2
GHzmachine. An optimality tolerance of 2.00%was fixed in all of
the cases.

The performance of the sBB algorithm depends on a series of
factors that can be configured at will. The ones with the highest
influence are the branching rule, the CPLEX tolerance, the stop
criterion for the FBBT procedure, the selection of the branching
point, the number of supporting hyperplanes, and the number of
piecewise intervals. The particular configuration of the algorithm
chosen to perform the calculations is given in Table 3. The only
parameter that was particularly tuned for every single instance
being solved was the number of piecewise intervals. The results
obtained with the aforementioned sBB configuration are shown
in Table 4, which also summarizes the performance of the other
methods. Recall that the optimal solution reported corresponds
to the best solution provided by the lower bounding problem
when the termination criterion was met. Note also that all of the
algorithms are compared on the basis of the CPU time required
to attain a solution with an optimality gap of 2.00%. This is the
same comparison criterion used in Pozo et al.68 Other criteria
could have been used instead. Nevertheless, we observed that the
conclusions of the analysis are very similar for all of the cases.

As can be seen, the proposed methodology can solve all of the
instances within the required tolerance. The same occurs with
the OA, whereas BARON was not able to improve the starting
point (which corresponds to the basal state solution) even after
3600 s of CPU time. This might be due to the use of generic
techniques for building the relaxed upper bounding problem
(when maximizing) that do not benefit from the particular
structure of the GMA formalism.

The number of nodes explored in the sBB tree varies from one
example to another without any clear tendency. However, the
node in which the optimal solution is found is generally very close
to the root node (20 first nodes) in all the instances except C1

Table 1. Size of Citric Acid Models after Preprocessinga

OMINLP CMILP

case equations CV IV PW0 equations CV IV

B1 692 448 3 12 5339 1072 924

B2 692 448 3 10 5111 958 810

C1 692 445 6 10 5111 958 810

C2 692 445 6 30 7451 2098 1890

D1 692 442 9 15 5681 1243 1095

D2 692 442 9 10 5111 958 810

E1 692 436 15 12 5339 1072 924

E2 692 436 15 15 5681 1243 1095
aOMINLP: full-space problem. CMILP: MIP relaxation of OMINLP.
CV: number of continuous variables. IV: number of integer variables.
PW0: number of piecewise sections in the initial iteration of the
algorithm.

Table 2. Enzymes That Can Be Modifed in Each of the
Instances of OMINLP

case ME subcase

modifiable

enzymes case ME subcase

modifiable

enzymes

B 1 1 [40] D 3 1 [1, 40, 60]

2 [59] 2 [1, 40, 59]

C 2 1 [40, 59] E 5 1 [1, 39, 40, 59, 60]

2 [1, 40] 2 [1, 28, 40, 59, 60]

Table 3. Parameters Setting in the sBB Algorithm

parameter configuration

node selection highest LB

CPLEX tolerance 0.00%

FBBT stop criterion 10 iterations

number of hyperplanes 50

branching point selection see eq 37
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(244). This is in consonance with the common observation that
B&B algorithms may take a long time to verify optimality,
although good (sometimes optimal) solutions are usually found
in the early stages of the search.48

Regarding the optimal number of piecewise intervals, they
range between 10 and 15. In only one case (C2) did the
customized sBB perform better with a larger number of piecewise
terms (i.e., 30). In contrast, in the OA, the optimal number of
initial piecewise terms is small on average (i.e., 4), and even in the
worst case, the algorithm works better with fewer intervals (i.e.,
9) than in any instance of the sBB. Recall that, in each iteration of
the OA algorithm, the total number of piecewise sections is
increased by one, as the interval containing the optimal solution
of CMILP is split into two subintervals. Since there is a binary
variable associated with each of these new intervals, starting with
too many sections is likely to lead to large instances that are hard
to solve in short CPU times.

On the other hand, the final number of piecewise sections
required by the OA exceeds the piecewise terms used in the sBB
in all of the cases except two (i.e., C2 and E1). Let us note that in
the OA method, the number of piecewise intervals is progres-
sively increased to construct tighter relaxations, whereas in the
customized sBB, bound tightening techniques and tailored
branching rules allow reducing of the search space while keeping
the number of piecewise terms constant in each subproblem.
Henceforth, the sBB can produce a relaxation as tight as that of
the OA with fewer piecewise sections.

With regard to the CPU time, the OA proved to be faster on
average (177s compared to 253s). Specifically, it performed
better than the sBB in more instances (6 vs 2). The reason for
this to happen might be that at each iteration of the OA, we
tighten the relaxation of the logarithm of all the velocities |rlin|,
whereas in the sBB, only one velocity is tightened at each
branching point of the tree. This leads to more nodes and hence
large CPU times. This finally results in a faster convergence of the
lower and upper bounds in the case of the OA.

The customized sBB algorithm proved to be significantly
faster than the OA in the two most difficult instances (i.e., those
with a higher number of manipulations allowed). It should be
noted that these results may vary according to the settings of each
algorithm.

In order to better explore the advantages of the proposed
method, we also solved instances of cases B, E, and F (the latter

corresponding to ME = 4), where the best combination of
enzymatic manipulations is searched. In these computations,
no binary variables are fixed prior to the optimization. This
exercise attempts to mimic the search for an optimal genetic
modification in a biotechnological application.

As can be seen in Table 5, the solution identified for case B by
both algorithms corresponds to the one obtained in case B1 (see
Table 4). The same occurs with the solution obtained by the sBB
for case E, which is the same as that of case E1. In contrast, the
solution of case E found with the OA corresponds to a different
combination of enzymes that leads to a lower (i.e., worse) value
of the objective function. Solutions found forME = 1 andME = 5
did not improve those already reported in Polisetty et al.67 and
Pozo et al.68 On the other hand, the solution obtained for case F,
which implies modifying four enzymes, is indeed very close to the
one found when all the enzymes are allowed to change. In
addition, this solution can be attained modifying different
combinations of enzymes.

Regarding the performance of the algorithms, both of them
were capable of finding solutions with low optimality gaps in all
of the instances, showing the sBB method the best performance.
These results are partly due to the bound tightening techniques
discussed in section 4.2.2, which were not included in the OA
proposed in Pozo et al.68 For instance, note that the customized
sBB identifies the global optimum of cases E and F in just one
node using 11 and 12 piecewise intervals respectively. One could
think that the same result could be obtained with the OA using
the same number of piecewise sections. However, when no
bound contraction is performed, this setup does not allow for
attaining the specified tolerance in one iteration of the OA
algorithm. In fact, with this number of initial piecewise terms,
the algorithm shows a worse performance than with 4 intervals (i.
e., the final CPU times exceed those reported in Table 5 for four
initial sections).

These results also indicate that good/optimal solutions can be
found in the early stages of the search. Note that the global
optimum of case B is identified in node 238 with sBB, but a
solution with an optimality gap of 3% is found in node 1. This can
be better seen in Figure 4: solutions very close to the global
optimum are identified in the very first seconds of the execution
of the algorithms, while the remaining time is spent in reducing
the optimality gap. Particularly, the OA provides smaller optim-
ality gaps than the sBB in the beginning of the search (i.e., in the

Table 4. Comparison between the Best Results Obtained with the OA and the Customized sBB for Each Instancea

sBB BARON OA

case PW0
b nodes NO LB UB CPU LB UB CPU PW0 PWf LB UB CPU

B1 12 34 10 25.82 26.05 36 12.36 -c 17 3 12 25.82 26.33 17

B2 10 198 12 12.37 12.57 229 12.36 - 9 3 15 12.35 12.51 45

C1 10 298 244 25.83 26.34 368 12.36 - 13 3 16 25.78 26.14 53

C2 30 26 15 25.82 26.34 61 12.36 - 39 3 12 25.82 26.33 18

D1 15 340 1 40.88 41.59 1155 12.36 - 52 3 18 40.88 41.42 167

D2 10 42 18 176.8 179.87 35 12.36 176.79 3600 3 12 176.79 180 18

E1 12 1 1 347.92 353.22 1 12.36 347.93 3600 7 9 347.93 353.35 6

E2 15 32 1 256.59 261.68 83 12.36 256.68 3600 3 18 256.59 261.32 1093
a PW0: number of piecewise sections in the initial iteration of the algorithm. PWf: number of piecewise sections in the last iteration of the algorithm. NO:
node in which the optimal solution was found. LB: lower bound on the global optimum in mMmin-1. UB: upper bound on the global optimum in mM
min-1. CPU: CPU time in seconds. bNote that for the sBB algorithm, PW0 = PWf as the number of piecewise sections is not modified throughout the
algorithm. cBARON failed to provide a rigorous upper bound in cases with -.



5235 dx.doi.org/10.1021/ie101368k |Ind. Eng. Chem. Res. 2011, 50, 5225–5238

Industrial & Engineering Chemistry Research ARTICLE

first 300s). At this point, the tendency changes and the sBB
shows better performance. This is due to the increase in the
number of binary variables and hence in the complexity of the
MILP subproblems solved by the OA. In contrast, the size of the
MILP subproblems calculated in the sBB is kept constant in the
nodes of the tree.

6. CONCLUSIONS

This paper has addressed the global optimization of metabolic
networks described through the GMA formalism. A customized
sBB algorithm that benefits from the specific structure of this
type of model has been presented for this purpose. The
optimization task was posed as a nonconvex MINLP in which
integer variables denote the number of manipulations allowed.
Tight bounds on the global optimum were obtained by con-
structing a linear MILP-based relaxation that exploits the math-
ematical structure of the GMA formalism. The method
incorporates branching rules and bound contraction strategies
devised to expedite the overall solution procedure.

Our strategy was compared against an outer approximation
(OA) algorithm and the global optimization package BARON.

Numerical results showed that the first two methods outper-
formed BARON in all of the instances under study. This is due to
the quality of the MILP-based relaxation that is obtained by
performing a logarithmic transformation on the power-law
equations and approximating them by under- and overestima-
tors. We also observed that none of these two methods (sBB and
OA) proved to be superior in all of the cases. Nevertheless, the
sBB showed a better performance in the most complicated
instances, which is probably due to the ability of this strategy
to reduce the problem domain without increasing the number of
variables. Problems with a similar structure (i.e., with a large
number of sigmoidal terms) may also benefit from the proposed
strategy. Future work will focus on devising systematic tuning
strategies that will improve the performance of the customized
sBB algorithm.

The results obtained clearly show that we can tackle problems
of moderate complexity when expressed as GMA models. One
difficulty encountered when addressing the global optimization
of complex metabolic networks is the current limited biological
knowledge of some of these systems. While stoichiometric
models can easily be constructed, GMA models require

Table 5. Comparison between the Best Results Obtained with the Customized sBB and the OA for Each Instancea

sBB OA

case PW0
b nodes NO OE Kr LB UB CPU PW0 PWf OE Kr LB UB CPU

B 3 296 238 [40] [5.00] 25.82 26.25 484 2 12 [40] [5.00] 25.82 26.19 864
E 11 1 1 [1, 39, 40, 59, 60] [1.40, 0.92, 5.00, 5.00, 1.07] 347.92 353.81 91 4 7 [28, 39, 40, 59, 60] [1.13, 1.45, 5.00, 5.00, 1.05] 347.26 353.75 203
F 12 1 1 [1, 39, 40, 59] [1.23, 0.88, 5.00, 5.00] 347.25 351.41 50 4 7 [39, 40, 55, 59] [1.53, 5.00, 1.10, 5.00] 347.26 351.71 78

a PW0: number of piecewise sections in the initial iteration of the algorithm. NO: node in which the optimal solution was found. OE: enzymes r being
modified in the optimal solution of the instance. Kr: optimal fold-change in activity of enzyme r. LB: lower bound on the global optimum in mMmin-1.
UB: upper bound on the global optimum in mM min-1. CPU: CPU time in seconds. PWf: number of piecewise sections in the last iteration of the
algorithm. bNote that for the sBB algorithm, PW0 = PWf as the number of piecewise sections is not modified throughout the algorithm.

Figure 4. Evolution of the lower and the upper bounds of the global optimum of case B for the OA and the sBB algorithms.
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additional information that may not be available for large models.
Although detailed GMA genome-wide models are far in the
future, our results show that it is worth it to collect the required
information, as we are able to obtain optimization results that go
beyond those possible with stoichiometric models.
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’NOMENCLATURE

Indexes
h = interval of the piecewise underestimation of the logarithm

function
i = dependent metabolite
j = metabolite (dependent or independent)
l = supporting hyperplane
r = = flow, process, velocity

Sets
rlin = set of processes r whose kinetic equations are linearized

Variables
Kr = fold-change in the basal state activity of enzyme governing

process r
kr = logarithm of the fold change in the basal state activity of

enzyme governing process r
Kr1 = auxiliary disaggregated variable associated with process r
Kr2 = auxiliary disaggregated variable associated with process r
Kr3 = auxiliary disaggregated variable associated with process r
t = = time
vr = velocity of process r
vhr

h = disaggregated variable associated with the hth term of the
convex hull reformulation of the piecewise underestimator
of velocity r

Xi = concentration of metabolite i
xi = logarithm of the concentration of metabolite i
yr1 = binary variable associated with the first term of the convex

hull of the disjunction of process r
yr2 = binary variable associated with the second term of the

convex hull of the disjunction of process r
yr3 = binary variable associated with the third term of the convex

hull of the disjunction of process r
zr
h = binary variable associated with the hth term of the convex

hull of the piecewise underestimation of velocity r

Parameters
δ = sufficiently small parameter
γr = basal state activity of enzyme governing process r
μir = stoichiometric coefficient of process r in the mass balance of

metabolite i
ar
h = slope of the segment used in interval h of the piecewise

approximation of velocity r
br
h = vertical axis intercept of the segment used in interval h of the

piecewise approximation of velocity r
frj = kinetic order of metabolite j in process r
H = total number of intervals in the piecewise underestimator of

the logarithmic function
Kr
LB = lower bound on the fold change in the basal state activity of

enzyme governing process r
Kr
UB = upper bound on the fold change in the basal state activity

of enzyme governing process r
L = total number of supporting hyperplanes (linearization

points)
m = total number of independent metabolites
ME = maximum number of enzymes allowed for modification
n = total number of dependent metabolites
p = total number of flows (processes) involved in the metabolic

network under study
p(i) = total number of flows (processes) involved in the mass

balance of metabolite i
vr
h = lower limit of interval h in the piecewise underestimator of

velocity r
vr
hþ1 = upper limit of interval h in the piecewise underestimator of

velocity r
vr
LB = lower bound on velocity r
vr
UB = upper bound on velocity r
Xi
LB = lower bound on the concentration of metabolite i

Xi
UB = upper bound on the concentration of metabolite i
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