
Bar plots with percentages

Summary

Use **compareGroups** for obtaining a table of percentage

Plot percentages of a table as a bar plot

Estimate simultaneous CI for proportions

Load libraries and data

We shall use the database **birthwt** available in the **UsingR** package

We need the packages:

```
library(tidyverse)
library(DescTools)
library(questionr)
library(plyr)
library(formattable)
library(gmodels)
```

We shall use the data **birthwt**

head(birthwt)

	low	age	lwt	race	smoke	ptl	ht	ui	ftv	bwt
85	0	19	182	2	0	0	0	1	0	2523
86	0	33	155	3	0	0	0	0	3	2551
87	0	20	105	1	1	0	0	0	1	2557
88	0	21	108	1	1	0	0	1	2	2594
89	0	18	107	1	1	0	0	1	0	2600
91	0	21	124	3	0	0	0	0	0	2622

Define variables as factors

```
birthwt\race<- factor(birthwt\race, labels=c('white', 'black', 'other'))
birthwt$low<- factor(birthwt$low,
                   labels =c('>2.5','<2.5'))
birthwt$ht<-factor(birthwt$ht,labels=c('No','Yes'))</pre>
head(birthwt)
                   low age lwt race smoke ptl ht ui ftv bwt
                85 <2.5 19 182 black
                                       0 0 No 1
                                                    0 2523
                86 <2.5 33 155 other 0 0 No 0 3 2551
                87 <2.5 20 105 white 1 0 No 0 1 2557
                88 <2.5 21 108 white 1
                                          0 No 1 2 2594
                89 < 2.5 18 107 white 1 0 No 1 0 2600
                91 <2.5 21 124 other 0 0 No 0
                                                    0 2622
```

Use compareGroups for obtaining a table of frequencies

	V	white N=96	k	olack N=26		other N=67	p.overall
low:							0.082
>2.5	73	(76.0%)	15	(57.7%)	42	(62.7%)	
<2.5	23	(24.0%)	11	(42.3%)	25	(37.3%)	

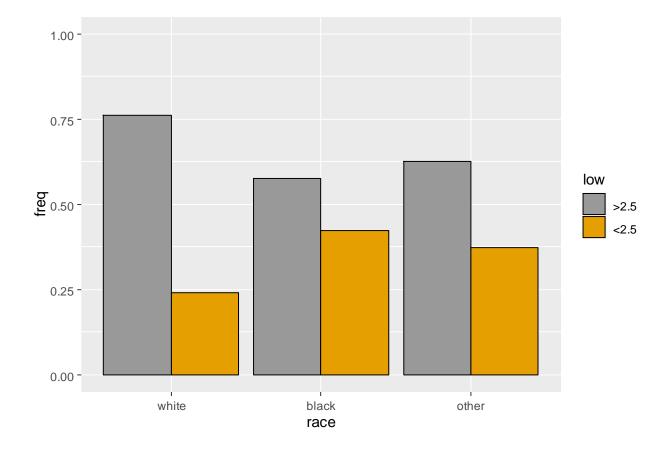
Percentages are computed within columns. In this case We obtain the percentage of births with low and normal weight.

Confidence intervals

createTable(compareGroups(race~low,birthwt),show.ci=TRUE)

This option for createTable compute CI for the probabilities

		white N=96		black N=26		other N=67	p.overall
low:							0.082
		[66.3%; 84.2%]					
<2.5	24.0%	[15.8%; 33.7%]	42.3%	[23.4%;63.1%]	3/.3%	[25.8%; 50.0%]	

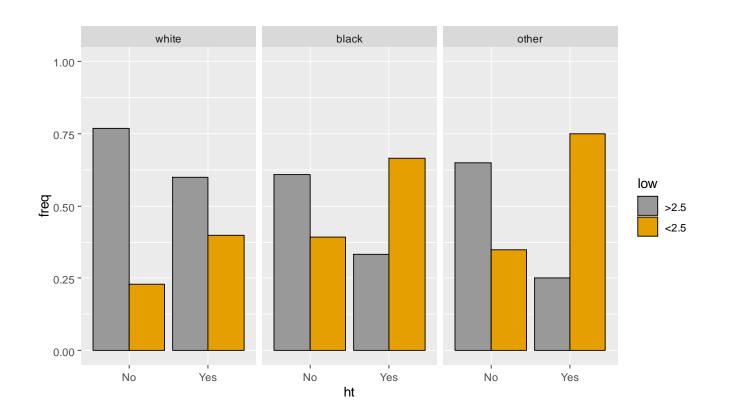

Prepare percentage table for plotting

```
t <- birthwt %>% group_by(race,low) %>%
 summarise(n=n()) %>% mutate(freq=n/sum(n))
t
# A tibble: 6 x 4
# Groups: race [3]
  race low
                  n freq
   <fct> <fct> <int> <db1>
 1 white >2.5
                 73 0.760
 2 white <2.5
                 23 0.240
 3 black >2.5
                 15 0.577
 4 black <2.5
                 11 0.423
                 42 0.627
 5 other >2.5
 6 other <2.5
                 25 0.373
```

- First compute the percentages. This can be done by grouping by the variables and then calculate (summarise) the number of cases for each cell and calculate the frequencies.
- Frequencies are computed over the observations in each race.
- In the group_by the first variable are the groups and the second one are the events within groups.
- For instance, the proportion of births with low weight in black mothers is 0.423

Bar plot

- If you want to plot the computed proportions, the aesthetic in ggplot should include the x (race) the groups (fill=low), and the variable that has the proportions (freq)
- Then geom_bar should indicate the stat='identity'.
- Manual colors can be indicated by scale_fill_manual



Proportion of low within ht by race

```
res <- compareGroups(ht~low,birthwt)
t1<-createTable(update(res,subset=race=='white'))
t2<-createTable(update(res,subset=race=='black'))
t3<-createTable(update(res,subset=race=='other'))
cbind('White'=t1,'Black'=t2,'Other'=t3)</pre>
```

	White			Black			Other		
	No N=91	Yes N=5	p.overall	No N=23	Yes N=3	p.overall	No N=63	Yes N=4	p.overall
low:			0.590			0.556			0.143
	70 (76.9%) 21 (23.1%)			14 (60.9%) 9 (39.1%)			41 (65.1%) 22 (34.9%)		

Bar plots

- You can group by three variables.
 Proportions of low within ht groups are computed for each race.
- Then a barplot for each race can be obtained using facet_wrap

Simultaneous CI for proportions

Suppose we have a sample of blood types (A,B,AB,O) in a population. The results are:

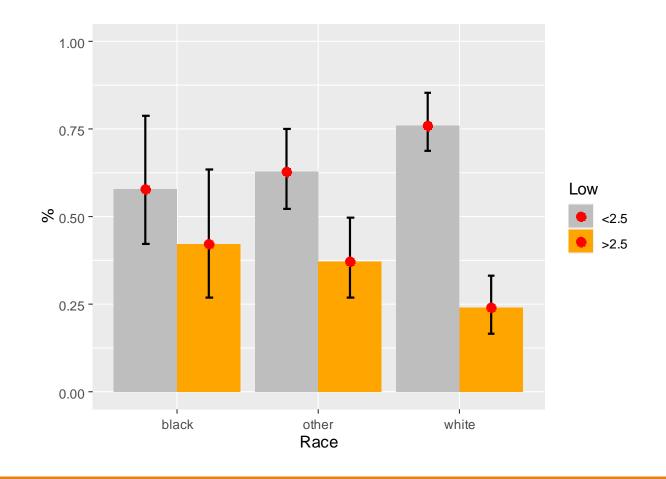
A: 39

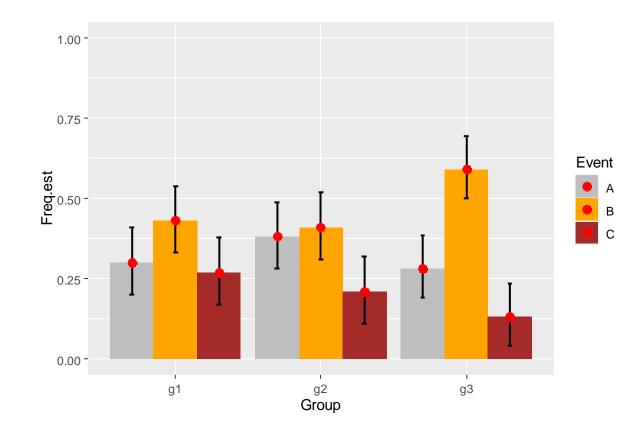
B: 11

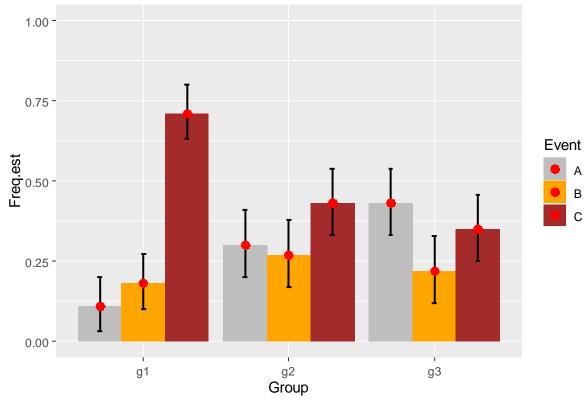
AB: 4

O: 48

We can obtain CI for the population probabilities by using the **MultinomCI** within the **DescTools** package

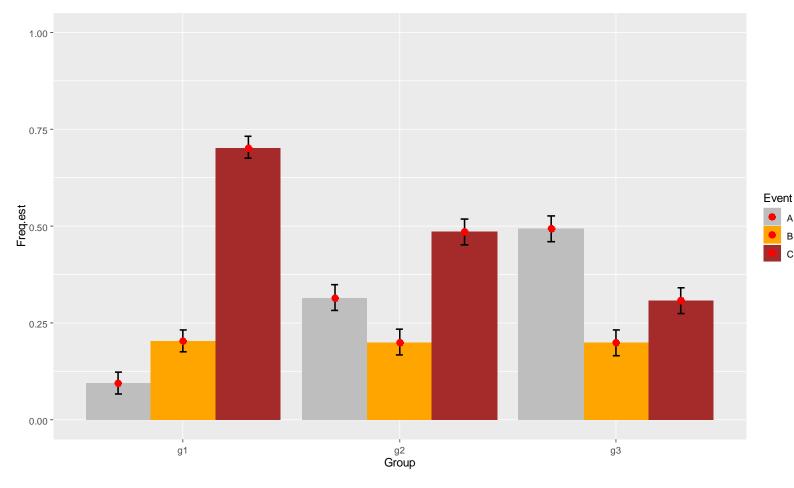

```
> MultinomCI(c(39,11,4,48)) %>% round(2)
    est lwr.ci upr.ci
[1,] 0.38    0.28    0.48
[2,] 0.11    0.01    0.21
[3,] 0.04    0.00    0.14
[4,] 0.47    0.37    0.57
```

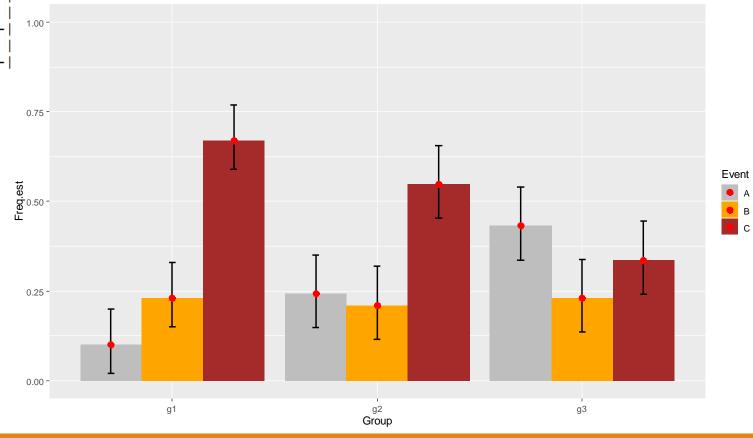

It is not correct to use the CI for a proportion repeated for each group!! For instance for the B group:


CI for proportions

	V	white N=96	k	lack N=26	(ther N=67	p.overall
low:							0.082
<2.5	73	(76.0%)	15	(57.7%)	42	(62.7%)	
>2.5	23	(24.0%)	11	(42.3%)	25	(37.3%)	

 CI from proportions should be computed as simultaneous CI using MultinomCI




	Α	В	C	Row Total
g1	94	204	702	1000
_	9.400%	20.400%	70.200%	33.333%
	-17.455	0.290	15.776	ĺ
g2	315	200	485	1000
_	31.500%	20.000%	48.500%	33.333%
	1.211	-0.097	-1.033	
g3	493	199	308	1000
	49.300%	19.900%	30.800%	33.333%
	16.245	-0.193	-14.743	
Column Total	902	603	1495	3000

Cl and adjusted residuals in contingency tables

	 A	В	C	Row Total
g1	10 10.000% -4.491	23 23.000% 0.174	67 67.000% 3.800	100 33.445%
g2	23 24.211% -0.504	20 21.053% -0.384	52 54.737% 0.763	95 31.773%
g3	45 43.269% 4.941	24 23.077% 0.203	35 33.654% -4.511	104 34.783%
Column Total	78 78	67	 154 	 299

CI and adjusted residuals in contingency tables

